
Variational Neural-Network Ansatz for Continuum Quantum Field Theory

John M. Martyn ,1,2,† Khadijeh Najafi,3,4 and Di Luo 1,2,5,*

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

3IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
4MIT-IBM Watson AI Lab, Cambridge, Massachusetts 02142, USA

5Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 16 December 2022; revised 21 July 2023; accepted 25 July 2023; published 24 August 2023)

Physicists dating back to Feynman have lamented the difficulties of applying the variational principle to
quantum field theories. In nonrelativistic quantum field theories, the challenge is to parametrize and
optimize over the infinitely many n-particle wave functions comprising the state’s Fock-space repre-
sentation. Here we approach this problem by introducing neural-network quantum field states, a deep
learning ansatz that enables application of the variational principle to nonrelativistic quantum field theories
in the continuum. Our ansatz uses the Deep Sets neural network architecture to simultaneously parametrize
all of the n-particle wave functions comprising a quantum field state. We employ our ansatz to approximate
ground states of various field theories, including an inhomogeneous system and a system with long-range
interactions, thus demonstrating a powerful new tool for probing quantum field theories.
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Introduction.—It is notoriously challenging to solve an
interacting quantum field theory (QFT), with analytical
solutions limited to mean field systems and few exactly
solvable models. While perturbation theory is useful for
weakly interacting field theories, much important physics
lies in the nonperturbative regime, such as in quantum
chromodynamics. Although lattice field theory is a well-
established method for studying QFT, it can be computa-
tionally expensive to reach the continuum limit [1]. It is
therefore an ongoing quest to develop new methods for
solving and simulating QFTs in the continuum.
An alternative approach to probing QFT is through

applying the variational principle to field theory. How-
ever, as pointed out by Feynman [2], a significant barrier to
this method is constructing a variational ansatz for a
quantum field state whose expectation values can be
efficiently computed and optimized. Reference [3] took a
key step in this direction by extending the matrix product
state (MPS) from lattice models to field theories through
the development of the continuous matrix product state
(cMPS), which can describe low-energy states of 1D
nonrelativistic QFTs [4]. However, unlike the MPS on
the lattice, cMPSs suffer substantial drawbacks in their
optimization and applicability. While cMPSs can be effi-
ciently optimized in translation-invariant systems [5], in
inhomogenous settings, the direct optimization of cMPSs
is prone to numerical instabilities [6,7], and algorithms to
better adapt cMPSs to these settings ultimately rely on dis-
cretizations and/or interpolations [7–9]. Moreover, approxi-
mation techniques are needed to apply cMPSs to sys-
tems with generic long-range interactions [10,11], leaving

cMPSs often restricted to contact interactions. Furthermore,
extensions of cMPS to higher spatial dimensions are susce-
ptible to UV divergences and thus limited in application
[12–15].
Meanwhile, the striking success of machine learning in

physically motivated contexts [16] has recently inspired the
application of neural networks to problems in quantum
physics, leading to a new variational ansatz known as a
neural-network quantum state (NQS) [17]. This ansatz
parametrizes a wave function by neural networks, which
are optimized over to approximate a state of interest
[18–20] or even simulate real-time dynamics [21–30].
These methods are justified by recent proofs that NQSs
can efficiently model highly entangled states and subsume
tensor networks in their expressivity [31–36].
However, NQSs have not been generalized to QFT in the

continuum, which would necessitate an efficient paramet-
rization of the infinitely many n-particle wave functions
comprising a quantum field state’s Fock-space representa-
tion. Prominent instances of NQSs in continuous space
have only studied systems with a fixed number of particles
[37–43] and have not yet made the connection to QFTwith
variable particle number. Applications of machine learning
to QFT have only studied lattice field theory—most
notably, Monte Carlo sampling in the Lagrangian formu-
lation [44–47] and simulations in the Hamiltonian formu-
lation [28,48,49]—rather than applying the variational
principle directly to continuum QFT.
In this paper, we fill this gap by developing neural-

network quantum field states (NQFSs), extending the range
of NQSs to field theories. In this introductory work, we

PHYSICAL REVIEW LETTERS 131, 081601 (2023)
Editors' Suggestion

0031-9007=23=131(8)=081601(7) 081601-1 © 2023 American Physical Society

https://orcid.org/0000-0002-4065-6974
https://orcid.org/0000-0001-6562-1762
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.081601&domain=pdf&date_stamp=2023-08-24
https://doi.org/10.1103/PhysRevLett.131.081601
https://doi.org/10.1103/PhysRevLett.131.081601
https://doi.org/10.1103/PhysRevLett.131.081601
https://doi.org/10.1103/PhysRevLett.131.081601


focus on the nonrelativistic QFT of bosons, while the
approach we introduce opens up the opportunity to study
generic field theories. Working directly in the continuum,
we model a quantum field state by exploiting its Fock-
space representation as a superposition of n-particle wave
functions. We adopt permutation-invariant methods from
deep learning—specifically, the Deep Sets architecture
[50]—to simultaneously parametrize the infinitely many
n-particle wave functions by a finite number of neural
networks. We further apply an algorithm for variational
Monte Carlo (VMC) in Fock space, that enables the
estimation and optimization of the energy of a quantum
field state. The merit of the NQFS lies in its applicability to
various field theories, such as inhomogeneous systems and
systems with long-range interactions, including both peri-
odic and closed boundary conditions. We demonstrate
these properties by employing NQFSs to approximate
the ground states of 1D QFTs, benchmarking on the
Lieb-Liniger model, the Calogero-Sutherland model, and
a regularized Klein-Gordon model.
Neural-network quantum field states (NQFSs).—We aim

to approximate the ground state of a bosonic QFT, where-
upon second quantization particles are created and annihi-
lated by the operators ψ̂†ðxÞ and ψ̂ðxÞ, respectively, which
obey the commutation relation ½ψ̂ðxÞ; ψ̂†ðx0Þ� ¼ δðx − x0Þ.
Focusing on nonrelativistic systems in 1D, the correspond-
ing quantum field states live in a Fock space that is a direct
sum over all symmetrized n-particle Hilbert spaces, such
that an arbitrary state may be expressed as a superposition
of permutation-invariant, unnormalized, n-particle wave
functions φnðxnÞ:

jΨi ¼ ⨁
∞

n¼0

jφni ¼ ⨁
∞

n¼0

Z
dnxφnðxnÞjxni: ð1Þ

Here, we use the shorthand xn ¼ ðx1; x2;…; xnÞ to denote
a vector containing the positions of n particles, and
we employ the n-particle basis jxni ≔ ð1= ffiffiffiffiffi

n!
p Þψ̂ðx1Þ†×

ψ̂ðx2Þ†…ψ̂ðxnÞ†jΩi, where jΩi is the vacuum.
We introduce the NQFS as a variational ansatz to

parametrize such a quantum field state with neural
networks—more specifically, to parametrize each of its
n-particle wave functions with a common neural network
architecture. This imposes the following constraints on the
architecture: First, the architecture must be permutation
invariant in order to model bosonic wave functions. And
more stringently, to model wave functions of arbitrary
particle number, the architecture must also be variadic: able
to accept an arbitrary number of arguments [i.e., particle
positions xn ¼ ðx1; x2;…; xnÞ for arbitrary n].
Remarkably, we can realize both of these properties with

the Deep Sets neural network architecture, which is both
permutation invariant and variadic. Reference [50] intro-
duces the Deep Sets architecture to model a permutation-
invariant function on a set X and proves that any such

function fðXÞ can be decomposed as

fðXÞ ¼ ρ

�X
x∈X

ϕðxÞ
�

ð2Þ

for appropriately chosen constituent functions ρ and ϕ.
The function ϕ maps the inputs into a feature space of
possibly higher dimension, the sum aggregates the
embedded inputs in a permutation-invariant manner, and
ρ adds the correlations necessary to output the function of
interest. This decomposition is clearly permutation invari-
ant, as each ϕðxÞ is summed independently; it is also
variadic, because an arbitrary number of arguments may be
included in the sum.
In the setting of machine learning, this decomposition is

used to learn permutation-invariant functions by parame-
trizing ρ and ϕ as deep neural networks [50]. This approach
has recently been used in NQS contexts to model ground
states of atomic nuclei [39–41] and bosons at fixed particle
number [37]. Building on this prior work, here we are the
first to leverage Deep Sets to develop a neural network
ansatz for continuum QFT, with an arbitrary number of
particles.
For the construction of a NQFS, denoted jΨNQFSi, we

parametrize each n-particle wave function as a product of
two Deep Sets [51]—one for particle positions fxigni¼1, and
the other for particle separations fxi − xjgi<j:

jΨNQFSi ¼ ⨁
∞

n¼0

Z
dnxφNQFS

n ðxnÞjxni;

φNQFS
n ðxnÞ ¼

1

Ln=2 · f1ðfxigni¼1Þ · f2ðfxi − xjgi<jÞ; ð3Þ

where the factor of ð1=Ln=2Þ is included for dimensional
consistency. The constituent functions of the Deep Sets f1
and f2 (ρ1;ϕ1 and ρ2;ϕ2, respectively) are parametrized as
feed-forward neural networks, which capture the global
properties and pairwise correlations of the state, respec-
tively. Fundamentally, the variadic property of Deep Sets
enables us to parametrize infinitely many n-particle wave
functions with a finite number of neural networks, and thus
represent an arbitrary state in Fock space. We provide a
graphical illustration of a NQFS in Fig. 1.
We employ feature embeddings on inputs to the neural

networks. In a closed system with hard walls at x ¼ 0 and
x ¼ L, we use the embedding xi ↦ ½ðxi=LÞ; 1 − ðxi=LÞ�
for f1, and ðxi − xjÞ ↦ ½ðxi − xjÞ=L�2 for f2 (note that this
embedding must be even in order to achieve permuta-
tion invariance). For a periodic system, we reflect this
periodicity with the embedding xi↦fsin½ð2π=LÞxi�;
cos½ð2π=LÞxi�g for f1, and ðxi−xjÞ↦cos½ð2π=LÞðxi−xjÞ�
for f2.
VMC in Fock space.—Our approach to ground-state

approximation employs the variational principle—that the
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energy of an arbitrary quantum state is greater than or equal
to the ground-state energy. To estimate and optimize the
energy of jΨNQFSi, we generalize traditional VMC to VMC
in Fock space. As we illustrate in the Supplemental
Material [52], the energy of a quantum field state jΨi
can be expressed as an expectation value of an n-particle
local energy Eloc

n ðxÞ, taken jointly over a probability
distribution of the particle number, denoted Pn, and the
probability distribution of the n-particle wave function,
denoted jφ̄nðxÞj2:

EðjΨiÞ ¼ hΨjHjΨi
hΨjΨi ¼ En∼Pn

Exn∼jφ̄nj2 ½Eloc
n ðxnÞ�: ð4Þ

Explicitly, the n-particle local energy is Eloc
n ðxnÞ ¼

hxnjHjΨi=hxnjφni, the probability distribution of the
particle number is Pn ≔ hφnjφni=hΨjΨi, and the proba-
bility distribution of the n-particle wave function is
jφ̄nðxnÞj2 ≔ jφnðxnÞj2=hφnjφni.
We estimate the above expectation value and its standard

deviation by drawing samples from Pn and jφ̄nðxÞj2 jointly
via theMarkov chain Monte Carlo (MCMC) in Fock space
algorithm described in the Supplemental Material [52].
This algorithm employs Metropolis-Hastings sampling
with a proposal function that allows the particle number
to increase or decrease, such that Pn and jφ̄nj2 are sampled
simultaneously. The standard deviation of the expectation
value is controllable and decays as the inverse square root
of the number of samples.

We use gradient-based optimization to optimize a NQFS.
As shown in the Supplemental Material [52], the derivative
of the energy with respect to a variational parameter—say, a
parameter of the neural network—may also be expressed as
a combination of expectation values over Pn and jφ̄nðxÞj2.
We again estimate these as empirical means over MCMC
samples, and we feed the resulting gradient estimate into
the ADAM algorithm [70] to minimize the energy. The
systematic uncertainty of the optimized NQFS can be
studied with variance extrapolation [71,72], as explained
in the Supplemental Material [52].
It is useful here to employ regularization and system-

dependent modifications that assist with the learning
procedure (see the Supplemental Material [52] for specific
details). To facilitate smooth optimization over particle
number, we multiply φNQFS

n ðxnÞ by a parametrizable
regularization factor that keeps the probability distri-
bution over particle number well behaved. Moreover, for
systems with hard wall boundary conditions, we multiply
φNQFS
n ðxnÞ by a cutoff factor [73–76] that forces it to vanish

at the boundaries. Lastly, for an interaction potential that
diverges as two particles approach each other xi → xj, the
eigenstates exhibit a cusp at xi ¼ xj that is quantified by
Kato’s cusp condition [77,78]; we account for this cusp by
multiplying φNQFS

n ðxnÞ by a Jastrow factor that satisfies
Kato’s cusp condition.
To highlight applicability, we apply NQFSs to the Lieb-

Liniger model in an inhomogenous system with hard walls,
the Calogero-Sutherland model which has long-range
interactions, and a regularized Klein-Gordon model that
does not conserve particle number. We select these models
because they have exactly solvable ground states to bench-
mark against (details provided in the Supplemental
Material [52]). These models are nonperturbative, in that
their interactions strongly influence the ground states and
cannot be treated perturbatively. Beyond these models,
NQFSs can be straightforwardly applied to nonexactly
solvable field theories, which we exemplify in the
Supplemental Material [52].
Lieb-Liniger model.—Let us illustrate the application of

NQFSs to the quintessential nonrelativistic QFT, the Lieb-
Liniger model [79,80]:

HLL ¼ 1

2m

Z
dx

dψ̂†ðxÞ
dx

dψ̂ðxÞ
dx

− μ

Z
dxψ̂†ðxÞψ̂ðxÞ

þ g
Z

dxψ̂†ðxÞψ̂†ðxÞψ̂ðxÞψ̂ðxÞ: ð5Þ

This model describes bosons of chemical potential μ
interacting via a contact interaction of strength g:
Vðx − yÞ ¼ 2gδðx − yÞ. Experimentally, the Lieb-Liniger
model has been realized with ultracold atoms [81] and
in optical lattices [82,83]. The model is integrable and
thus provides a useful benchmark for numerics; as the

FIG. 1. Diagram of a NQFS: Particle positions xn ¼
ðx1; x2;…; xnÞ are input to evaluate the corresponding n-particle
wave functions φNQFS

n ðxnÞ, of which the NQFS jΨNQFSi is
modeled as a direct sum. Computation of φNQFS

n ðxnÞ is shown
in the inset as a product of two Deep Sets, f1 and f2.
Optimization of the NQFS is illustrated in the feedback loop;
the variational parameters are updated via VMC in Fock space to
minimize the energy.
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Hamiltonian conserves particle number, its ground state lies
in a definite particle number sector, which we denote by n0.
With our NQFS ansatz, we probe the ground state of an

inhomogneous system with hard walls at x ¼ 0 and x ¼ L,
accommodating these boundary conditions with a cutoff
factor as mentioned above, and accounting for the delta
function potential with an appropriate Jastrow factor. We
first consider the Tonks-Girardeau limit, in which g → ∞
and the model can be mapped to noninteracting spinless
fermions [7,84]. We simulate this limit with parameters
L ¼ 1,m ¼ 1=2, μ ¼ ð8.75πÞ2, and g ¼ 106, in which case
the ground state has energy E0 ¼ −4031.79 and n0 ¼ 8
particles. After optimization, we obtain an energy E ¼
−4030.9� 0.1 and particle number n ¼ 8.00� 0.01, show-
casing that NQFSs are capable of finding both the ground
state and the particle number sector in which it lies. We also
compare the energy density and the particle number density
of theNQFSwith the Tonks-Girardeau solution in Fig. 2, the
clear agreement of which further justifies that the NQFS has
learned the ground state correctly.
To study performance at smaller values of g, we set

μ ¼ 185 and g ¼ 10, in which case E0 ¼ −954.60
and n0 ¼ 10. Our NQFS finds E ¼ −952.20� 0.09 and
n ¼ 10.00� 0.03, indicating that good performance is
maintained away from the Tonks-Girardeau limit.
Calogero-Sutherland model.—We further aim to study a

system with long-range interactions, for which purpose we
consider the Calogero-Sutherland model on a ring of length
L [85,86]:

HCS ¼
1

2m

Z
dx

dψ̂†ðxÞ
dx

dψ̂ðxÞ
dx

− μ

Z
dxψ̂†ðxÞψ̂ðxÞ

×þ gπ2

2L2

Z
dxdyψ̂†ðxÞψ̂†ðyÞψ̂ðyÞψ̂ðxÞ

×

�
sin

�
π

L
ðx − yÞ

��
−2
: ð6Þ

This model describes particles interacting via an inverse
square sinusoidal potential with interaction strength g. The
ground-state energy is E0¼ðπ2λ2=6mL2Þn0ðn20−1Þ−μn0,
where λ ¼ 1

2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4mg
p Þ, and n0 minimizes E0 and is

the particle number of the ground state.

We first study this model with system size L ¼ 5 at g ¼ 5

and μ ¼ 3 · 52 · ðπ2λ2=6mL2Þ, which has the exact ground-
state energy E0 ¼ −156.317 and particle number n0 ¼ 5.
Employing the NQFS with an appropriate Jastrow factor, we
obtain E ¼ −156.291� 0.003 and n ¼ 5.000� 0.007,
indicative of great performance. We also look at the one-
body density matrix g1ðxÞ ¼ n

R
dn−1xφ�

nðx; x2;…; xnÞ ×
φnð0; x2;…; xnÞ and compare it to the exact solution in
Fig. 3.
We next consider a more strongly interacting limit

with g ¼ 30 and μ ¼ 3 × 102 · ðπ2λ2=6mL2Þ, in which
case E0 ¼ −5132.76 and n0 ¼ 10. The NQFS yields
E ¼ −5131.77� 0.09 and n ¼ 10.000� 0.004, and we
again illustrate the one-body density matrix in Fig. 3. The
agreement with the exact solution in both of these cases
evidences the NQFS’s applicability to systems with long-
range interactions.
Regularized Klein-Gordon model.—The previous

Hamiltonians conserve particle number and have ground
states that lie in a single particle number sector. We are also
interested in Hamiltonians that violate particle number
conservation and whose ground states are necessarily
superpositions of n-particle wave functions.
For this purpose, we consider the Klein-Gordon model:

HKG ¼ 1
2

R
dxjπ̂ðxÞj2 þ j∇ϕ̂ðxÞj2 þm2jϕ̂ðxÞj2, where ϕ̂ðxÞ

and π̂ðxÞ are canonically conjugate fields. To prevent this
Hamiltonian from diverging, it is necessary to introduce a
momentum cutoff Λ and regularize HKG; a convenient way
to do so is by adding a counterterm ð1=Λ2Þj∇π̂ðxÞj2 [87].
With this modification, we can introduce creation and
annihilation operators by the change of variables ϕ̂ðxÞ¼
ð1= ffiffiffiffiffiffi

2Λ
p Þðψ̂ðxÞþ ψ̂†ðxÞÞ and π̂ðxÞ ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiðΛ=2Þp ðψ̂ðxÞ−
ψ̂†ðxÞÞ, upon which the regularized Hamiltonian is mapped
to the following quadratic Hamiltonian [14,87]:

HQuad ¼
Z

dx
dψ̂†ðxÞ
dx

dψ̂ðxÞ
dx

þ v
Z

dxψ̂†ðxÞψ̂ðxÞ

þ λ

Z
dxðψ̂†ðxÞψ̂†ðxÞ þ ψ̂ðxÞψ̂ðxÞÞ; ð7Þ

FIG. 2. The energy density (left) and particle number density
(Right) of the NQFS (at g ¼ 106) and the exact Tonks-Girardeau
ground state of the Lieb-Liniger model.

FIG. 3. The NQFS and exact one-body density matrices g1ðxÞ
of the Calogero-Sutherland model at (g ¼ 5, n0 ¼ 5) (left) and
(g ¼ 30, n0 ¼ 10) (right).
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where the coefficients are v ¼ 1
2
ðm2 þ Λ2Þ and λ ¼

1
4
ðm2 − Λ2Þ, and the last term violates particle number

conservation. In this formulation, jλ=vj ≤ 1=2 in order for
the Hamiltonian to be well-defined; as jλ=vj → 1=2, the
spectrum becomes gapless. The ground state of HQuad can
be exactly determined by moving to momentum space and
performing a Bogoliubov transformation.
We study a finite system of size L ¼ 1 with coefficient

v ¼ 6 over a range of λ from λ ¼ 0 to the critical point λ ¼
−3. As suggested by the particle-number-nonconserving
term in the Hamiltonian, we restrict our NQFS to n-particle
wave functions with an even number of particles. We
compare the resulting energy density of the NQFS with
the exact solution in Fig. 4. This plot indicates good
agreement with the exact solution, achieving errors around
a few percent that increase as the critical point is approached.
To emphasize that the NQFS has truly learned a super-
position of n-particle wave functions, in Fig. 4 we plot the
particle number distributions Pn at λ ¼ −0.485 · v. We see
clear agreement between the NQFS and exact distributions,
evidencing that NQFSs can accurately represent such a
superposition.
While these results are promising, we note that NQFSs

struggle on systems of larger size and greater couplings v
and λ. As we note in the Supplemental Material [52], one
reason for this is that the local energy of the term
λ
R
dxψ†ðxÞψ†ðxÞ þ H:c: imposes a sort of “cusp condi-

tion” that is nontrivial to build into a variational ansatz. As
we do not explicitly account for this condition here, the
energy suffers a large variance that hinders its optimization
and can result in a subpar ground-state approximation; this
effect becomes most pronounced near the critical point.
Improving performance near the critical point provides an
interesting direction for future work.
Conclusion.—We have developed neural-network quan-

tum field states as a variational ansatz for quantum field
theories in the continuum, and demonstrated their appli-
cation to an inhomogeneous system, a system with long-
range interactions, and a system that breaks particle number

conservation. Our work opens the door to new variational
techniques in QFT.
Beyond the applications demonstrated here, there are

ample refinements and extensions of NQFSs. From an
algorithmic point of view, optimization over the particle
number can be hindered by n-particle wave functions
whose magnitudes differ significantly across particle num-
ber sectors. While we mitigated this issue by incorporating
a regularization factor, it would be beneficial to develop
more precise algorithms for stable optimization over
particle number. Furthermore, another direction for improv-
ing performance is to properly account for the cusp
conditions imposed by QFT Hamiltonians—in particular,
those that violate particle number conservation.
From a physics perspective, a particularly enticing idea is

to extend NQFSs to relativistic QFT, which would require a
move to the thermodynamic limit and also a resolution to
Feynman’s warning about the sensitivity to high frequen-
cies suffered by variational methods in relativistic QFT [2].
A generalization to fermionic fields would also be fasci-
nating; to enforce antisymmetry here, one could use a Deep
Sets with an antisymmetric aggregation function, such as a
Slater determinant. Another interesting avenue is applica-
tion to real-time dynamics of QFT, which could provide
physics simulations beyond the Euclidean time formu-
lation. Moreover, the NQFS framework can be straight-
forwardly adapted to d ≥ 2 spatial dimensions by treating
positions xi as d-dimensional vectors. This could enable
simulation of higher-dimensional QFTs and surpass the
capabilities of traditional methods like continuous tensor
networks [12,13].

Codes to run the simulations in this Letter are available
on GitHub at Ref. [88].
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FIG. 4. Left: The NQFS and exact energy densities of the
regularized Klein-Gordon model across a range of λ, as well as
the corresponding relative errors and standard deviations in the
inset. Right: The NQFS and exact particle number distributions
at λ ¼ −0.485 · v.
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