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A mesoscopic system of a few particles can undergo changes of configuration that resemble phase
transitions but with a nonuniversal behavior. A notable example is orientational melting, in which localized
particles with long-range repulsive interactions forming a two-dimensional crystal become delocalized in
common closed trajectories. Here we report the observation of orientational melting occurring in a two-
dimensional crystal of up to 15 ions. We measure density-density correlations to quantitatively characterize
the occurrence of melting, and use a Monte Carlo simulation to extract the angular kinetic energy of the
ions. By adding a pinning impurity, we demonstrate the nonuniversality of orientational melting and create
novel configurations in which localized and delocalized particles coexist. Our system realizes an
experimental testbed for studying changes of configurations in two-dimensional mesoscopic systems,
and our results pave the way for the study of quantum phenomena in ensembles of delocalized ions.

DOI: 10.1103/PhysRevLett.131.083602

A system of confined particles with long-range repulsive
interactions becomes localized in a self-ordered crystal
structure at a sufficiently low temperature. Crystallization
of a few particles has been observed in a wide variety of
physical systems, including Wigner molecules of electrons
in two-dimensional quantum dots [1], trapped ions [2,3],
electrons floating in liquid helium [4], atomic clusters [5],
vortices in mesoscopic superconducting disks [6], and
dusty plasmas [7]. When confined in an isotropic two-
dimensional (2D) potential, a mesoscopic crystal can melt
in the angular degree of freedom since there is no
preferential orientation of the crystal. This orientational
melting can be triggered by thermal or quantum fluctua-
tions [8], and results in a delocalization of the particles in
concentric circular trajectories (shells), while the system
remains localized radially [9–11]. Notably, orientational
melting is a change of configuration that resembles a phase
transition in a macroscopic system, but out of the thermo-
dynamic limit. As a result, orientational melting is a non-
universal phenomenon, i.e., it occurs at conditions that
strongly dependon the specific properties of the system [12].
Orientational melting has been extensively studied

with computer simulations for systems of particles with
different types of long-range interaction, e.g., Yukawa [13],
dipolar [14], and Coulomb interactions [15,16] by using
Monte Carlo and molecular dynamics. More recently, a
number of theoretical works have explored the occurrence
of orientational melting in more complex scenarios, e.g., in
nondegenerate two-dimensional potentials [17], in the
presence of local impurities [18], in the case of intershell

rotations [19], and in the formation of supersolid states of
ultracold atoms [20].
Despite the vast theoretical literature, orientational melt-

ing has been observed only in a few pioneering experiments
with paramagnetic colloidal spheres [21], charged dust
particles [22], and small Coulomb crystals of trapped ions
[3,23]. However, a detailed experimental investigation fully
revealing the nonuniversal features of orientational melting
has beenmissing so far. Remarkably, theory predicts that for
given numbers of particles—called magic numbers—the
orientational melting is particularly disfavored [24]. This
is a clear signature of the mesoscopic nature of orienta-
tional melting, as the presence of magic numbers—which
arise from the interplay between fluctuations (either quan-
tumor thermal), interactions, and the external potential—are
found in the most diverse mesoscopic systems, e.g., vortices
in superconductors [6], electrons in quantum dots [1],
colloids [25], and atomic nuclei [26]. Moreover, although
some dependence of orientational melting from the number
of particles has been observed in dust clusters [22], the
identification and characterization of magic numbers in
orientational melting have not been experimentally inves-
tigated so far.
Here, we directly observe and characterize orientational

melting in a two-dimensional crystal of Baþ trapped ions.
The main advantages of using trapped ions are the
possibility of precisely setting the number of particles
and of creating two-dimensional crystals by using external
electric fields [27–30]. Moreover, we can observe the
occurrence of the transition in real time by using fluores-
cence imaging.
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Our system consists of N singly charged particles
confined in a two-dimensional harmonic potential. The
Hamiltonian describing this system is

H ¼
XN

i¼1

�
p2
i

2mi
þmi

2
ðω2

yy2i þ ω2
zz2i Þ þ

XN

j>i

α

jri − rjj
�
; ð1Þ

where N is the total number of ions, mi is the ion mass,
ri ¼ ðyi; ziÞ is the position of the ith ion in the two-
dimensional y-z plane with trap frequenciesωy andωz, pi is
the ith ion momentum, α ¼ e2=ð4πϵ0Þ, e is the electron
charge, and ϵ0 is the vacuum permittivity. The Hamiltonian
in Eq. (1) is well approximated by the pseudopotential
created by the Paul trap shown in Fig. 1(a). We do not
consider micromotion, whose effects result in a minor
correction [31]. The trap frequencies depend on the
voltages applied to the rf and dc electrodes, Vrf and Vdc,

respectively, and can be expressed in terms of the Mathieu
parameters a and q [37]. We can continuously change the
ratio ωy=ωz by varying Vdc while keeping the dynamics in
two dimensions, i.e., ωx ≫ ωy;ωz [31,38]. In this potential,
the Doppler cooled ions self-arrange in a 2D crystal with
elliptical shape resulting from the anisotropy of the trap, see
Fig. 1(a). Figure 1(b) shows the energy of the system as the
crystal is rigidly rotated by an angle θ from its equilibrium
position. This energy has for ωy ≃ ωz a sinusoidal shape
with amplitude VB=2 [24,31,39]. The ions are localized
when VB is much higher than the ions’ kinetic energy along
the angular direction (or angular kinetic energy) ET , while
the ions’ angular distribution starts spreading when VB
becomes comparable to ET [see Figs. 1(b) and 1(c)].
We access the melting transition by varying a and q (see

Fig. 2).When jaj is increased, the ion crystal shape changes
from a line to an ellipse (i)–(ii). When ωy=ωz ≃ 1, we
observe orientational melting as the ions displace along a

FIG. 1. Sketch of the physical system. (a) The ion trap is
composed by 4 rf (gray, only two shown) and 4 dc (yellow)
electrodes. The inset shows a picture of a two-dimensional
crystal of 7 138Baþ ions in a potential with trap frequencies
ðωx;ωy;ωzÞ ¼ 2π × ð400; 121; 97Þ kHz. (b) A reduction of the
ωy=ωz ratio towards unity corresponds to a decrease of the height
VB of the potential barrier associated to the rigid rotation of the
crystal. When VB is reduced, e.g., when the angular periodic
potential changes from deep (dashed dark blue) to shallow (solid
light blue), the particles spatial distribution spreads as illustrated
in the figure by the two light and dark blue shaded thermal
distributions and their corresponding sketches in (c). When the
barrier is further lowered, the particles undergo orientational
melting.

FIG. 2. Accessing orientational melting by changing the par-
ticles’ confining potential. Left: stability diagram of the ion trap
calculated for 138Baþ, expressed as a function of ay and qy [31].
The yellow curve corresponds to the condition ωy=ωz ¼ 1, as
expected from the simulation of our trap, and fits inside the
stability region (blue area). The location of this curve is confirmed
by experimental data (yellow dots) obtained from fitting the ions’
spatial distribution and corresponding to a radially symmetric
crystal [31]. Right: images of 5 (i) and 7 (ii)–(iv) 138Baþ ions at
qy ¼ −0.182 and different values of ay. The images illustrate how
crystallization and ellipticity change as a function of ay across the
melting transition. The images are taken at ωy=ωz¼ð3.9;1.2;
1.1;0.9Þ, ωy¼2π×ð246;121;107;91ÞkHz, and qy¼−0.182, top
to bottom.
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circular trajectory (iii). Crystallization recovers when jaj is
further increased (iv). This is a clear indication that the loss
of crystallization is not caused by trivial effects like
instabilities arising at the edge of the stability diagram
[40] or excess micromotion [41]. We note that melting
occurs for all the pairs of parameters ða;qÞ for which
ωy=ωz ¼ 1.
To quantitatively characterize the onset of melting, we

image the ions as we continuously vary ωy=ωz while qy ¼
−0.182 is fixed. Each image records the fluorescence light,
and therefore provides a spatial density distribution of the
particles over the exposure time. We quantify the loss of
angular ordering of the ions by using the angular corre-
lation function

gðΔθÞ ¼
P

2π
θ¼0 nðθÞnðθ þ ΔθÞ −P

2π
θ¼0 nðθÞ2P

2π
θ¼0 nðθÞ2

; ð2Þ

where nðθÞ is the angular density distribution. gðΔθÞ
reflects the probability of finding two particles at an angular
distance Δθ along an elliptical trajectory enclosing the ions
[31]. If the ions form a crystal, gðΔθÞ will show a
modulation with period θNT ¼ 2π=NT , where NT is the
number of ions in the elliptical path.
Figure 3(a) shows the amplitude of angular correlations

C measured for 4 and 7 138Baþ ions as a function of ωy=ωz.
The data show that the crystal loses and retrieves locali-
zation as ωy=ωz is changed across 1. The change is
continuous and the onset of melting is dependent on the
ion number, as images (i) and (ii) in Fig. 3(b) illustrate,
indicating that the transition has no universal character. We
compare the measured angular correlation C with the
results from a Monte Carlo simulation for different temper-
atures (see [31]). The two curves that provide the best fit
correspond to an angular kinetic energy of ET4=kB ¼ 102
and ET7=kB ¼ 96 mK for 4 and 7 ions, respectively. These
values are comparable with the temperatures of Doppler
cooled ion crystals in Paul traps with a similar geometry
[42,43]. The comparison with the simulation provides a
valid alternative to conventional thermometry methods like
sideband spectroscopy and fluorescence lineshape analysis,
which would be challenging in our system because of the
low energy excitations. Moreover, the radial and axial
directions are most likely not in thermal equilibrium [28].
As can be noted from Fig. 3(c), the agreement between data
and theory worsen for ωy=ωz < 1. We attribute this to the
fact that this region corresponds to the edge of the stability
diagram (see Fig. 2) where additional contributions to the
dynamics might become relevant for the melting transi-
tion [40].
The loss of ordering is associated with a decrease in the

localization of each particle, as predicted by computer
simulations (see, e.g., Refs. [11,19]). We measure the
angular spread σ of the ion density distribution by fitting
the density profiles with a multi-Gaussian function [31].

We perform the fit only on the data with C > 4 × 10−4, for
which the spatial modulation is non-negligible. Figure 3(c)
shows the experimental data and the results of the simu-
lation, which are in good agreement.

(c)

(a)

(b)

FIG. 3. Characterization of orientational melting for 4 and 7
ions. (a) Amplitude C of the angular density-density correlation
function gðθNTÞ calculated along the elliptic trajectory (inset).
The onset of melting is clearly different for 4 (blue data) and 7
(red data) ions, as shown in the raw images in (b) taken in the
regions (i) and (ii). The dashed black (red) line corresponds to the
correlation amplitude expected for a crystal of 4 (7) ions at the
best fitting temperature of ET4=kB¼102mK (ET7=kB ¼ 96 mK),
as calculated from a Monte Carlo simulation. The blue (red)
shaded area for 4 (7) ions represents a change of �10 mK from
the best fitting curve. (c) Increase of the angular spread σ as the
melting transition is approached (see inset). σ is obtained by
fitting the density distribution [31], and the values are normalized
by the angular separation θNT between the ions. The gray central
area corresponds to trap conditions for which no density
modulation is visible, see images (iii) in (b). The dashed black
and red lines correspond to the spread of the simulated density
profiles for 4 and 7 ions at a temperature ET4=kB and ET7=kB,
respectively. The error bars in (a),(c) indicate the standard
deviation of the mean over 3 to 10 images.
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We increase the level of control over the occurrence of
melting by locally inducing the crystallization of a single
shell with the use of a pinning impurity. We realize this
scenario, which was suggested in a similar fashion for
electrons in a quantum dot [18,44], by deliberately adding
one ion of a lighter isotope of Baþ that is not resonant to the
cooling light [31] [see Fig. 4(a)]. A lighter isotope localizes
along the trap z axis as it experiences a larger value of
ωy=ωz than 138Baþ [31], resulting in an increase of VB.
Therefore, when ωy=ωz is set at the crossover of the
transition, the impurity inhibits melting of the whole shell
where it is located. Figure 4(a) shows the occurrence of
melting in a crystal of 6 to 15 ions at the onset of melting
(ωy=ωz ¼ 1.18) and in the presence of one impurity. When
the impurity is located in the inner shell, the outer shell can
still undergo melting, see for example N ¼ 13 in Fig. 4(a).
This is an evidence that the different shells can behave
independently to one another [24,45]. We observe that
melting is suppressed for the magic numbers N ¼ 7 and
N ¼ 14. The disparity between N ¼ 13 and N ¼ 14 cases
[red box in Fig. 4(a)] is remarkable, as the inclusion of a
single particle alters the entire collective behavior. The
emergence of the magic numbers, corresponding to the
highest barrier VB, can be intuitively attributed to two
factors. The first is the symmetry of the crystal structure
with respect to the trap: the more ions are aligned to the trap

weak axis (e.g., in the case of N ¼ 7), the higher VB. The
second is the ratio between the number of ions in the inner
and outer ring: the furthest this number is from an integer,
the lower the friction and hence the barrier VB [46].
To quantitatively compare the level of localization for

different N, we computed the correlation amplitudes in the
outer shell for the cases in which the dark ion is in the inner
(CIn) and outer (COut) shell. The ratio CIn=COut as a
function of N is plotted in Fig. 4(b), and clearly shows
that the N ¼ 7 and N ¼ 14 correspond to the most stable
crystalline configurations among the ones we explored
[16,24]. We compare the measured correlations with our
Monte Carlo simulation for N ¼ 7, 10, 14. We extract the
angular temperature ET=kB by least square analysis [see
Fig. 4(c)]. We measure an increase in temperature with the
size of the crystal, which we interpret as an effect due to the
micromotion energy increase out of the center of the trap.
In conclusion, our results illustrate the direct observation

of orientational melting in a 2D mesoscopic system of
charged particles. We quantitatively characterize the occur-
rence of melting by measuring density correlations and find
excellent agreement with the results of a Monte Carlo
simulation, which we use to extract the ions’ angular
kinetic energy. We observe the presence of magic numbers
and inhibit melting by using a single impurity. Our results
pave the way for exploring further the thermodynamics of a
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FIG. 4. Orientational melting in the presence of a pinning impurity. (a) Single snapshot images of a crystal of 6 to 15 ions in the
presence of an impurity ion of a different isotope. The data are taken at the onset of melting ωy=ωz ¼ 1.18 and qy ¼ −0.182,
corresponding to ðωx;ωy;ωzÞ ¼ 2π × ð401; 116; 98Þ kHz. The impurity appears as a dark ion (red circle). The upper (lower) images
correspond to the impurity located in the outer (inner) shell. The impurity ion suppresses melting in the hosting shell (see text and
Ref. [31]). (b) We quantify the level of localization for different N by calculating the ratio between the correlations’ amplitudes obtained
with the dark ion in the inner (CIn) and outer shell (COut) (green dots). The error bars of the data correspond to the standard deviation of
the mean, which is calculated on 4 to 18 images depending on N. The dashed line is a guide to the eye. The plot shows that N ¼ 7 and
N ¼ 14 correspond to magic numbers for which the melting transition is disfavored. (c) Angular kinetic energy of the outer ring for
N ¼ 7, 10, 14. The temperature is extracted by comparing the measured correlations CIn and their standard deviations with a
Monte Carlo simulation (see text).
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few charged particles by looking at quantities like the heat
capacity [47], the low-energy excitation spectrum [48]
across melting in order to explore its possible phase
transition nature [49], and defect formation after quenching
[50,51]. Moreover, the experimental control that we
achieve shows that our system represents a promising
alternative route with respect to ring traps [52,53] for
creating charged rotors and controlling them at a quantum
level [54], with applications in sensing [55] and in
fundamental physics [56,57]. Finally, we note that in the
presence of at least two shells and an impurity, orientational
melting can be used to study friction between two rotating
periodically rugged surfaces [46] with no edges [58,59]. In
this context, the number of ions in each shell could be
additionally controlled by producing isomeric excitations
of the crystal [60].
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