
Toward a Unified Description of Isoscalar Giant Monopole Resonances
in a Self-Consistent Quasiparticle-Vibration Coupling Approach

Z. Z. Li (李征征) ,1,2,3 Y. F. Niu (牛一斐) ,1,2,* and G. Colò 3,4,†
1School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
2Frontiers Science Center for Rare Isotope, Lanzhou University, Lanzhou 730000, China
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The nuclear incompressibility is a key parameter of the nuclear equation of state that can be extracted
from the measurements of the so-called “breathing mode” of finite nuclei. The most serious discrepancy so
far is between values extracted from Pb and Sn, that has provoked the longstanding question “Why is tin so
soft?”. To solve this puzzle, a fully self-consistent quasiparticle random-phase approximation plus
quasiparticle-vibration coupling approach based on Skyrme-Hartree-Fock-Bogoliubov is developed. We
show that the many-body correlations introduced by quasiparticle-vibration coupling, which shift the
isoscalar giant monopole resonance energy in Sn isotopes by about 0.4 MeV more than the energy in 208Pb,
play a crucial role in providing a unified description of the isoscalar giant monopole resonance in Sn and Pb
isotopes. The best description of the experimental strength functions is given by SV-K226 and KDE0,
which are characterized by incompressibility values K∞ ¼ 226 MeV and 229 MeV, respectively, at mean
field level.
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The nuclear equation of state (EOS) represents the energy
per nucleon, E=A, as a function of the neutron and proton
densities of a uniform system. It is a fundamental ingredient
for the description of heavy-ion collision dynamics, nuclear
structure, static and dynamical properties of neutron
stars, core-collapse supernova, and binary compact-star
mergers [1–4]. The nuclear incompressibility K∞ is a key
parameter of the EOS related to the curvature of E=A of
symmetric nuclear matter around its minimum, ρ0, by
K∞ ¼ 9ρ20½ðd2=dρ2ÞðE=AÞ�ρ¼ρ0

. The nuclear compres-
sion-mode resonances, especially the “breathing mode”
of finite nuclei, i.e., isoscalar giant monopole resonance
(ISGMR), are a unique probe for the nuclear incompress-
ibilityK∞ [5–7]. A key issue, as we discuss in what follows,
is how to get a unified description of ISGMR strength
functions in different isotopic chains, and determine K∞
accurately without an uncontrolled nucleus dependence.
In 208Pb, the ISGMR was measured in the Research

Center for Nuclear Physics (RCNP, Osaka University) by
means of inelastic α scattering [8,9] and inelastic deuteron
scattering [10], and in Texas A&M University (TAMU) by
means of inelastic α scattering [11,12]. These measure-
ments, together with those performed in 90Zr [9,13,14], hint
to a value K∞ ¼ 240� 20 MeV for the nuclear incom-
pressibility [7]. However, it was found that in even-even
stable tin isotopes, 112–124Sn, the ISGMR centroid energy is
overestimated (by about 1 MeV) by the same models
which reproduce the ISGMR centroid energy well in

208Pb [15,16]. This means that the incompressibility value
that is deduced from Sn is lower than the one deduced from
Pb or, in other words, the EOS is softer [17–19]. Later, a
similar “softness” was also found in even-even 106;110–116Cd
isotopes [20] and even-even 94–100Mo isotopes [21].
In the present work, we want to address the question

“Why is tin so soft?” in a novel manner. In the papers
we have mentioned, the correspondence between K∞ and
the ISGMR energy is established by means of quasi-
particle random-phase approximation (QRPA) calculations.
QRPA is a well-known microscopic method that describes
giant resonances (GRs) as coherent superpositions of
two-quasiparticle states. The axial deformation within
the QRPA model helps to explain the softness in Mo
isotopes [22], but tin nuclei are spherical. A lot of effort has
been devoted to exploring the effects of nuclear super-
fluidity that show up in open-shell nuclei, namely pairing
effects, within the self-consistent QRPA model [23–25]. It
has been shown that surface pairing can partly reconcile tin
and lead results (compared to volume pairing and mixed
pairing) [23,24]. However, there is no strong argument on
which type of pairing force should be favored over others.
Moreover, the proposed “mutually enhanced magicity”
effect on nuclear incompressibility, that is another attempt
to solve the Sn-Pb puzzle, has also been ruled out by the
measurement in 204;206Pb [8,26].
Despite the big successes achieved in QRPA, the widths,

decay properties, and fine structures of GRs are not well
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described in QRPA because of the lack of coupling with
more complex configurations than the two-quasiparticle
ones. The particle-vibration coupling (PVC) effects have
been proven to be crucial for reproducing the widths [27]
and describing the decay properties of GRs [28].
These PVC effects have been included in a self-consistent
way, based on both nonrelativistic density functional
theory [29–33] and relativistic density functional
theory [34–36]. Although many works have been devoted,
e.g., to the electric dipole resonances [29,36–38] within the
quasiparticle-vibration coupling framework, this is not the
case for the ISGMR.
In this Letter, a fully self-consistent quasiparticle

random-phase approximation plus quasiparticle-vibration
coupling model (QPVC) is developed, based on the
Skyrme-Hartree-Fock-Bogoliubov framework. In it, we
consider both QPVC effects and pairing effects self-
consistently. We give a short description of our framework,
and more details will be discussed in a forthcoming
publication. We aim to demonstrate that the consideration
of QPVC effects is crucial in order to reach a unified
description of the ISGMR in Sn, Pb, and also in the Ca
isotopes that have been recently measured.
We start from the spherical Skyrme-Hartree-

Fock-Bogoliubov code in the coordinate space from
Ref. [39]. The so-called volume pairing force, vppðr1; r2Þ ¼
V0;qδðr1 − r2Þ, is used to describe the pairing interaction,
where q labels either neutrons or protons. V0;q is adjusted
by fitting the pairing gaps according to the five-point
formula [40]. The QRPA equations are solved in the
canonical basis. The spurious state, caused by the violation
of particle number, is removed as in Ref. [23]. On top of
QRPA, we have included the coupling with phonons having
Jπ ¼ 0þ, 1−, 2þ, 3−, 4þ, and 5− with energy less than
30 MeV and exhausting a fraction of non-energy-weighted
(isoscalar or isovector) sum rule larger than 2%. The
subtraction procedure is adopted, as described in [41].
Further numerical details are provided in Supplemental
Material [42], where we also show that the final numerical
results are stable with respect to the choice of the
model space.
The sum rules, or k-th moments of the strength function

SðEÞ are defined as mk ¼
R
∞
0 SðEÞEkdE. In our case, SðEÞ

is with respect to the operator F̂00 ¼
P

A
i¼1 r

2
i . The fulfill-

ment of the energy-weighted sum rule m1 (%), and inverse
energy-weighted sum rule m−1 ðfm4=MeVÞ, calculated by
QRPAþ QPVC, have been checked (see Supplemental
Material [42]). There are many choices of characteristic
energy for GRs, such as the centroid energy m1=m0, the
constrained energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m−1

p
, and the scaling energyffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m3=m1

p
. In the following, we will use the constrained

energy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m−1

p
for our discussion since m−1 is

unchanged in the case of QPVC with subtraction. Our
conclusions would remain the same if we were to choose

another definition for the ISGMR energy. The ISGMR
energies are calculated in the energy interval 10–30 MeV
for Ca, and 5–25 MeV for Sn and Pb, because the strength
is negligible outside these intervals.
In Fig. 1, we show the strength functions of the ISGMR,

obtained either in the framework of (Q)RPA by using a
smoothing with Lorentzians having a width of 1 MeV
[dash-dotted (black) line], or within ðQÞRPAþ ðQÞPVC
[solid (blue) line], using the SV-K226 Skyrme force,
in the even-even 112–124Sn, 48Ca, and 208Pb nuclei. We
compare the results with the experimental ones [(green)
crosses] [8,15,45]. In general, with the inclusion of
(Q)PVC effects, the results are significantly improved with
respect to (Q)RPA, so we can achieve a good description of
data both in the light 48Ca isotope, medium-heavy Sn
isotopes, and heavy 208Pb. In 112–124Sn, QRPA gives one
small peak and one higher peak while the experimental
strength displays a broad single peak. The ISGMR energies
are higher than the experimental ones, as pointed out in
previous papers [17,19]. With the inclusion of QPVC
effects, widths are comparable with the experimental ones
(cf. also [46]). Moreover, within the self-consistent
QRPAþ QPVC model, the downward shifts of energies
by 0.7–0.8 MeV (with respect to QRPA) make the ISGMR
energies in agreement with data, along the whole Sn
isotopic chain. In the case of 48Ca, the strength function
has two main peaks in the RPA calculation, while the
experimental strength shows only a single main peak. With
PVC effects, the first peak is slightly moved to lower
energy, and the second peak becomes fragmented, making
the results closer to experiment. In the case of 208Pb, the
ISGMR energy given by RPA agrees with the experimental
one. With PVC effects, the ISGMR has a very small shift to
lower energy, and a larger width that again makes the result
closer to the experiment finding.
In Fig. 2, the energy shifts of the ISGMR from (Q)RPA

to ðQÞRPAþ ðQÞPVC (considering Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m−1

p
) are

given in even-even 40–44;48Ca, 112–124Sn, and 208Pb isotopes
using seven Skyrme parameter sets: SAMi (black square),
SkM* (red circle), SkP (up blue triangle), SV-K226 (green
diamond), SV-K241 (left navy blue triangle), SV-bas (right
violet triangle), and KDE0 (purple hexagon). These forces
are obtained by different groups, using quite different
fitting protocols, and span a large range of K∞ from 201
to 245 MeV. As shown in Fig. 2, the energy shifts from
(Q)RPA to ðQÞRPAþ ðQÞPVC are less than 1 MeV in
general. In detail, the results depend on the Skyrme set that
is used, and the associated dispersion in the Sn isotopes is
about 0.5 MeV. However, from Ca, Sn, to Pb, the energy
shifts become smaller. The energy shifts in Ca and Sn
isotopes are about 0.4 MeV larger than the ones in 208Pb,
and this makes it possible to describe well the ISGMR in
these different isotopes at the same time.
In the medium-heavy systems, the QRPA produces a

dominant peak and the shift of that peak, induced by
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QPVC, is essentially associated with its self-energy. The
real part of the self-energy is, generally speaking, a negative
quantity that decreases as a function of energy. However,
when the energy is close to that of the two-quasiparticle

plus phonon energies, the self-energy may display a pole-
like behavior and the overall trend changes. Therefore, the
value of the self-energy and of the associated QPVC shift is
essentially ruled by the relative position of the ISGMR and
of the two-quasiparticle plus phonon states to which it is
coupled. The presence or absence of pairing, and the
resulting effect on the two-quasiparticle energies, explain
the difference between the energy shifts in Sn isotopes and
208Pb. Detailed figures and estimates are provided in
Supplemental Material [42], where we also discuss the
case of Ca isotopes which, however, is more complicated
because there is not only one dominant QRPA peak. In fact,
one can notice that the QPVC effects in the magic 40;48Ca
isotopes are larger than that in the open-shell nuclei 42;44Ca
in most cases. This different behavior between open-shell
and closed-shell Ca isotopes can also be, to some extent,
understood by the change in the energy difference between
two-quasiparticle plus phonon states and the ISGMR, as the
two-quasiparticles states are affected by the pairing gap.
The linear correlation between the ISGMR energies and

K∞, calculated by different models, is often used as a way
to constrain K∞ [47]. Therefore, in principle, one can
expect a linear correlation between the ISGMR energies in
different nuclei. In the upper panel of Fig. 3, we show that
there is a linear correlation between the ISGMR energies in
120Sn and 208Pb, both in the (Q)RPA case (black square) and
in the (Q)PVC case (blue circle). We use the seven Skyrme

FIG. 2. The energy shifts of ISGMR from (Q)RPA to
ðQÞRPAþ ðQÞPVC (Ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m−1

p
) in even-even 40–44;48Ca,

112–124Sn, and 208Pb isotopes with seven Skyrme sets: SAMi
(black square), SkM* (red circle), SkP (up blue triangle),
SV-K226 (green diamond), SV-K241 (left navy blue triangle),
SV-bas (right violet triangle), and KDE0 (purple hexagon).

FIG. 1. ISGMR strength functions in even-even 112–124Sn, 48Ca, and 208Pb isotopes, calculated either by (Q)RPA using a smoothing
with Lorentzian having a width of 1 MeV [dash-dotted (black) line], or ðQÞRPAþ ðQÞPVC [solid (blue) line]. The SV-K226 Skyrme
force is used. The experimental data are given by green crosses [8,15,45].
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interactions that we have already mentioned. The regres-
sion lines are obtained by a least-square fit. For the
calculations in 120Sn, the volume pairing interaction is
adopted. In the lower panel of Fig. 3, the same kind of
linear correlation, between the ISGMR energies in 48Ca and
208Pb, is presented. The experimental data and their
uncertainties are taken from [8,15,48]. The interesting
point is that one cannot describe the ISGMR energy of
120Sn (or 48Ca) and 208Pb simultaneously at the QRPA level,
since the regression line is far from the crossing zone of
experimental bands for these two nuclei. For example,
SV-K226 and KDE0 give a good description in 208Pb, but
they overestimate the ISGMR energy in 120Sn by about
0.8 MeV. However, with the consideration of (Q)PVC
effects, the regression line given by the QPVC results is
shifted downward by about 0.3 MeV, so it is marginally
compatible with the experimental zone. In this case,
SV-K226 and KDE0 give pretty good ISGMR energies

in both 120Sn and 208Pb. The same conclusion is achieved
looking at 48Ca and 208Pb, as shown in the lower panel. In
the latter case, PVC effects play a unique role since there is
no pairing. In summary, our results suggest that the
(Q)PVC effects are crucial in order to reach a unified
description of the ISGMR in Ca, Sn, and Pb isotopes.
The constraint on K∞ is less clear in the theories beyond

mean field, because it is hard to calculate K∞ due to the
ultraviolet divergence associated with zero-range effective
interactions [49]. Nevertheless, with the subtraction pro-
cedure, we can assume that K∞ will be the same as that at
the mean field level [41,50]. The deviations of ISGMR
energies from experimental data [jEtheo

c − Eexp
c j ðMeVÞ] in

48Ca, 120Sn, and 208Pb are given in Table I, calculated by
(Q)RPA and ðQÞRPAþ ðQÞPVC using SkP, SkM*, SV-
K226,KDE0,SV-bas, SV-K241, andSAMi. The table shows
that, at (Q)RPA level, 48Ca and 120Sn prefer SkP with a small
incompressibility, K∞ ¼ 201 MeV. However, 208Pb prefers
SkM*, SV-K226, and KDE0, with K∞ ranging from 217
to 229 MeV. With the inclusion of (Q)PVC effects, 48Ca
prefers SkM* and SV-K226, 120Sn prefers SkM*,
SV-K226, and KDE0, while 208Pb prefers SV-K226,
KDE0, and SV-bas. Thus, SV-K226 and KDE0 describe
all three nuclei very well at the same time, with K∞ ¼
226 MeV and 229 MeV, respectively: this is consistent with
the constraint 240� 20 MeV, obtained previously from the
ISGMR of 208Pb in QRPA [7].
In summary, we have developed a fully self-consistent

approach, that is, a QRPA plus QPVC model, based on
Skyrme-Hartree-Fock-Bogoliubov. We have clearly dem-
onstrated that the inclusion of QPVC effects is crucial in
order to achieve a unified description of the ISGMR in Ca,
Sn, and Pb isotopes at the same time. The so-called softness
of Sn isotopes is explained then, to a large extent, by the
effects induced by QPVC. SV-K226 and KDE0 are found

FIG. 3. The ISGMR energies in 208Pb vs the ones in 120Sn
(upper panel), and 48Ca (lower panel). These are calculated by (Q)
RPA (black square), and by ðQÞRPAþ ðQÞPVC (blue circle)
using seven different Skyrme parameters. The regression lines are
obtained by a least-square linear fit of the (Q)RPA results and
ðQÞRPAþ ðQÞPVC results, respectively. The experimental data
and their uncertainties, taken from [8,15,48], are displayed by
means of cyan-colored bands.

TABLE I. The deviation of ISGMR energies from experimental
data [jEtheo

c − Eexp
c j ðMeVÞ] in 48Ca, 120Sn, and 208Pb, calculated

by (Q)RPA and (Q)PVC using the Skyrme parameter sets SkP,
SkM*, SV-K226, KDE0, SV-bas, SV-K241, and SAMi. The
experimental data are taken from [8,15,48].

SkP SkM* SV-K226 KDE0 SV-bas SV-K241 SAMi

K∞ 201 217 226 229 233 241 245

(Q)RPA
48Ca 0.11 0.89 1.09 1.17 1.40 1.70 1.72
120Sn 0.22 0.43 0.78 0.76 1.05 1.31 1.34
208Pb 0.74 0.14 0.14 0.20 0.37 0.60 0.76

(Q)PVC
48Ca 0.70 0.25 0.36 0.51 0.67 0.90 1.07
120Sn 0.67 0.14 0.02 0.18 0.36 0.68 0.82
208Pb 0.94 0.37 0.25 0.06 0.08 0.31 0.48
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to give the best description of the experimental strength
functions.
We should add that (Q)PVC only accounts for the 2p-2h

(or 4qp) configurations, and more complex configurations
are missing. A theory that goes beyond may further
improve the agreement with experimental data in different
mass regions. It is also important, in a future investigation,
to study the pattern of the energy shifts for giant resonances
with different multipolarities, as well as the possible impact
on EOS parameters. This can be done using the newly
developed, fully self-consistent model that we have just
introduced.
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Note added.—During the referral process, a work by
Litvinova [51] has been become available. This deals with
the topic of the current work, and confirms the relevance of
QPVC correlations.
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