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Device-independent quantum key distribution (DIQKD) is information-theoretically secure against
adversaries who possess a scalable quantum computer and who have supplied malicious key-establishment
systems; however, the DIQKD key rate is currently too low. Consequently, we devise a DIQKD scheme
based on the quantum nonlocal Mermin-Peres magic square game: our scheme asymptotically delivers
DIQKD against collective attacks, even with noise. Our scheme outperforms DIQKD using the Clauser-
Horne-Shimony-Holt game with respect to the number of game rounds, albeit not number of entangled
pairs, provided that both state visibility and detection efficiency are high enough.
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Device-independent quantum key distribution (DIQKD)
enables distant parties to achieve quantum key distribution
even with untrusted apparatuses [1–3]. DIQKD provides
information-theoretic security [4–6] against certain side-
channel attacks that compromise the security of conven-
tional quantum key distribution implementations [7–9]. To
achieve this security, DIQKD treats all devices that prepare,
transmit, and measure information carriers as black boxes
that could have been created by an adversary. A nonlocality
test [10] is typically executed by two communicating
parties to estimate an adversary’s possible knowledge about
the generated data. Based on the result of the test, the
parties determine whether the data suffice to yield secure
keys [4–6].
However, as a sacrifice for high-level security, DIQKD

yields a low key rate, as confirmed by recent experimental
demonstrations [11–13]. For the potential use of DIQKD in
practice, a high key-rate DIQKD protocol is demanding.
Here, we remedy this issue by employing the nonlocality
test of a Mermin-Peres magic square game (MPG) [14,15]
in DIQKD. The MPG is a special nonlocal game whose
quantum strategies allow two players to win with unit
probability [16,17], thereby exceeding the winning prob-
ability of other nonlocal games such as the Clauser-Horne-
Shimony-Holt (CHSH) game [18]. These remarkable
features enable the MPG to yield a distinct DIQKD
protocol from conventional protocols [19–24].
Here, we propose a DIQKD protocol based on the MPG

and prove security in the asymptotic case subject to
collective attacks. Adopting the technique proposed in
Ref. [25], we numerically determine thresholds for state

visibility and detection efficiency required by the protocol
to generate secure keys. We show that our MPG-based
protocol generates a higher key rate, defined as the average
number of secret bits generated in each instance of the
protocol (namely, preparation, distribution, and measure-
ment), compared to CHSH-based DIQKD protocols for
certain parameter regimes. Precisely, we show that our
MPG-based protocol demonstrates advantages if the state
visibility exceeds 0.978 (with perfect detection) or if the
detection efficiency exceeds 0.982 (with a perfect source).
Our results show the potential advantage of using more
complex entangled states in implementing DIQKD.
MPG-based DIQKD protocol.—Alice and Bob play the

MPG [14–16], which is depicted and explained in Fig. 1.
After the game, the referee decides whether Alice and Bob
win or not according to the average winning probability

ω ¼
X
x;y

πðx; yÞPðaxy ¼ byxjx; yÞ: ð1Þ

Here, πðx; yÞ is the probability of distributing index pair
ðx; yÞ, and Pðaxy ¼ byxjx; yÞ is the winning probability of
Alice and Bob with respect to ðx; yÞ.
Throughout, we employ the unbiased MPG:

πðx; yÞ ¼ 1=9. When using classical strategies (see
one example in Sec. IA of Supplemental Material [26]),
Alice and Bob’s average winning probability is at most
8=9 [17,27]. As classical strategies are equivalent to local
hidden variables, ω ≤ 8=9 is actually a Bell inequality;
some quantum strategies violate this inequality [17,27].
Here, we denote a quantum strategy as ðρ;MÞ and its
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average winning probability as ωðρ;MÞ, where ρ is the
distributed quantum state and M is the set of Alice’s and
Bob’s quantum measurements used to generate the outputs.
In particular, when the state is two pairs of maximally
entangled qubits,

Ψ2¼Ψþ
A1B1

⊗Ψþ
A2B2

; Ψþ≔
j00þ11ih00þ11j

2
; ð2Þ

a measurement setMopt (details in Sec. IB of Supplemental
Material [26]) exists such that Alice and Bob will win the
MPG: ωðΨ2;MoptÞ ¼ 1 with optimal quantum strat-
egy ðΨ2;MoptÞ.
Crucially, the MPG certifies whether the outputs are

correlated in every input pair. This feature allows us to
design a DIQKD protocol, as introduced in Protocol 1. In
this protocol, two communication parties, also termed Alice
and Bob, initially generate data by playing the MPG. They
announce their inputs and record the overlapped bits. To
estimate parameters, Alice communicates with Bob which
part of the bits serves as raw keys with the remaining part of
the bits announced to play the MPG. If the average winning
probability estimated from the announced data is less than
an expected value ωexp, they abort the protocol; otherwise,
they perform data reconciliation on raw keys to obtain the
final keys.
Security analysis.—To prove security for a DIQKD

protocol, one needs to consider general adversary attacks
and finite-data effect [4–6]. On the other hand, one can also
temporarily consider weak security where adversary attacks
are independent identically distributed (IID) collective and
where the number of rounds N is infinite (asymptotic
scenario), followed by extending the weak security to the
general scenario [6,28,29]. Here, we analyze the weak
security of Protocol 1.

Suppose that an MPG-based DIQKD protocol with a
predetermined ωexp is successfully implemented. We ana-
lyze if and how much secure key can be established for the
case of IID collective attacks in the asymptotic scenario.
Because DIQKD assumes the correctness and complete-
ness of quantum theory, data generated in the protocol can
be described by quantum measurements on a quantum
state. As all quantum devices are untrusted, the precise
quantum state and quantum measurements are unknown.
Nevertheless, the assumption of IID collective attacks
allows one to suppose that [19], in each round, the
adversary Eve produces a quantum state ψABE [6,19]
and distributes it to Alice and Bob.
Measurements in the protocol, without losing generality,

can always be described by the sets of projector-valued
measures fMx

a0a1gx for Alice and fNy
b0b1

gy for Bob,
respectively. Here, x and y denote the inputs (i.e., meas-
urement settings) while a0a1 and b0b1 are bits representing
Alice’s and Bob’s outputs,

½ax0; ax1; ax2 ¼ ax0 ⊕ ax1�; ½by0; by1; by2 ¼ by0 ⊕ by1 ⊕ 1�T;
ð3Þ

respectively. For

ρ ≔ trE½ψABE�; M ≔ ffMx
a0a1gx; fNy

b0b1
gyg; ð4Þ

ðρ;MÞ is evidently a quantum strategy for the MPG. The
only constraint on ðρ;MÞ is that the protocol is not
aborted; i.e., ωðρ;MÞ ≥ ωexp.
An essential feature of the protocol is that raw keys are

generated by all ðx; yÞ pairs of quantum measurements in

Protocol 1. The MPG-based DIQKD protocol.

Input: N—number of rounds,
ωexp—expected winning probability of the MPG

Output: KA—Alice’s final key, KB—Bob’s final key.

Data generation: In each round n ∈ ½N� ¼ f1;…; Ng, Alice
and Bob independently pick xn; yn ∈ f0; 1; 2g, uniformly at
random. They inject xn and yn to their devices and record the
outputs ½axn0 ; axn1 ; axn2 ¼ axn0 ⊕ axn1 � for Alice and ½byn0 ;byn1 ;byn2 ¼
byn0 ⊕byn1 ⊕1� for Bob, respectively.

Announcement: Alice and Bob announce their inputs fxng and
fyng. They keep the bits faxnyng and fbynxng, respectively.

Parameter estimation: Alice picks a random index subset
½K� ⊊ ½N� with a length γN and communicates [K] with Bob.
They use the bits with indexes in [K] as raw keys A and B,
respectively, and announce the remaining bits, based on which
they estimate the average winning probability ω of the MPG. If
ω < ωexp, they abort the protocol; otherwise, they proceed.

Data reconciliation: Alice and Bob apply error correction and
privacy amplification on the raw keys A and B to obtain final
secure keys KA and KB, respectively.

FIG. 1. The Mermin-Peres magic square game. Two players,
Alice and Bob, fill a 3 × 3 magic square over many rounds for
both of them to win. In each round, a referee generates two
random “trits” x; y ∈ f0; 1; 2g and sends row index x to Alice and
column index y to Bob. Alice and Bob then reply to the referee
with a row ½ax0; ax1; ax2� and a column ½by0; by1; by2�T, respectively,
where all axi , b

y
j for i; j ∈ f0; 1; 2g are bits that satisfy ⊕i axi ¼ 0

and ⊕j b
y
j ¼ 1. The winning condition is that Alice and Bob

share the same value for the overlapped grid, i.e., axi¼y ¼ byj¼x.
During the game, Alice and Bob are forbidden to communicate
with each other.
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M on the state ψABE. For each input pair ðx; yÞ, whatever
the precise forms of fMx

a0b1
g and fNy

b0b1
g are, the quantum

state after the measurement can always be expressed as a
classical-classical-quantum state.

τxy ≔
X
axy;b

y
x

jaxyihaxyjA ⊗ jbyxihbyxjB ⊗ ϕ̂EðaxybyxÞ; ð5Þ

where axy, b
y
x are the raw keys (bits from the overlapping

grid of Alice’s row and Bob’s column) and ϕ̂EðaxybyxÞ is the
unnormalized quantum state characterizing Eve’s know-
ledge of the raw keys.
An appropriate one-way data-reconciliation protocol

always exists such that a certain amount of secure keys
can be processed from the raw keys while eliminating Eve’s
information [30]. As a result, for each input pair of ðx; yÞ, at
least a ratio minf0; rðτxyÞg of the raw keys will remain as
final keys, where

rðτxyÞ ≔ HðAjEÞτxy −HðAjBÞτxy : ð6Þ
Here, HðjÞ denotes the conditional von Neumann entropy,
and the bold symbols A and B imply that Alice and Bob’s
states are in classical states, representing the raw keys A
and B, respectively.
Finally, the security of the protocol should take all

possible ψABE into account, which implies that the final
keys correspond to the worst case of all quantum strategies
ðρ;MÞ. We define the key rate of DIQKD as the ratio of the
length of final keys and the number of all rounds. In the
asymptotic limit N → ∞, the key rate can be expressed as

R ¼ min

�
0;
γ

9
inf

ðρ;MÞ

X
xy

rðτxyÞ
�
; ð7Þ

subject to

ωðρ;MÞ ≥ ωexp: ð8Þ
Here, the coefficient γ=9 comes from the fact that each
input pair ðx; yÞ occurs with a probability 1=9 while a ratio
γ of the rounds is used as raw keys. The key rate defined
here characterizes how many secure keys can be generated
given the number of experimental rounds, which is differ-
ent from the definition used in some literature where the test
rounds are excluded [24].
To further prove that the protocol can produce correct

and secure keys, we need to show that the key rate R has
positive values when implementing the protocol using
certain quantum strategies. We first consider an ideal case,
namely, implementing the protocol with the optimal quan-
tum strategy ðΨ2;MoptÞ and settingωexp ¼ 1. As the inputs
are unbiased and randomly picked, the test rounds and the
key rounds have the same correlations, both of which yield
ω ¼ 1, so the protocol will not be aborted. Meanwhile,
Alice and Bob’s raw keys are uniformly distributed and
perfectly correlated (see details in Sec. IB of Supplemental

Material [26]). We have HðAjBÞτxy ¼ 0 for any ðx; yÞ.
Furthermore, ω ¼ 1 in the MPG can self-test two
singlets [31]; i.e., the unknown quantum state must be
locally isometric to two pairs of maximally entangled
2-qubit states. Such states cannot be correlated with a
third party because of entanglement monogamy [32].
Combining with the fact that A is uniformly random for
all τxy, we have HðAjEÞτxy ¼ 1, indicating that the adver-
sary has no information on A. As a result, we obtain R ¼ γ
for this ideal case, which shows that the protocol can indeed
produce secure keys.
For nonideal cases when general quantum strategies

are adopted or when noises are involved, we can bound R
via the recently developed technique of quasirelative
entropy [25]. Precisely, a lower bound for HðAjEÞτxy in
Eq. (6) can be derived as [25]

HðAjEÞτxy ≥ cm þ
Xm−1

k¼1

ck minhψ jGkðx; yÞjψi; ð9Þ

where cm ¼ P
m−1
k¼1 ck and ck ¼ wk=ðtk ln 2Þ, with

fðtk; wkÞjk ¼ 1;…; mg a set of m nodes and weights of
the Gauss-Radau quadrature, and Gkðx; yÞ is defined as

Gkðx; yÞ ≔
X

ay∈f0;1g
fΠx

ay ½Zay þ Z†
ay þ ð1 − tkÞZ†

ayZay �

þtkZayZ
†
ayg; ð10Þ

with Zay an arbitrary operator and Πx
ay the projector-valued

measure corresponding to Alice’s input x and output axy.
Combining with Eqs. (7) and (8), the minimization in
Eq. (9) is taken over all possible pure states jψi ¼ jψiABE
and measurement strategies M ¼ ffMx

a0a1gx; fNy
b0b1

gyg
subject to

ωðρ;MÞ ≥ ωexp; ρ ¼ trE½jψihψ jABE�; ð11aÞ

Πx
ay¼0 ¼

8><
>:

Mx
00 þMx

01 if y ¼ 0

Mx
00 þMx

10 if y ¼ 1

Mx
00 þMx

11 if y ¼ 2;

ð11bÞ

Πx
ay¼1 ¼ 1 − Πx

ay¼0; ð11cÞ

0 ¼ ½Mx0
a0a1 ; N

y0
b0b1

�; ð11dÞ

0 ¼ ½Mx0
a0a1 ; Zay � ¼ ½Zay; N

y0
b0b1

�; ð11eÞ

∀ a0;1;y; b0;1 ∈ f0; 1g; ∀ x0; y0 ∈ f0; 1; 2g: ð11fÞ

This constrained minimization can be resolved via
the Navascués-Pironio-Acín (NPA) hierarchy [33], which
is numerically computable via solving a semidefinite
program [34]. In Sec. II of Supplemental Material [26],
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we numerically show that HðAjEÞτxy has a positive lower
bound if ωexp > 0.9575, which implies that the protocol
can produce secure keys if, in the end, Eq. (7) has a positive
value.
Noise tolerance.—Consider the case where the optimal

quantum strategy ðΨ2;MoptÞ is supposed to be used to
implement the MPG-based protocol. Here, we characterize
the performance of the protocol under two types of noise.
For the first type, we consider the imprecise preparation of
Ψ2 such that each qubit may be mixed with some white
noise. The distributed state becomes ρν ⊗ ρν before the
detection, where ρν ¼ νΨþ þ ð1 − νÞ1=2 and ν is the state
visibility. For the second type, we consider the noise led by
nonclick events in measurements. Such nonclick events are
caused by the loss of the state in transmission or the
inefficiency of the detector, and cannot be sifted out
from the data (otherwise, it may open detection loop-
holes [10–13]). Instead, Alice and Bob must assign an
output to the nonclick events. We consider the following
procedure: in each round, unless Alice (or Bob) success-
fully measured her (or his) state, Alice (or Bob) will output
values according to a deterministic strategy of the MPG
(Table I in Sec. IA of Supplemental Material [26]). The
detection efficiency on each side is assumed identical and
denoted as η.
We consider two cases where only the white noise is

involved and where only the detection inefficiency is
involved. For each value of ν or η, we select ωexp such
that the produced data can pass the parameter estimation in
the protocol. The results are shown in Fig. 2. In the
figure, the red solid line is the key-rate lower bound of
the MPG-based protocol, which is obtained by solving the
semidefinite programming problem combining Eqs. (6)–
(11). For the calculation, we set the NPA hierarchy as 2 and
the number of nodes in the Gauss-Radau quadrature as 16.
From the figure, we observe that the key rate decreases
when the state visibility or detection efficiency becomes
smaller. It shows that the MPG-based protocol can produce

a positive key rate if the state visibility ν > 0.959 or if the
detection efficiency η > 0.969.
Overcoming the key rate of CHSH-based protocols.—A

prominent feature of the MPG-based protocol is that
outputs of every input pair can be used to generate secure
keys. As a result, all the outputs except that used in the
estimation are collected as raw keys. This feature may
enable the MPG-based protocol to yield a higher key rate
than conventional DIQKD protocols. Particularly, if the
optimal quantum strategy of the MPG can be faithfully
implemented, the key rate Ropt ¼ γ. It is actually the
maximal key rate that any DIQKD protocol can achieve.
As we will show, the MPG-based protocol outperforms a
variety of CHSH-based protocols for certain regions of
noise parameters.
In a standard CHSH-based protocol [19,20], Alice and

Bob usually have inputs x ∈ f0; 1g and y ∈ f0; 1; 2g,
respectively. To generate the data, Alice picks x uniformly
at random while Bob picks y ∈ f0; 1; 2g according to
probabilities ð1 − γÞ=2; ð1 − γÞ=2; γ, respectively, and they
input x and y into their local device and record the outputs
a; b ∈ f0; 1g. After obtaining all the data, they announce
the inputs and select the outputs corresponding to the input
pair ðx; yÞ ∈ f0; 1g2 to play the CHSH game. If the average
winning probability is above a certain threshold, they select
the outputs corresponding to the input pair ðx; yÞ ¼ ð0; 2Þ
as the raw keys, followed by the data-reconciliation
procedure to obtain the final keys. One can immediately
see that the key rate cannot exceed γ=2, which is half of the
optimal key rate of the MPG-based protocol.
To make a full comparison between the MPG-based

protocol and protocols based on the CHSH game, we
consider a variety of protocols based on biased CHSH
games [35]. Suppose that in the CHSH-based protocol,
Alice picks x ¼ 0, 1 according to probabilities 1 − ε, ε,
respectively, while Bob’s probabilities of picking y remain
the same. Then, the optimal key rate of the protocol
becomes γð1 − εÞ=2, which is higher than that of the
standard CHSH-based protocol and is approaching γ
when ε → 0. We provide the details of the biased CHSH
game and its induced DIQKD protocols in Sec. IIIA of
Supplemental Material [26].
We compare the performance of MPG-based protocol

and CHSH-based protocols with different input prob-
abilities. We suppose that the optimal quantum strategy
for the biased CHSH game is used to implement the CHSH-
based protocol [35,36]. It turns out that when introducing
the white noise, it is equivalent to treating the distributed
state as ρν. When a nonclick event occurs, Alice (or Bob)
will output 0 for any input x (or y) such that a deterministic
classical strategy is equivalently selected.
The results are shown again in Fig. 2, where the key-rate

lower bounds of the CHSH-based protocols with different
ε’s are plotted with blue dashed lines. These key-rate lower
bounds are obtained in a similar fashion to calculating the

FIG. 2. Noise tolerance of the MPG-based protocol (red solid
line) against the state visibility ν (left) and the detection efficiency
η (right). Results of the CHSH-based protocols are plotted as blue
dashed lines for comparison. ε represents the probability of Alice
picking x ¼ 1 in CHSH-based protocols.
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key-rate lower bound for the MPG-based protocol, as
presented in Sec. IIIB of Supplemental Material [26].
We observe that all key rates decrease when state visibility
or detection efficiency decreases. As expected, decreasing ε
can increase the optimal key rate of CHSH-based protocols.
Nevertheless, these protocols cannot exceed the key rate of
the MPG-based protocol in regions of ν > 0.978 and
η > 0.982, showing the advantage of the MPG-based
protocol in these regions.
Discussion.—We have shown that our MPG-based pro-

tocol generates more secret keys per instance of protocol
than CHSH-based protocols, in regions where the state
visibility and detection efficiency are high. This
comparison is made on the basis that the costly resource
is the number of nonlocal games executed in the experi-
ment [23,24]. Indeed, the secrecy of the keys in DIQKD is
guaranteed by winning nonlocal games. Therefore, our
result implies that a more complex nonlocal game may lead
to a higher amount of secure keys per game round.
Nevertheless, the number of nonlocal games does not

necessarily equal to the number of entangled states gen-
erated by the source, which is usually the considered
resource in practice. In the case where the source generates
a certain number of 2-qubit entangled states, the CHSH-
based protocol is preferred. This is because the CHSH-
based protocol can run twice as many rounds as that of a
MPG-based protocol, and more keys could be produced.
Also, the CHSH-based protocol is more robust against
diminished state visibility and detection efficiency.
As for the realization of Protocol 1, the resource state Ψ2

can be produced using two identical preparation of
entangled singlets, or using the hyperentanglement tech-
nique to reduce the experimental overheads [37–39].
An obvious downside of the protocol is its high require-
ments for state visibility and detection efficiency. The
selection of platforms is important to fulfill the desired
requirements. For instance, the platform with remote
matter-qubit entanglement can provide a higher detection
efficiency. Meanwhile, theoretical improvements, includ-
ing the use xof on-maximally entangled states [21,22],
noisy-preprocessing procedures [40], and postselection
techniques [41], can be considered to reduce the require-
ments of the protocol on the experimental imperfections.
In addition, regarding the higher key rate of the MPG-

based protocol over CHSH-based protocols, one may
wonder if there are improvements on the CHSH-based
protocol such that the key rate γ can be achieved. For
instance, in the standard CHSH-based protocol, one can
add a key-generation agreement after the state distribution
but before the measurements. Such step allows Alice and
Bob to do either key generation or CHSH test [i.e., the
original rounds corresponding to ðx; yÞ ¼ ð1; 2Þ do not
exist], which theoretically enables the key rate to be as
high as γ. However, the security of the modified protocol
requires an additional assumption that no unwanted

information is leaked during the key-generation agreement
step [42]. We remark that the MPG-based protocol can
achieve a key rate as high as γ without relying on the above
additional assumption.
Conclusions.—We have proposed the DIQKD protocol

based on the MPG and have provided the security analysis
of the protocol against the collective attacks in the
asymptotic scenario. We have numerically characterized
the regions of two noise parameters, namely, state visibility
and detection efficiency, when the MPG-based protocol can
produce secure keys. We have further shown that, in certain
regions, the MPG-based protocol has a higher key rate over
a variety of protocols based on CHSH games. Our result
shows the advantage of a sophisticated nonlocal game in
DIQKD protocols and the potential usage of high-
dimensional entanglement in device-independent quantum
information tasks.

We gratefully acknowledge valuable discussions with
Nai-Le Liu, Kai Chen, Li Li, and Valerio Scarani. This work
was supported by National Natural Science Foundation of
China (Grants No. 62031024, No. 12005091,
No. 12104444), National Key Research and Development
Program of China (Grants No. 2020YFA0309700),
Shanghai Academic/Technology Research Leader (Grants
No.21XD1403800), and Shanghai Science and Technology
Development Funds (Grants No. 22JC1402900). Y. M.
acknowledges support from the China Postdoctoral
Science Foundation (Grant No. 2021M693093). F. X.
acknowledges the support from the Tencent Foundation.

*feihuxu@ustc.edu.cn
†bsanders@ustc.edu.cn

[1] A. K. Ekert, Quantum Cryptography Based on Bell’s
Theorem, Phys. Rev. Lett. 67, 661 (1991).

[2] D. Mayers and A. Yao, Quantum cryptography with
imperfect apparatus, in Proceedings of the 39th Annual
Symposium on Foundations of Computer Science (IEEE,
Palo Alto, 1998), pp. 503–509.

[3] J. Barrett, L. Hardy, and A. Kent, No Signaling and Quantum
Key Distribution, Phys. Rev. Lett. 95, 010503 (2005).

[4] U. Vazirani and T. Vidick, Fully Device-Independent
Quantum Key Distribution, Phys. Rev. Lett. 113, 140501
(2014).

[5] C. A. Miller and Y. Shi, Robust protocols for securely
expanding randomness and distributing keys using un-
trusted quantum devices, J. Assoc. Comput. Mach. 63,
33:1 (2016).

[6] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T.
Vidick, Practical device-independent quantum cryptography
via entropy accumulation, Nat. Commun. 9, 459 (2018).

[7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[8] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure
quantum key distribution with realistic devices, Rev. Mod.
Phys. 92, 025002 (2020).

PHYSICAL REVIEW LETTERS 131, 080801 (2023)

080801-5

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.113.140501
https://doi.org/10.1103/PhysRevLett.113.140501
https://doi.org/10.1145/2885493
https://doi.org/10.1145/2885493
https://doi.org/10.1038/s41467-017-02307-4
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/RevModPhys.92.025002


[9] C. Portmann and R. Renner, Security in quantum crypto-
graphy, Rev. Mod. Phys. 94, 025008 (2022).

[10] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[11] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D.
Main, R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov,
E. Y.-Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner, N.
Sangouard, and J.-D. Bancal, Experimental quantum key
distribution certified by Bell’s theorem, Nature (London)
607, 682 (2022).

[12] W. Zhang, T. van Leent, K. Redeker, R. Garthoff, R.
Schwonnek, F. Fertig, S. Eppelt, W. Rosenfeld, V.
Scarani, C. C.-W. Lim, and H. Weinfurter, A device-
independent quantum key distribution system for distant
users, Nature (London) 607, 687 (2022).

[13] W.-Z. Liu, Y.-Z. Zhang, Y.-Z. Zhen, M.-H. Li, Y. Liu, J. Fan,
F. Xu, Q. Zhang, and J.-W. Pan, Toward a Photonic
Demonstration of Device-Independent Quantum Key Dis-
tribution, Phys. Rev. Lett. 129, 050502 (2022).

[14] N. D.Mermin, SimpleUnified form for theMajorNo-Hidden-
Variables Theorems, Phys. Rev. Lett. 65, 3373 (1990).

[15] A. Peres, Incompatible results of quantum measurements,
Phys. Lett. A 151, 107 (1990).

[16] G. Brassard, A. Broadbent, and A. Tapp, Quantum pseudo-
telepathy, Found. Phys. 35, 1877 (2005).
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