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We demonstrate the quantum Mpemba effect in a quantum dot coupled to two reservoirs, described by
the Anderson model. We show that the system temperatures starting from two different initial values (hot
and cold) cross each other at finite time (and thereby reverse their identities; i.e., hot becomes cold and vice
versa) to generate thermal quantum Mpemba effect. The slowest relaxation mode believed to play the
dominating role in Mpemba effect in Markovian systems does not contribute to such anomalous relaxation
in the present model. In this connection, our analytical result provides necessary condition for producing
quantum Mpemba effect in the density matrix elements of the quantum dot, as a combined effect of the

remaining relaxation modes.
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Introduction.—The Mpemba effect (MPE) is a fascinat-
ing counterintuitive phenomenon indicating hot liquid can
freeze faster than cold liquid, observed long ago by Aristotle
[1] and rediscovered by Mpemba and Osborne [2]. Various
mechanisms have been proposed to explain MPE [3-12],
still lacking any unified theory. In fact, several experiments
have raised questions regarding the validity of MPE [13]. A
problem regarding the correct definition of MPE for various
systems [2,14-16] is the complexity of the phase transitions
associated with these cases. In this connection, the exper-
imental observation of MPE in a colloidal system without
phase transition is remarkable [17].

Although MPE was originally perceived as a thermal
phenomenon of anomalous cooling in liquids, later it was
identified as a more general anomalous relaxation occurring
in a wide variety of systems, including colloids [17,18],
granular gases [19-24], optical resonators [25-27], inertial
suspensions [28,29], Markovian models [30-33], and others
[34-41]. To analyze MPE in classical systems, time varia-
tions of temperature [22,28], energy [21], and viscocity [28]
have been employed in granular gases and inertial suspen-
sions whereas entropic distance-from-equilibrium functions
have been applied to Markov jump processes [30,31] and
colloidal systems [17]. Recently, nontrivial connections
between thermal and entropic MPEs have been exploited
[42] and the crucial dependence of MPE on the choice of the
observables has been studied [43].

In spite of substantial works on the classical MPE,
investigations on quantum Mpemba effect (QMPE) have
been few [44-48]. The studies of QMPE have been
based on the entropic distance-from-equilibrium functions
[45,46,48], entanglement asymmetry [47], and magnetiza-
tion [44]. Importantly, QMPE lacks the analysis of temper-
ature, and therefore the notion of thermal QMPE is missing.
Secondly, the criterion for QMPE [45,48] and MPE

0031-9007/23/131(8)/080402(6)

080402-1

[30,31,40] in both quantum and classical Markovian sys-
tems solely focus on the slowest relaxation mode. Complete
absence of the slowest relaxation mode for certain parameter
choices or initial conditions leads to exponentially faster
relaxation, called strong MPE [17,31,49] and strong QMPE
[45]. However, the roles of other relaxation modes in
generating Markovian MPE and QMPE remain unexplored.

In this Letter, we address the abovementioned issues:
(i) possibility of thermal QMPE and (ii) the role of
relaxation modes other than the slowest one in producing
QMPE in density matrix elements and temperature. For the
demonstration of QMPE, we examine a quantum dot (QD)
system coupled to two reservoirs, described by the
Anderson model. The occurrence of QMPE is defined as
the finite time crossing of temporal trajectories of any entity
starting from two different initial conditions that reach the
same steady state. We show that the system temperature
exhibits thermal QMPE with the variation of control
parameters. Moreover, the slowest relaxation mode does
not contribute to the QMPE in the present model and we
illustrate the combined role of the remaining eigenmodes in
generating QMPE.

Model.—We consider a single-level quantum dot coupled
to two reservoirs (L and R). The total system is described by
the Anderson model with the Hamiltonian A, = H,+ H,+
H,,, where H,, H, are the Hamiltonians for the QD and
the two reservoirs, respectively, and H,, denotes the
system-reservoirs interaction. The explicit forms of the
Hamiltonians are [50,51]

o A A A o At A
H, = g eodld,,—FUnan H, = g €xly i o0y k.o
o

v.k.o

Hint = ZVycAlZ&y,kﬁ + H.c. (1)
v.k.o
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The parameters €, and €, correspond to an electron energy in
the QD and the reservoirs, respectively, and U is the
electron-electron repulsion energy in the QD. The index
o denotes up spin (1) and down spin ({,), y represents L and
R. The creation (annihilation) operators for the QD and the
reservoirs are d' (21) and a' (a), respectively. Here 71, =
21;516 is the number operator. The coupling strength between
QD and L (R)is V; (V). We adopt a model in the wideband
limit for reservoirs [50-53]. We denote the linewidth I' =
zQV? (V2 = V2 + V2), where Q is the density of states in
the reservoirs. The chemical potentials of L (R) are y; (ug)
and their temperatures are taken equal, 7; = T = T. We
consider temperatures much higher than the Kondo temper-
ature to ignore the Kondo effect [54-56]. We focus on the
weak coupling to disregard cotunneling [57].

The tunneling between QD and the reservoirs means the
QD has four possible states, namely the doubly occupied
state (1), singly occupied up-spin state (1), singly
occupied down-spin state (| ), and empty state, enumerated
by a=1, 2, 3, 4, respectively. Correspondingly, the
elements of the density matrix operator p for the QD are
represented by p,. Using wideband approximation, p
reduces to a purely diagonal form [50-53] with four
nonzero elements p,. The dynamics of the QD is described
by the quantum master equation,

d . .
—Kp 2
P P, (2)

where 7:=1It is the dimensionless time. The transition
matrix K has the form [50,53]
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The factors fg) (j=0, 1) [Eq. (3)] are related to the
physical input parameters as

pr :fy)(lulnUv€07T>+f§€J)(ﬂRvU’€O7T)v JZOvl

£ (uy. U6, T) 5= y=L.R, (4)

with f(Lj_)R (=0, 1) being the Fermi-Dirac distribution.
Among the parameters f g{) (j =0, 1) in Eq. (3), only two
are independent (we consider fij) with j = 0, 1) because
fO=2-f Sf). The exact analysis of QMPE in the QD can

be performed in terms of f S?) and f(f) and Eq. (4) is used to
express the results in terms of chemical potential, temper-
ature, and the Hamiltonian parameters.

Protocol—We use two different sets I and II of initial
conditions, p'(zr =0) and p'(z =0). Both these initial
conditions are chosen in the form of the steady state
distribution corresponding to the largest (zero) eigenvalue
of K [Eq. (3)]. They may differ in the values of one or more
input parameters For initial condition I, we choose
uh # uh, whereas for II, we take pu! = uli = u!'. For both
initial conditions, the reservoirs are malntalned at the same
initial temperature 7';. At ¢ = 0, we perform instantaneous
quench for both initial conditions such that their chemical
potentials are quenched to y and 7’; is quenched to 7. The
parameters after quench can be higher or lower than their
values before quench. We follow the time evolution of an
entity for I and II to see if they cross each other at some
finite time 7 > 0 before reaching the same steady state, and
thereby if that entity exhibits QMPE. We investigate QMPE
in the density matrix elements, and in the temperature to
explicitly survey the possibility of thermal QMPE.

OMPE in density matrix elements.—The time evolution
of pe(7) (@ = 1,2, 3, 4) is governed by the eigenvalues and
(right and left) eigenvectors of K [Eq. (3)]. The formal
expressions of p, (), for I and II, are

4
a£z = Z i‘n,mp£n<0)
ZLn m,l)m (5)

Pu(7)

St
9=y

where 4, (n = 1, 2, 3, 4) are the eigenvalues of K such that
A > Ay > A3 > A4. Here 4; (= 0) and 4, correspond to the
steady state and the slowest relaxation mode, respectively.
The matrices R and L consist of the right eigenvectors and
left eigenvectors of K, respectively [58]. The coefficients

ai! [Eq. (5)] contain the effects of the 1n1t1a1 conditions. In
many literature, only the coefficients a2 , corresponding to
the slowest eigenmode, is considered to analyze the MPE at
sufficiently large time where the effects of other coeffi-
cients ai" (n > 2) are assumed negligible [30,40,45,48].
Several studies concentrate on engineering special initial
conditions that lead to a, = 0 [45,49] causing strong MPE
with exponentially faster relaxation. In this connection, we
have found an intriguing fact that the Anderson model of
QD satisfies the condition

ab =all =0, (6)

irrespective of the particulars of initial conditions and
parameter values. The slowest relaxation mode 1, does
not contribute to the time evolved density matrix elements
and other observables, for any initial condition distributed
in the steady state form. Thus, the coefficients a5 are not

appropriate to discuss QMPE for the Anderson model.
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This naturally raises the following question: what are the
roles of the coefficients a3 and a4, corresponding to the
remaining relaxation modes n = 3, 4, in producing QMPE?
To answer this, we consider the difference between the
time evolutions of density matrix elements starting from I
and II; i.e.,

Apy(7) = pl(z) — pi(7).

To obtain QMPE, we have to make sure that some
Ap,(z,) = 0 at finite time 7 = 7,,. We obtain the following
analytical expressions for Ap,(7):

a=12734 (7

Apy(7) = € Ry 4Bay[Sy + e”BH], (8)

where S, := (R,3Aa3)/(R,4Aa,) and Aa, = al, — all.
Since the expression of S, explicitly depends on the ratio
Aas/Aay, we conclude that QMPE in the density matrix
elements is dictated by both the surviving relaxation modes
rather than only one of them. Since in Eq. (8), 0 <

e~ s=4)7 < 1, the necessary condition to ensure QMPE
in p,(7) is

S, <0 and IS, <1. 9)

Note that we have not used the explicit expressions of the
eigenvalues and eigenvectors of K to derive the criterion
Eq. (9). One can control one or more parameters from
(uh, uk, " Ty, T). We choose to vary p} or p or both.
We denote the number of density matrix elements showing
QMPE by v(p), which can take one of the four possible
values 0O, 1, 2, or 3.

In Fig. 1, we present the variation of v(p) in the fu} —
Puk plane, where = 1/T. This figure is constructed by
directly implementing the criterion in Eq. (9). The

6

Buk

Buy

FIG. 1. Tllustration of different regions in the fu} — Buk plane
with distinct values of v(p) (number of density matrix elements
showing QMPE). Parameters used are pe, = 2.0, pU = 1.25,
pult =243, pT; = 1.15, pu = 2.0.

parameter plane captures all possible values of v(p). The
behavior of v/(p) is naturally symmetric with respect to S
and puk. A quadrant centering fu} = pul, = 0 appears on
the plane that forbids the occurrence of QMPE and is
characterized by v(p) = 0. As we move away from this
quadrant, the density matrix elements start showing QMPE.
If we fix one of the parameters fu} and puk and increase
the other, the value of v(p) does not increase monotonically
in the order of v(p) = 0, 1, 2, 3; rather we have a narrow
parameter region exhibiting v(p) = 3 sandwiched between
regions showing v(p) = 1 and v(p) = 2. The fact that the
parameter regions showing v(p) =3 or 1 are much
narrower than the regions displaying v(p) =2 or 0 is
generic for our model [58].

Since QMPE is a dynamical phenomenon, we character-
ize the occurrence of QMPE in p by the temporal order
parameter defined as

%(A) = maX[Tl,Tz, T3,T4] if 0 <7, < o0,

7(p) - oo if nofinitez, exists Va, (10)
where 7, (a = 1, 2, 3, 4) is the solution of Ap,(z,) =0,
and max|[x;, x,, X3, x4] selects the largest x; among x;, x,,
X3, and x,4. The reason to focus on the maximum among
7,8 in Eq. (10) is to detect the largest time which bears the
memory effect from the initial quench. The trivial steady
state solution Ap,(r — 00) =0 V a must be avoided. In
Fig. 2, we present the behavior of () in the pul — puk
plane. The majority of the parameter region exhibits QMPE
with largest 7(p) of the order of unity. The proposed order
parameter provides prominent boundaries demarcating
regions with and without QMPE. To reduce the number

7(p)
1.0
0.8

0.6

Bk

0.4
0.2

Bur,

FIG. 2. QMPE for p in fu} — pu plane characterized by 7(p)
[Eq. (10)]. The white regions represent the absence of QMPE.
Parameters used are fey=2.0, pU =1.25 pT; =0.25,

Pu = 2.0, and pu" = puj,.
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of independent parameters we consider pu'l = puk in
Fig. 2. However, such a special scenario creates asymmetric
nature of #(p) with respect to fu} and puk, evident in
Fig. 2. Notably, for fixed fuk < 2, QMPE is prohibited in
the whole tunable range of fu! (0 to o).

OMPE in system temperature.—Next we investigate the
possibility of QMPE in the system temperature, i.e.,
quantum counterpart of the original MPE. The concept
of temperature has to be dynamical as we study the
temporal relaxation of the system. The process of thermal-
ization itself can be tricky for quantum systems [59-61].
Nevertheless, we use the definition of time dependent
temperature 7(z) [62] as

JE (7 JE (T IS (7
= ast((f)) - 07( )/ ai( ) (11)

Ty(7)

where Syn(7) = =Y, P4(7) In[p,(7)] is the von Neumann
entropy and E,(z) = Tr[p(z)H,] is the average energy. The
thermalization and the validity of the system temperature
are ensured from the checked fact that different initial
conditions converge to the identical steady state value
T,(t = o0). Also, the classical limit is recovered as
T,(t — oo) matches with the reservoir temperature 7 when
the Fermi-Dirac distribution [Eq. (4)] can be approximated
as Maxwell-Boltzmann distribution [58].

Interestingly, in Fig. 3, we observe that T (7) starting
from two different initial values cross each other at a finite
time showing QMPE. Since both the initial temperatures
are higher than the steady state value, this QMPE involves
cooling processes where the initially hotter system becomes
colder after the crossing, and thereby produces the normal
QMPE [28]. It is fascinating that the QD indeed generates
thermal MPE. The inset of Fig. 3 confirms that both initial
temperatures reach the same steady state.

Normal QMPE
14t Q — initial condition I

— initial condition II

2.5 45

02 04 06 08 1.0 12 14
T

FIG. 3. Thermal QMPE where temperatures [Eq. (11)] starting
from two different initial conditions cross each other at finite
time. The inset shows their convergence to the same steady state.
Parameters used are e, =2.0, BU=1.25, pu} = 4.5, pul, = 1.0,
pull =243, BT; = 1.15, fu = 2.0.

We should examine if the occurrence of thermal QMPE
in Fig. 3 is an isolated incident in a rather large parameter
space. For this purpose, analogous to 7(p) [Eq. (10)], we
define 7(T',) characterizing thermal QMPE as

0 <%(T,) < oo: thermal QMPE,
Z(T,;) - o: no QMPE, (12)

where #(T) is the solution of AT(7) =0, with AT, :=
T! — T, In Fig. 4, we present the behavior of #(T,) with
the variation of Ay} . This remarkably rich diagram reveals
that thermal QMPE is rather generic than occasional. We
observe large parameter ranges exhibiting normal QMPE
(an example being Fig. 3) and mixed QMPE (one of the
initial temperatures is lower than the steady state value)
[28], with the intermediate region displaying the absence of
QMPE. The model is also capable to exhibit inverse QMPE
[58] (both initial temperatures are lower than the steady
state value [19]), although the inverse QMPE is much
weaker than normal and mixed QMPEs. An interesting
observation is that most of the parameter regions demon-
strating normal QMPE are associated with nonanalyticity in
the system temperature (Fig. 4, inset) resulting in dynami-
cal quantum phase transition (QPT) [63]. The negative
temperature (Fig. 4, inset) originates from the nonmono-
tonicity of the entropy while the energy changes mono-
tonically. Negative temperatures along with bounded
energy spectrum have been predicted [64,65] and exper-
imentally observed [66,67] for two-dimensional vortices,
localized spin systems [68—70], bosonic single mode cavity
[62], etc. The thermal QMPE in the present model remains

1.2} Normal QMPE
1.0}
/—U? 0-8 [
% os) NG
= T P
& 0
0.4¢ Q \
- 30
0.2} Mixed No 02, 06
QMPE QMPE dynamical QPT
0.0E

0 2 a 6 8 10
BML

FIG. 4. Variation of #(T) [Eq. (12)] characterizing thermal
QMPE. We observe mixed QMPE and normal QMPE, separated
by a region with no thermal QMPE. A majority of the parameter
range showing normal QMPE is associated with dynamical QPT
(inset). Parameters used are fe, = 2.0, pU = 1.25, puk = 1.0,
pult =243, BT; = 1.15, pu = 2.0.
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unaffected by the dynamical QPT as #(7,) increases
continuously across the borderline demarcating the pres-
ence and absence of dynamical QPT.

Apart from temperature and density matrix, energy, von
Neumann entropy and Kullback-Leibler divergence
[Dky ()] can also exhibit QMPE [58]. Remarkably, we
have found parameter regions where thermal QMPE is
observed but D; (7) does not show QMPE and vice versa,
implying that here Dy () cannot act as an alternative
indicator for thermal QMPE [58]. We observe that higher
initial difference between initial and steady state goes faster
to zero for QMPE in energy and entropy [58]. Similar
observation regarding faster restoration of more initially
broken symmetry has been studied recently using entan-
glement asymmetry [47].

Summary.—We have demonstrated QMPE in a single-
level quantum dot coupled to two reservoirs, described by
the Anderson model. Interestingly, the slowest relaxation
mode which has been by far the only focus for producing
MPE in Markovian systems has no contribution to QMPE
for the Anderson model. Rather, we have presented the
necessary criterion, involving the combination of remain-
ing relaxation modes, to obtain QMPE in the density matrix
elements. We have achieved the thermal QMPE in the
temperature where an initially hotter system can cool faster
than an initially colder system and they reverse their
identities (hotter becomes colder and vice versa) after some
finite time.

It would be important to investigate the thermal QMPE
in other quantum systems and systematically establish the
general framework for it. We wish to explore the con-
nection of symmetry breaking to QMPE [47] in quantum
dots. There have been several experiments on QD [71-77],
including single-level QD coupled to two leads with
different chemical potentials and controlled by gate volt-
ages [76,77]. Thus, it is straightforward to perform experi-
ments on QMPE by controlling chemical potentials
discussed in this Letter.
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