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Which nonlocal correlations can be obtained, when a party has access to more than one subsystem?
While traditionally nonlocality deals with spacelike separated parties, this question becomes important with
quantum technologies that connect devices by means of small shared systems. Here, we study Bell
inequalities where measurements of different parties can have overlap. This allows us to accommodate
problems in quantum information such as the existence of quantum error correction codes in the framework
of nonlocality. The scenarios considered show an interesting behavior with respect to Hilbert space
dimension, overlap, and symmetry.
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The relation between the whole and its parts is a concept
central to quantum many-body physics, as it determines
what correlations, and thus emergent physical phenomena,
a system can exhibit. To understand this relation, the
quantum marginal problem has played a key role. The
simplest instance of this QMA-complete quantum con-
straint satisfaction problem asks [1]: given the reduced
density matrices ϱAB, ϱAC, and ϱBC, does there exist a joint
state ϱABC of which these are its marginals? Finding the
answer to this question is not only relevant to determine the
ground state energy of local Hamiltonians [2,3], but also in
the study of multipartite entanglement: for example, an
interesting question is the existence of states which achieve
maximal entanglement in every bipartition [4–6].
In this type of problem, the dependence on the local

system sizes and on the overlap of the collections of sub-
systems involved makes them equally challenging and
intriguing. The main goal of this work is to formulate
analogous questions in Bell nonlocality: what correlations
can be obtained in a multipartite quantum system, by
players that are allowed to measure overlapping collections
of subsystems? Does this scenario present advantages over
measuring only locally, and how does the maximum
quantum value change with the local systems and overlap
sizes? In the current status of quantum technologies, where
scaling-up plans consider connecting devices by means of
small shared systems [7–9], the questions posed above
acquire particular relevance in the context of assessing the
quality of devices in a device-independent manner.
For instance, take three parties, A, B, and C, that attempt

to simultaneously maximize the value of two CHSH
inequalities between A and B, and between A and C
(Fig. 1, left). If party A has a system of local dimension 2,
monogamy of entanglement prohibits a simultaneous
maximal quantum value [10]. Party A having a ququart

allows for sharing two maximally entangled states (with B
and C), while a qutrit will interpolate these scenarios.
Additional complexities arise if a third party has, inde-
pendently of the measurements performed on B and C,
also access to measurements on the joint BC system
(Fig. 1, right). In line with recent efforts [11,12], we here
treat maximal quantum values of Bell inequalities purely as
a measure of quantum correlations: understanding how the
highest quantum values can be extracted in overlapping
scenarios, as if done by a single experimentalist in a single
laboratory, is our aim.
In this work we put forward questions on quantum

nonlocality from the perspective of the quantum marginal
problem and we provide numerical methods to address
some of them. We exemplify this in two concrete scenarios,
but the methods develop are applicable more broadly.
We find several interesting features, such as a separable-
entangled-separable transition in optimal strategies when

FIG. 1. Left: Scenario 1. The maximal quantum value of the
joint Bell inequality J2 ¼ IAjB

2;2 þ IAjC
2;2 in Eq. (1) is governed by

size of local physical systems. Right: Scenario 2. In the over-

lapping Bell inequality K2 ¼ IAjB
2;2 þ IAjC

2;2 þ IAjBC
2;2 in Eq. (2) a

fourth party has, independently of the measurements performed
on Bob and Charlie, also access to measurements on the joint
system. Here, both the dimensions of the individual subsystems
as well as the overlap of BC with B and C affect the maximal
quantum value.
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the local dimension is changed, as well as a “symmetry-
breaking” phenomenon for Bell inequalities with over-
lapping subsystems.
Setting.—Consider a scenario where Alice, Bob, and

Charlie share a tripartite quantum system. A fourth person,
Dave, has access to the joint system of Bob and Charlie.
What quantum correlations can they obtain by making
measurements? Consider the following linear combinations
of Bell inequalities:

Jd ¼ IAjB
2;d þ IAjC

2;d ; ð1Þ

Kd ¼ IAjB
2;d þ IAjC

2;d þ IAjBC
2;d ; ð2Þ

where ISjT2;d is the SATWAP inequality involving two
measurements with d outcomes between subsystems S
and T [13]. The SATWAP inequality self-tests for maximal
d-level entanglement, where it can achieve its maximum
value of 2ðd − 1Þ (more details in Appendix A).
In Eq. (1), Alice has access to four measurements in

total: two measurements relevant to the inequality with
Bob, IAjB

2;d , and two for the inequality with Charlie, IAjC
2;d , all

acting on the same physical system. Bob and Charlie have
also access to two measurements. In the more complicated
scenario Kd corresponding to Eq. (2), Alice has access to
three pairs of measurements: one for each of the partitions
AjB, AjC, and AjBC [14]. Bob and Charlie each have
access to a pair of measurements on their subsystem. Here,
we additionally consider a fourth party, Dave, that has
access to another pair of measurements on the joint system
of Bob and Charlie.
The key difference between Eqs. (1) and (2) is that

Dave’s measurements overlap with those of Bob and
Charlie. In contrast to regular Bell inequalities as appearing
in Eq. (1), we call expressions as in Eq. (2) overlapping Bell

inequalities. Graphically, we depict these overlapping Bell
inequalities with wiggly lines as done in Figs. 1 (right)
and 2. In these scenarios, the assistance of Dave could
allow Alice, Bob, and Charlie to achieve additional non-
local correlations; a feature that could serve to test current
quantum devices with access to shared systems.
In the case that the local Hilbert space dimension is

unconstrained, both (1) and (2) can achieve their maximum
quantum value by taking tensor products of d-level
maximally entangled states. However, if the local dimen-
sion is sufficiently small, a type of frustration appears: not
all terms can be simultaneously maximized. A particularly
interesting example is to consider two outcomes, where one
can expect that if Alice’s system has dimension two, it
exhibits maximal frustration, dimension four allows for a
tensor-product strategy, and dimension three interpolates
these scenarios.
Methods.—What methods allow us to find the maximum

of Eqs. (1) and (2) for finite dimensional quantum states?
There are two main obstacles. The first obstacle originates
from the dimensional constraints, where the usual non-
commutative polynomial optimization methods [15] are not
directly applicable. The second obstacle arises from the
overlap between some subsystems, namely those of Bob,
Charlie, and Dave.
Scenario 1: No overlap: The inequality Jd in Eq. (1)

has no overlap, and all the constraints on the distribu-
tion of nonlocal correlations come from the local dimen-
sion of Alice’s system. The maximum value over quan-
tum correlations can be formulated as an optimization
problem,

max tr
�
ϱJdðA;B;CÞ

�
ð3Þ

subject to the commutativity constraints

FIG. 2. Bell inequalities with overlap. Above: Bell inequality J2 in Eq. (1), where only the local dimensions play a role. Below:
overlapping Bell inequality K2 in Eq. (2), where both the local dimensions and the overlapping structure play a role.
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½AAjB
ajx ; B

AjB
bjy � ¼ 0; ½AAjC

ajx ; B
AjB
bjy � ¼ 0;

½AAjB
ajx ; C

AjC
cjz � ¼ 0; ½AAjC

ajx ; C
AjC
cjz � ¼ 0;

½BAjB
bjy ; C

AjC
cjz � ¼ 0; ð4Þ

where JdðA;B;CÞ ¼ JdðAAjB; AAjC; BAjB; CAjCÞ. The
maximization in Eq. (3) runs over all states ϱ in some
Hilbert space HA ⊗ HB ⊗ HC of the given local dimen-
sions and the d-outcome measurements

AAjB
1 ; AAjB

2 ; AAjC
1 ; AAjC

2 ;

BAjB
1 ; BAjB

2 ; CAjC
1 ; CAjC

2 : ð5Þ

We denote the elements of AAjB
1 (the effects) as

AAjB
1 ¼

n
AAjB
1j1 ;…; AAjB

dj1
o
; ð6Þ

following the convention, and similarly for the other
measurements. The elements of each measurement must
be positive semidefinite and add up to the identity. The
notation is chosen so that the label of each measurement
indicates the party performing it, the superscript denotes the
partition in which the measurement is involved, and the
subscript enumerates all such measurements.
Every measurement with two effects can be obtained as

the convex combination of projective measurements [16]
[Lemma 3]. Thus, for inequalities involving measurements
with two effects as Eqs. (1) and (2), we can assume the
effects to be projectors. We will exploit this equivalence in
the numerical implementation, since each technique is
more suited to a different assumption on the effects.
The optimal solution of Eq. (3) is generally not straight-

forward to compute, but we can obtain numerical bounds.
For fixed local dimensions, the seesaw algorithm [17]
provides lower bounds by numerically optimizing over
states and observables. The algorithm starts with random
initial state and effects, and one then alternates between
optimizing over the state and over the effects. To obtain
upper bounds, we use the sampling-based moment relax-
ations proposed in [18]. Moment relaxations are frequently
used to obtain outer approximations to polynomial opti-
mization problems [15]. To impose dimensional con-
straints, one can sample a basis of feasible moments in
the fixed dimension. A detailed description is provided in
Appendix B.
Scenario 2: Overlap: Similarly, the maximal quantum

value for the overlapping Bell inequality Kd in Eq. (2)
between Alice, Bob, Charlie and Dave, is the solution of the
optimization problem

max tr
�
ϱKdðA;B; C;DÞ

�
ð7Þ

subject to the commutativity constraints

½AAjBC
ajx ; BAjB

bjy � ¼ 0; ½AAjB
ajx ; D

AjBC
djw � ¼ 0;

½AAjBC
ajx ; CAjC

cjz � ¼ 0; ½AAjC
ajx ; D

AjBC
djw � ¼ 0;

½AAjBC
ajx ; DAjBC

djw � ¼ 0; ð8Þ

in addition to those of Eq. (4).
The optimization in (7) runs over two additional pairs of

d-outcome measurements

AAjBC
1 ; AAjBC

2 ; DAjBC
1 ; DAjBC

2 : ð9Þ

The constraints in (8) express that measurements performed
over nonoverlapping subsystems commute. The main

difference here is that Dave’s measurements, DAjBC
j , are

not required to commute with those of Bob or Charlie. Note
that it is not possible to assign a joint probability distri-
bution for this scenario; and traditional tools to give upper
bounds on Bell inequalities are limited.
The tools we present below produce upper bounds by

relaxing the setting. There are several ways these scenarios
involving Bell inequalities can be relaxed. Namely, (a) split-
ting terms in the joint inequality, (b) increasing the local
dimensions, and (c) dropping commutativity constraints.
The seesaw algorithm still provides dimension-specific
lower bounds for Eq. (7) that match the optimal value in
the scenarios for which this can be computed.
Results.—We consider Eqs. (1) and (2) for d ¼ 2, corres-

ponding to two outcomes. Here, one expects that a two-
dimensional system of Alice will show maximal frustration,
a four-dimensional system allows for a tensor-product
strategy, and a three-dimensional system interpolates these
scenarios.
Table I shows upper and lower bounds obtained with the

methods previously described. The lower bounds are
obtained with the seesaw algorithm for general positive
effects. We provide the optimal states and measurements in
SupplementalMaterial [19]. In contrast, the upper bounds are
obtained with themoment relaxations and assume the effects
to be projectors, since this drastically reduces the size of the
problem. We see bounds arising from two different sources:
the finite dimension and the overlap between measurements.
Scenario 1: No overlap: Let us discuss the inequality

J2 first, as here already effects from the finite dimension
play a role. The setting J2 in Eq. (1) consists of two joint
I2;2 inequalities between AjB and AjC, each involving two
dichotomic measurements per party [20]. In this setting,
increasing the dimension of the system gives a higher
quantum value, thus we can use these correlations to test
the dimension of A.
When Alice has a two dimensional system, the maxi-

mum value is 2þ ffiffiffi
2

p
≈ 3.4142. This value corresponds to

the maximal quantum value in AjB and the maximal
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classical value in AjC. Moreover, this is the quantum
maximum since it saturates the upper bound obtained
via moment relaxations. When Alice has a four-dimen-
sional system, she can share a maximally entangled qubit
with both Bob and Charlie, and thus achieve the quantum
maximum for both inequalities simultaneously, 4 ¼ 2þ 2.
A three-level system on Alice’s side interpolates these

two cases: the maximum must be strictly smaller than 4,
since there is not enough physical space available to hold
two qubits. However, it is not clear whether a higher value
can be obtained with qutrits than with qubits. Numerically,
we see that this is the case, so the correlations in this setting
can be used to test the physical dimension that Alice has
access to. The lower bounds from the seesaw algorithm and
the upper bounds from the moment relaxations meet at a
value of 3.636ð5Þ ¼ 2 × 1.818ð3Þ. Note that the optimal
strategy in dimension three involves a tripartite entangled
state, while those for dimensions two and four only need
bipartite maximally entangled states.
Scenario 2: Overlap: Now consider the Bell inequality

K2 from Eq. (2) where a fourth party has access to joint
measurements on BC. Comparing the maximum values
achievable for this operator and for J2 one can discern
whether having access to joint measurements on the BC
system allows us to demonstrate more nonlocality.
When Alice holds a two- or a four-dimensional system,

the maximal values achievable can be directly derived from
the results for J2 (note that K2 ¼ J2 þ IAjBC

2;2 ), just by
reusing the measurements in AjB for AjBC. Since these
measurements achieve the maximum quantum value of the
corresponding SATWAP inequality, the value of K2

achieved is the maximum quantum value.
Again, the scenario is more interesting when the local

dimension of Alice is three. Following the prescription

above one would obtain a value of 1.8183 for each of the
SATWAP inequalities, and thus a maximal value for K2

of 3 × 1.818ð3Þ ¼ 5.454ð8Þ. However, using the see-
saw one finds the higher value of 5.509ð6Þ ¼ 1.683ð7Þþ
1.913ð0Þ þ 1.913ð0Þ.
Interestingly, for dimension three on Alice’s side the

strategy maximizing K2 seems to favor asymmetric corre-
lations, such that, e.g.,AjB achieves a higher value thanAjC,
and reuses the measurements for AjBC. This asymmetric
strategy is, however, not optimal for J2, since these mea-
surements only achieve a value of 1.683ð7Þ þ 1.913ð0Þ ¼
3.596ð7Þ < 3.636ð5Þ. Indeed, numerical results suggest
optimal strategies for K2 come from optimal strategies of

either 2IAjB
2;2 þ IAjC

2;2 or IAjB
2;2 þ 2IAjC

2;2 .
Can we obtain the maximum in both J2 and K2 by using

the same strategy? It seems that this is not the case: using
the seesaw algorithm, the maximum value of K2 cannot be
achieved, when fixing the value of the term J2 to its
maximum. Optimizing K2 constrained to keep the maximal
value for J2, we get

5.456ð6Þ ¼ 1.816ð5Þ þ 1.820ð0Þ þ 1.820ð0Þ ð10Þ

and then K2 seems to gain no advantage by measuring the
joint system, as the value of IAjBC can be obtained by
reusing the measurements used in IAjC.
Last, we note that there are radical changes in the optima

when changing the local systems dimensions. The optimum
in J2 of 2þ ffiffiffi

2
p

cannot be achieved while fixing the first

term IAjB
2;2 to be ð2þ ffiffiffi

2
p Þ=2. Numerical experiments with

moment relaxations suggest that an arbitrarily close to
optimal quantum value between Alice and Bob limits Alice
and Charlie to attain classical Bell values, and vice versa.
Our conclusion thus is that there are symmetrical optimal
strategies for J2, while optimal strategies for K2 seem to be
asymmetric.
Conclusions.—Multipartite quantum systems display a

rich behavior in terms of their correlations [21–23]. This
work shows that such rich behavior is also present at the
level of nonlocality, where the landscape of quantum
correlations becomes even more intriguing when parties
have joint access to multiple subsystems. Additionally, as
with nonoverlapping scenarios, the local systems size plays
a role in the ability to distribute nonlocal correlations
amongst many parties.
A variation of our Scenario 1 depicted in Fig. 1 (left) has

been studied in the context of monogamy of correlations
[10]. There, Alice was restricted to use the same measure-
ments for both Bob and Charlie. Under this additional
restriction it is not possible to separate classical from
nonclassical correlations with simple inequalities such as
J2 in Eq. (1). Our work shows that, if this restriction is
lifted, a gap appears, and with it potential quantum

TABLE I. Bounds on J2 and K2. Systems with different local
dimensions dA, dB, and dC obtain different maximal quantum
values in J2 [Eq. (1)] and K2 [Eq. (2)]. The value qþ q
corresponds to the case where bipartite Bell inequalities indi-
vidually achieve their quantum maximum, and cþ q to the case
where one inequality achieves classical maximum only. Lower
bounds (LB) are obtained with seesaw algorithms. Upper bounds
(UB) are computed via moment matrix sampling for the case of
J2. In the case of K2 the upper bounds are computed by adding
the corresponding value of J2 and the maximum value of the
additional SATWAP inequality. Changing the sign in the last term
of K2 yields the same values.

Inequality cþ q qþ q ðdA; dB; dCÞ LB UB

J2 2þ ffiffiffi
2

p
4

(2,2,2) 3.4142 3.4142
(3,2,2) 3.6365 3.6365
(4,2,2) 4.0000 4.0000

K2 4þ ffiffiffi
2

p
6

(2,2,2) 5.4142 5.4142
(3,2,2) 5.5096 5.6365
(4,2,2) 6.0000 6.0000
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advantages and means of witnessing the dimension of the
underlying quantum states.
The results above deal with a small number of systems

for illustration purposes, but the methods developed can be,
in principle, used to tackle important questions in quantum
information. An interesting connection is that to quantum
codes: the settings considered here can be seen as the
equivalent to entanglement distributions seen in quantum
codes, but expressed in terms of nonlocality. For a pure
code of distance d and block length n, one requires that
maximal entanglement can be recovered between every
subsystem of size (n − dþ 1) with a reference system,
illustrated in Fig. 3 [24]. In particular, the existence of so-
called absolutely maximally entangled states can be tested
by finding upper bounds on the quantum value of over-
lapping Bell inequalities on multipartite systems of finite
dimensions. Another similarity of our setting is to random
access codes, where one wants to encode information into a
subsystem that is too small to contain it [25].
In order to be able to properly attack these problems, it is

important to develop tractable ways of characterizing
overlapping Bell scenarios, for example, via moment
relaxations in the spirit of the Navascués-Pironio-Acín
hierarchy [26]. Here, it is unclear how a joint probability
distribution for these types of scenarios can be defined.
Also, it would be interesting to understand how optimal
strategies involving overlapping measurements violate the
symmetry of the setup, and how the separable-entangled-
separable transition of Scenario 1 (Fig. 1, left) with a
changing dimension of Alice generalizes for higher dimen-
sional systems. Last, it would be interesting to understand
whether connections to frustrated ground states of quantum
many-body Hamiltonians can be made [27].
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Appendix A: SATWAP inequality.—A generalization of
the celebrated CHSH inequality hA0B0i þ hA1B0i−
hA0B1i þ hA1B1i, is the Salavrakos-Augusiak-Tura-
Wittek-Acin-Pironio (SATWAP) inequality [13]. It is a
bipartite inequality involving m measurements per
party, each with d possible outcomes. The expression is
given by

Im;d ¼
Xbd=2c−1
k¼0

ðαkPk − βkQkÞ; ðA1Þ

where

Pk ¼
Xm
i¼1

�
pðAi ¼ Bi þ kÞ þ pðBi ¼ Aiþ1 þ kÞ

�
;

Qk ¼
Xm
i¼1

�
pðAi ¼ Bi − k − 1Þ þ pðBi ¼ Aiþ1 − k − 1Þ

�
;

and the parameters αk and βk are given by

αk ¼
1

2d
tan

�
π

2m

��
gðkÞ − g

��
d
2

	�

;

βk ¼
1

2d
tan

�
π

2m

��
g

�
kþ 1 −

1

m

�
þ g

��
d
2

	�

; ðA2Þ

where gðxÞ ¼ cot½πðxþ 1=2mÞ=d�. Its maximum over
latent hidden variable (i.e., classical) models is

ð1=2Þ tanðπ=2mÞ½ð2m − 1Þgð0Þ − gð1 − 1=mÞ� −m; ðA3Þ

while over quantum models it is mðd − 1Þ. Interestingly,
the SATWAP inequality is maximized by systems with
local dimension d, and in such a case it self-tests for the
presence of maximal entanglement.

Appendix B: Numerical bounds.—The maximal quan-
tum value in settings such as those in Eqs. (1) and (2)
are generally not straightforward to compute. Thus we
aim to find bounds from problems that are easier to
solve. The first method we discuss is nonnumerical; it is
based on a direct comparison between optimization
problems. The second and third one are numerical
algorithms to provide, respectively, lower and upper
bounds to the optimization problems in Eqs. (3) and (7).
Comparing problems: Note that by relaxing an opti-

mization problem, its feasible region becomes larger.

FIG. 3. Quantum error correction code. A code has distance d,
if maximal entanglement can be recovered between a reference
system and every code subsystem of size n − dþ 1. This can be
characterized in terms of the perfect recovery of a maximally
entangled state ϕþ, one part of which is encoded, acted upon by
noise, and decoded.
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Consequently, also a higher objective value can be
obtained, leading to upper bounds. There are several ways
Bell inequalities such as Eqs. (1) and (2) can be relaxed:
first, the maximum of a joint inequality cannot be higher
than the sum of the separate maxima of its terms. Second,
increasing the system dimension gives access to a wider
class of correlations. Third, commuting measurements can
be relaxed to partially overlapping measurements. The
converse reasoning leads to lower bounds from a strength-
ening of the constraints, in addition to the lower bound
corresponding to the classical maximum of the inequality,
where all measurements commute.
Numerical lower bounds: For fixed local dimensions,

the seesaw algorithm can provide lower bounds on Eqs. (3)
and (7) by numerically optimizing over states and observ-
ables [17]. The algorithm starts with random initial state
and measurements. One then alternates between optimizing
over the state and over the measurements.
More specifically, denote by ϱ the state. Then group the

measurements into a set X and its complement Y (more
generally more subsets can be used), in a way such that each
term of the inequality involves one observable from X and
one observable from Y. For example, in Eq. (3) we can
take X ¼ AAjB ∪ AAjC and Y ¼ BAjB ∪ CAjC. Then do the
following: (1) Choose random ϱ0, X0, Y0. (2) ϱiþ1¼
argmaxϱi trðϱiJdðXi;YiÞÞ. (3) Xiþ1¼argmaxXi

trðϱiJdðXi;YiÞÞ.
(4) Yiþ1 ¼ argmaxYi

trðϱiJdðXi; YiÞÞ. (5) Repeat steps 2, 3,
and 4 until convergence.
The optimizations in steps 2, 3, and 4 can be performed

by a semidefinite program, which can be run on a desktop
computer for small matrix sizes. Note that there is no
guarantee for the algorithm to converge to the global
maximum. However, by running it many times one can
often obtain reasonable lower bounds.
Numerical upper bounds: Fixing the local dimension

presents a particular challenge for finding the maximal
quantum value of a Bell inequality. The methods by
Ref. [18] allow us to obtain upper bounds through
sampling-based moment relaxations. Moment relaxations
are frequently used to obtain outer approximations to
polynomial optimization problems [15]. For our purposes,
the moments involved consist of expectation values of
products of measurements, for example trðϱAAjB

1j1 BAjB
1j1 Þ. To

impose dimensional constraints, one can then sample a
basis of feasible moments for a given fixed dimension. As
we show below this strategy can also work for overlapping
inequalities such as Eq. (7).
More specifically, this method works in the following

way: N noncommutative Hermitian variables x ¼
ðx1;…; xNÞ generate a sequence I of monomials. For
example, the sequence I of monomials up to degree two
reads

I ¼ ð1; x1;…; xN; x21; x1x2; x2x1;…; x2NÞ: ðB1Þ

The associated moment matrix, indexed by the monomials
p and q in I , has entries Mpq ¼ trðϱp†qÞ, and is positive
semidefinite for any ϱ.
To form an approximation to the set of finite-dimensional

quantum correlations, we now consider the span of valid
moment matrices M [18,28]. For this, one samples
quantum states and measurements until one has obtained
a basis of moment matrices. In practice, this means that one
samples moment matrices until the span of the sampled
moment matrices stabilizes. This can be done, for example,
by extending the current orthonormal set of moment
matrices by a new matrix obtained through Gram-
Schmidt orthonormalization.
To detect when we complete the basis, we sample

different rank classes of projectors separately. This pro-
duces for each class a basis of feasible moment matrices
corresponding to projective valued measurements. For each
class, one then optimizes over the positive matrices the
corresponding basis spans, which corresponds to solving a
semidefinite program. As the optimum is obtained in some
rank class, this suffices to obtain the maximum over all the
classes and gives an upper bound for the optimum of the
original problem.
In principle, for increasing indexing sequences of mono-

mials this approach converges in the nonoverlapping
scenario to the optimum of a noncommutative polynomial
in finite-dimensional matrix variables [18]. However, the
numerical precision required in the Gram-Schmidt ortho-
gonalization process can often be too demanding for a large
number of variables and relaxation order. Thus, the main
difficulties in this approach involve the sampling of a
complete basis and solving the resulting relaxation. If the
sequence I of monomials is too small, one may not be able
to obtain good bounds from the relaxations. If the sequence
is too large, numerical errors from the Gram-Schmidt
orthonormalization may dominate before one can complete
a basis. Last, the resulting semidefinite program may
simply be too large in size to solve on a standalone
computer.
These difficulties are directly related to the number of

monomials in the indexing sequence I . Choosing a “good”
sequence I is thus an interesting problem. One way to
approach this computational barrier is to exploit the
symmetries of the setting. This both reduces the number
of rank classes and can be used to symmetry reduce the
moment matrix [29]. For Jd and Kd in Eqs. (1) and (2) we
use the symmetry that exchanges the subsystems B and C.
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