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We show that self-dual gravity in Euclidean four-dimensional anti—de Sitter space (AdS,;) can be
described by a scalar field with a cubic interaction written in terms of a deformed Poisson bracket,
providing a remarkably simple generalization of the Plebanski action for self-dual gravity in flat space. This
implies a novel symmetry algebra in self-dual gravity, notably an AdS, version of the so-called kinematic
algebra. We also obtain the three-point interaction vertex of self-dual gravity in AdS, from that of self-dual
Yang-Mills by replacing the structure constants of the Lie group with the structure constants of the new
kinematic algebra, implying that self-dual gravity in AdS, can be derived from self-dual Yang-Mills in this
background via a double copy. This provides a concrete starting point for defining the double copy for
Einstein gravity in AdS, by expanding around the self-dual sector. Moreover, we show that the new
kinematic Lie algebra can be lifted to a deformed version of the wy |, algebra, which plays a prominent role

in celestial holography.
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Introduction.—Self-dual Yang-Mills (SDYM) and grav-
ity (SDG) have provided a very fruitful setting for studying
the mathematical structure of perturbative quantum gravity
in asymptotically flat background. For example, in the
light-cone gauge they can be described by very simple
scalar theories [1-9], which make various properties such
as color-kinematics duality and the double copy manifest,
as shown in [10] and further explored in [11-23]. Color-
kinematics duality is a relation between the color structures
and kinematic numerators appearing in Feynman diagrams
[24], which lies at the heart of the double copy relating
gravity to the square of gauge theory, allowing one to
reduce complicated calculations in the former to simpler
calculations in the latter [25-27].

Another notable feature of SDYM and SDG is their
integrability [4-7,28-31], which in the case of SDG may be
linked to an infinite-dimensional symmetry known as the
Wi, algebra. This algebra is closely related to the
kinematic algebra in SDG [32] and may play a fundamental
role in describing 4D quantum gravity in an asymptotically
flat background via a two-dimensional conformal field
theory (CFT) living on the sphere at null infinity, known as
the celestial CFT [33-49]. Celestial CFT provides a
framework to recast soft theorems of scattering amplitudes
and their underlying asymptotic symmetries in the lan-
guage of 2D CFT.
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The holographic description of quantum gravity is best
understood in anti—de Sitter space (AdS), where the dual
description is provided by a CFT on the boundary [50].
Furthermore, the study of boundary correlators in four-
dimensional anti—de Sitter space (AdS,) is relevant for
cosmology after Wick rotating to four-dimensional de Sitter
space (dS,) [51-53]. There has recently been a great deal of
progress formulating color-kinematics duality and the
double copy in (A)dS [54-67] (and there are also the
beginnings of a larger program to extend the double copy to
curved backgrounds [68—74]), although a systematic under-
standing is still lacking.

In this Letter, we set out to find a simple description of
SDG in AdS, in order to gain a deeper understanding of
how color-kinematics duality and the double copy work in
this background. After generalizing the self-duality equa-
tion to a nonzero cosmological constant, we show that the
solution for the metric can be elegantly written in terms of a
scalar field obeying a simple generalization of the equation
of motion found long ago by Plebanski for SDG in flat
space [1]. In particular, it describes a scalar field with
interactions encoded by a deformed Poisson bracket. From
this, we deduce that SDG can be derived from SDYM in
this background by replacing the color algebra with a
deformed kinematic algebra that reduces to the flat space
one as the AdS radius goes to infinity. Even more
surprisingly, we find that that this kinematic algebra can
be lifted to a deformed version of the w;,, algebra,
suggesting exciting new connections between AdS/CFT
and flat space holography.

This Letter is organized as follows. In Self-dual Yang-
Mills, we consider SDYM in AdS,, which obeys the same
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equation of motion as flat space (the fact that we are
working in AdS is only encoded by boundary conditions).
In Self-dual gravity, we then look at SDG in AdS,. We
introduce an appropriate generalization of the self-duality
condition and use it to extract a simple Plebanski-like scalar
equation. This exhibits a modified Poisson bracket and
double copy structure. In Color-kinematics duality, we
show that SDG in this background encodes a new kin-
ematic algebra and can be obtained by combining this with
the flat space kinematic algebra via an asymmetric double
copy. In wy,, algebras, we then lift the new kinematic
algebra to a deformed w, ., algebra. We then present our
conclusions. There is also Supplemental Material [75]
providing more details of the derivation of our SDG
solution.

Self-dual Yang-Mills.—We will consider four-dimensional
Euclidean AdS, with unit radius in the Poincaré patch,

dr* + dx* + dy* + dz?
7 7 (1)

<

2 _
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where 0 < z < oo is the radial coordinate. In a general
background, the self-duality constraint for Yang-Mills theory
(YM) reads

o\

nw o — 2 e;wp/{Fﬂﬂ’ (2)
where g, is the background metric and g is its determinant. In
conformally flat spaces, such as AdS,, this just reduces to the
self-duality constraint in R*, since four-dimensional YM is
classically scale invariant. Indeed, for the metric in (1), the \ /g
yields a factor of 74, while the inverse metrics used to raise
indices of the field strength give z*, so these factors just
cancel out.
We work in the so-called light-cone coordinates,

u=1Iit-+z, v=1it—2z,

w=x+ iy, w=x—1iy, (3)
in which the metric is given by

4(dwdw — dudv)

ds‘ids - (u _ 1})2 ) (4)
and €,,,,; = —1. The nontrivial self-duality constraints can
then be written as

Fuw:Fm'v:O’ Fm):va'v' (5)

Following [2], we will also impose light-cone gauge
A, = 0. We then find that the self-duality constraints are
solved by [76]

A, =0, A,=0,d  A,=0,®  (6)

where @ is a scalar field in the adjoint representation that
satisfies the following equation of motion:

O ® + i[0,®. 9, ®] = 0, (7)

where g+ = —0,,0,, + 0,,0;. This can, in turn, be derived
from the following Lagrangian by introducing a Lagrange
multiplier field ®,

Lspym = Tr{®(Ug+® + i[9, P, 9,,P])}. (8)

This is the same action that was previously derived for
SDYM in flat space [2-5,7-9] since AdS,; can be con-
formally mapped to half of R*. On the other hand, since
there is a boundary at z =0, momentum along the z
direction will not be conserved, which will become visible
when computing boundary correlators in this background.
We save a detailed analysis for future work.

With a view to the gravity formulation, we find it useful
to split the spacetime coordinates as

x = (u,w), v = (v,w), )
and introduce the operators
I, = (11,,11;) = (d,,,9,), (10)
which allows us to write the gauge field in (6) as
A; =0, A, =11,0. (11)

Finally, we define the Poisson bracket [10],

{f.g} =0,f0,9—0,f0,9 = eV, fTlzg, (12

and notice that it appears naturally in the scalar equation of
motion,

DR4¢—%[{®,®}] o, (13)

where we introduced the notation

[{f.g}] = e[, f . TTg]. (14)

Since the Poisson bracket obeys the Jacobi identity, it is the
kinematic analog of a commutator encoding the color
algebra. Hence, SDYM manifestly exhibits color-kinemat-
ics duality since it possesses both a commutator and a
Poisson bracket structure. The double copy involves
replacing color structures with kinematic structures, map-
ping gauge theoretic quantities into gravitational ones. As
we will see in the next section, replacing the commutator
with another Poisson bracket yields a scalar action for self-
dual gravity.
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Self-dual gravity.—In this section, we will first review
SDG in a flat background, as first derived in [1], and then
describe the generalization to AdS,.

Self-duality in asymptotically flat gravity: In asymp-
totically flat gravity, the self-duality condition is given by

1 2
R;w[)o’ = E \/gesznﬂpo—' (15)

The above is the appropriate form of the condition in
Euclidean signature. One can go to Lorentzian signature by
rescaling the right-hand side by a factor of i and the
coordinates appropriately. Crucially, the self-duality con-
dition encodes both the equations of motion and the
algebraic Bianchi identity for the Riemann tensor, which
can be seen by contracting two of the indices in (15) to get

1
R, =~€"R

up 2 nipo = 0 (16)

Writing the metric as
ds* = dwdw — du dv + h,dx"dx", (17)

we find that (15), together with the light-cone gauge choice
h,, = 0, leads to

hiﬂ =0, haﬂ = HaH/}d)’ (18)

with IT, as defined in the YM sector (10) and the scalar ¢
satisfying

Ogep = {{#. 93} =0, (19)

where we introduced the notation

({£.9)) =y {TLf. g}, (20)

and {,} is the Poisson bracket introduced previously in
(12). This then allows us to give elegant double copy rules
in the self-dual sector via [10]

®=g  SHN-1L @)

Self-duality in AdS, gravity: We wish to generalize the
self-duality condition to AdS,. To this end, we introduce
the tensor

1
T;w/m = R;w/m' - gA(gﬂ/)gl/(f - gl//)Q;tO’)’ (22)

where A is the cosmological constant. We now define our
duality relation as

[
Tlll//)(r = E\/ge.ZZ’TVIﬂ/)U' (23)

Upon contracting with ¢*°, we find

1 ona
Rllﬂ - Agllﬂ = E \/Eeﬂ” R’Mﬂf’ = O, (24)

where the left-hand side gives the Einstein equation with a
cosmological constant in the absence of matter sources,
R, = Agu, R =4A, (25)
and the right-hand side is again the algebraic Bianchi
identity for the Riemann tensor.
As a side comment, we note another way in which T,,,,
is the natural generalization of the Riemann tensor appear-
ing in (15) to spaces with a nonzero cosmological constant.

To this end, it helps to consider the Weyl tensor in four
dimensions,

1
Chi = RiZ — 2RV g]) + gRgﬁgZ]]. (26)
In asymptotically flat spaces, upon application of the
vacuum equation of motion R, =R =0, we get the
well-known result that the Weyl tensor becomes equal to
the Riemann tensor. However, in the presence of a
cosmological constant, the relevant equations are those
in (25). Upon plugging these into the Weyl tensor, we
recover exactly the form of 7, ,, from (22) [77]. This result
is also natural from the spinorial formulation of tensors in
general relativity, where the so-called Weyl spinors, arising
from the Weyl tensor, encode the self-dual and anti-
self-dual degrees of freedom, upon applying the equations
of motion.

We will now specialize to a background with cosmo-
logical constant A = —3, corresponding to AdS, back-
ground with unit radius.

Solution: In this section, we will show that the solution
to the self-duality constraint in AdS, is a remarkably simple
generalization of the flat space one in (19) when written in
terms of a deformed Poisson bracket. Let us begin by
introducing the modified Poisson bracket,

gk = (fog) + (g = g0uf). (27)

Using a deformation of the operators (10),

ﬁ:(ﬁv,ﬁw):(aw,au— 4 ) (28)

u-—7v

we can write (27) as
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1 . .
{fv g}* = Egaﬁ(nafn/}g - H(lgnﬂf)' (29)

In this form, the Poisson bracket that previously appeared
in flat space can be recovered simply by replacing IT with
its undeformed version IT,

We also observe the following relation between the
brackets:

{f.g}. = (u—v)“{(ufv)z,(ufy)z}. (31)

Let us proceed to solve the self-duality equation in (23).
First, we make the following general ansatz:

4(dw dw — du dv + hy,, dx"dx")

ds® = :
’ (u—0)?

(32)

where h,,, are unfixed functions. Imposing light-cone gauge
h,, = 0, we then find the following simple solution:

hi :0,

"

ha/} = H(aﬁﬂ)¢v (33)

where ¢ is a scalar field satisfying the following equation of
motion:

o () ey e e

where the modified double Poisson is defined as follows:

1
{{f’ g}}* = Eeaﬂ{nafv Hﬂg}w (35)
with {, }, defined in (29). Setting f = g, this becomes

{{f’ f}}* = a%vfagf - (auawf)z

We provide details of how to solve the self-duality
equations in the Supplemental Material [75].

Hence, the equation of motion in (34) provides a natural
generalization of the equation of motion for SDG in flat
space given in (19). In particular, it exhibits an asymmetric
double copy structure,

b — ¢ ,
u—v

S =L (37)

up to a rescaling of the kinetic term, which will be explored
further in the next section. After some algebra, the equation
of motion in (34) can also be written as follows:

V(—Oags +m2)¢+4{{ufv,u‘fv}}* =0, (38)

where Opgs¢p = g7'/20,(,/99"9,¢) with g,, the back-
ground AdS, metric, and m? = —2 corresponding to a
conformally coupled scalar in AdS,. Recall that a con-
formally coupled scalar field in AdS,,; has mass m? =
—[(d* — 1)/4] and can be mapped to a massless scalar field
in flat space by a Weyl transformation [78]. The equation of
motion in (38) is, in turn, encoded by the following
Lagrangian:

Lspe = /9 (Oaas _m2)¢+4${{uf1}’ui§v}} . (39)

where ¢ is a Lagrange multiplier field.
Finally, (34) admits the following solutions, which are
related to plane wave solutions by a Weyl rescaling,

¢ = (u—v)e*, (40)

where kx = uk, + vk, + wk,, + wk;, is the flat space inner
product and k,k, — k,,k; = 0 (we refer to this as the on
shell condition). Note that the momenta are complex since
we are working in Euclidean signature. Since there is a
boundary at z = 0, momentum along the z direction will
not be conserved and the natural observables are boundary
correlators Fourier transformed to momentum space
[79-82].

Color-kinematics duality.—It is straightforward to read
off Feynman rules from the Lagrangians in (8) and (39).
First we expand the scalar fields in the SDYM action as
O = ®T*, where T* are generators of the gauge group
satisfying Tr(T9T?) = 6" and [T%, T?] = if**°T¢. Using
on shell plane wave external states for SDYM and external
states of the form (40) for SDG, we obtain the following
three-point vertices (which would be relevant when com-
puting three-point boundary correlators):

1
Vspym = EX(kl,kz)f”‘”Qa"’

1 -
Vspe = EX(klvk2)X<klvk2)7 (41)
where

X(kl’ kZ) = kluk2w - klwkZW
2i

u-—v

X (ki ko) = X (ki ky)

(kl - k2)w' (42)

The objects X and X obey Jacobi identities analogous to
f@@% and can therefore be thought of as structure
constants of kinematic Lie algebras,
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0= X(kl, k2)X(k3, kl + kQ) + CyCIiC
= X(ky, ko)X (ks, ky + ky) + cyclic. (43)

These relations do not rely on momentum conservation and
encode color-kinematics duality. Moreover, we find that
the SDG vertex can be obtained from the SDYM one by
replacing the color structure constant with the deformed
kinematic structure constant,

fulazas — X(kl > kZ)’ (44)

which encodes the double copy. Whereas in flat back-
ground there is only one kinematic algebra and the SDG
vertex is obtained by simply squaring X [10], in AdS, there
are two distinct kinematic algebras and SDG arises from an
asymmetrical double copy.

The kinematic structure constants naturally arise from
Poisson brackets on plane waves,

{eik,x’ eikzx} — X(kl, kz)ei(k1+k2)‘x’

{eiklx’ eikzx}* — X(kl, kz)ei(k1+k2>'x, (45)
where kx is defined below (40). Note that when we plug the
solutions in (40) into the deformed Poisson bracket in (39),
this is indeed equivalent to acting on plane waves since we
divide by the conformal factor (u — v). The kinematic

Jacobi identity in (43) is a consequence of the following
general property of the deformed Poisson bracket:

{fi{g.hr b+ g {h fhb +{hASf. g3} =0, (40)

for arbitrary functions f, g, and h. Note that the deformed
Poisson bracket satisfies a deformed Leibniz rule,

oo

or alternatively,

! 1
h}* C(u- U)2f{g,h}* +m9{f7h}*,

(47)

(Fo.h}. = flg.h}, + glf.h}, = L9204y

u—v

although this does not play an important role in our
analysis.

Wi algebras.—As shown in [32], the kinematic alge-
bra that appears in SDG can be lifted to a w;, ., algebra,
which plays an important role in the study of scattering
amplitudes in the context of celestial CFT [33]. In par-
ticular, the w;,, algebra contains the extended Bondi-
Metzner-Sachs (BMS) algebra underlying soft graviton
theorems of scattering amplitudes [45,46]. In this section,
we will follow similar steps to those in [32] to show that the

deformed kinematic algebra derived in the previous section
can be lifted to a deformed w; ., algebra.

For an on shell state, the momentum satisfies k;/k, =
k,/k, = p, where p is some number. It is then possible to
expand an on shell plane wave as follows:

e — 0 (R )

1h!
520 a'b!

where e, = (u + pw)*(w + pv)?. This is naturally inter-
preted as an expansion in soft momenta. Letting wh, =
%e p—1+m,p—1-m and plugging this into the Poisson brackets
in (12) and (27) then gives

{whowi} = (n(p=1)=m(g= D)Wy

(b, = (o) + LI s (s
We recognize the first line as the wy ., algebra [33,83],
and the second line appears to be a deformed version of
this algebra. In the limit where z = (¥ — v) — oo (which
corresponds to the flat space limit), the deformation
vanishes. This suggests that self-dual gravity in AdS, is
integrable.

Constant deformations of the w; ., algebra have been
classified in [84—87], however, we note that our deforma-
tion falls outside of this classification, since it depends
on u—v.

Conclusion.—We have shown that SDG in AdS, can be
described by a scalar field whose interactions are encoded
by a deformed Poisson bracket, providing a surprisingly
simple generalization of the Plebanski action for SDG in
flat space. Our action implies a new kinematic algebra dual
to the color algebra appearing in SDYM, which is a
deformation of the flat space kinematic algebra. More-
over, the new kinematic algebra can be lifted to a de-
formation of the wy,, algebra, implying a new relation
between AdS/CFT and flat space holography that extends
beyond the flat space limit. Indeed, to our knowledge,
Wiie Symmetry was not previously identified in the
context of AdS/CFT. It would be interesting to see how
our SDG action compares to previous proposals in [88-96],
as well as how it can be realized in twistor space [35,41,97].
In particular, scalar equations were proposed long ago in
[96] and more recently in [91], although they appear to be
nontrivially related to ours and the deformed Poisson
structure is not manifest in those formulations. More-
over, it would be interesting to generalize our approach
to other conformally flat backgrounds.

There are a number of other directions for future study.
Perhaps the most immediate task is to compute tree-level
boundary correlators of SDYM and SDG in AdS, and
investigate how they encode color-kinematics duality and
Wit Symmetry. In doing so, we must take into account the
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fact that momentum along the radial direction is not
conserved and that the bulk-to-bulk propagators must
satisfy nontrivial boundary conditions as a result of the
boundary at z = 0. Note that the classical solutions in (40)
correspond to bulk-to-boundary propagators and can be
mapped to plane waves via a Weyl transformation. One
slightly nonstandard aspect of these calculations will be the
need to work in the light-cone gauge, since previous
treatments usually worked in the axial gauge [79,80].
We can then investigate if the correlators exhibit universal
behavior in the soft or collinear limit, analogous to those in
flat space and explore how this is encoded by the wy_
symmetry. Recent work relating soft theorems to Ward
identities in 3D CFT may be of use in this regard [98—102].
In flat space, the scattering amplitudes of SDYM and SDG
are one-loop exact rational functions [103,104] that also
exhibit color-kinematics duality [105]. It would be very
interesting to see if any of these properties extend to loop-
level boundary correlators in AdS,.

As mentioned above, we can obtain SDG in AdS, from
an asymmetrical double copy by combining the flat space
kinematic algebra (which appears in SDYM) with a
deformed kinematic algebra. It would be interesting to
see what gravitational theory arises from squaring the
deformed kinematic algebra, or alternatively, what gauge
theory arises from combining the deformed kinematic
algebra with the color algebra. Our approach may also
provide a framework for defining color-kinematics duality
and the double copy in Einstein gravity via an expansion
around the self-dual sector. Indeed, the four-point tree-level
wave function coefficient for gravitons in dS, (which can
be obtained by analytic continuation from AdS,) can be
deduced from an ansatz resembling an asymmetric double
copy with deformed kinematic numerators [54].

Finally, and perhaps most ambitiously, it would be intere-
sting to identify the CFT dual to SDG in AdS,. Given that the
bulk theory may have an infinite-dimensional symmetry it
seems very likely that it is integrable, and it should be
possible to prove this by generalizing the arguments in
[4-7,12,30,31]. SDG in AdS,; may therefore provide an
exactly solvable toy model of AdS/CFT. Moreover, intro-
ducing a Moyal deformation analogous to the one recently
implemented for SDG in flat space [42] may describe a
chiral higher spin theory in AdS, [106]. There are many
exciting avenues that we hope to explore in the future.
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