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The characterization of the distance from equilibrium is a debated problem in particular in the treatment
of experimental signals. If the signal is a one-dimensional time series, such a goal becomes challenging. A
paradigmatic example is the angular diffusion of a rotator immersed in a vibro-fluidized granular gas. Here,
we experimentally observe that the rotator’s angular velocity exhibits significant differences with respect to
an equilibrium process. Exploiting the presence of two relevant timescales and non-Gaussian velocity
increments, we quantify the breakdown of time-reversal asymmetry, which would vanish in the case of a
1D Gaussian process. We deduce a new model for the massive probe, with two linearly coupled variables,
incorporating both Gaussian and Poissonian noise, the latter motivated by the rarefied collisions with the
granular bath particles. Our model reproduces the experiment in a range of densities, from dilute to
moderately dense, with a meaningful dependence of the parameters on the density. We believe the
framework proposed here opens the way to a more consistent and meaningful treatment of out-of-
equilibrium and dissipative systems.
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Introduction.—Nonequilibrium systems, even after the
seminal contribution of the pioneers in the last century, still
represent a challenging frontier of statistical mechanics [1].
For sure, the archetypal example of nonequilibrium is
Brownian motion and its formalization in terms of equa-
tions of motion with a random force [2]. Following this
original starting point, many phenomena have been
modeled in terms of stochastic differential equations, in
particular continuous stochastic processes involving white
noise [3]. In addition, more general Markov processes (e.g.,
Master equations) have been used, particularly for biologi-
cal and chemical systems [4].
In the last decades stochastic thermodynamics entered

the scene, a new approach in terms of Markov processes
which attempts to formalize concepts such as work, heat,
and entropy for mesoscopic systems [5–8]. While its theo-
retical framework can be considered basically mature, the
treatment of data coming from experiments remains a
debated problem. For instance, it is not always obvious
how to infer, from experimental signals, relevant features
such as the equilibrium or nonequilibrium nature of the
system [9–13]. In addition, in several nontrivial situations,
it is not straightforward how to follow Langevin’s path in
order to achieve an appropriate mathematical modeling of
the system under investigation [14,15]. Among nonequili-
brium systems, granular gases demonstrated to be particu-
larly interesting [16]. In fact, they are experimentally
accessible and, being non-Hamiltonian and dissipative,
constitute an intriguing theoretical challenge [17].

Here, we present an analysis of experimental data
obtained from a vibrofluidized granular setup [18]. A
massive probe is suspended in the granular gas and, under
the effect of the collisions, it performs a rotational motion.
The aim of this Letter is to investigate the statistical features
of the probe’s motion for inferring the properties of the
granular system, in particular to shed light on the non-
equilibrium nature of the system as well as its modeling in
terms of a suitable stochastic process. We stress that the
nonequilibrium nature of the system is indisputable (for
instance, it lacks equipartition of energy [19]). Nonetheless,
previous attempts have shown that, both at the experimental
and theoretical level, revealing this nature is particularly
difficult when looking only at the isolated tracer dynamics,
i.e., without resorting to the study of correlations with the
surrounding medium [20] or by perturbing the experiment
with an external force [21]. Our analysis shows that the
system exhibits both non-Gaussian and nonequilibrium
properties. Therefore, a description in terms of linear
differential equation with Gaussian white noise lacks
important features of the underlying dynamics. This can
appear surprising, in view of several studies of driven
granular gases, where the usual linear Langevin equation
has been found successful for the description of other
features of massive probes, particularly its several diffusion
regimes [15,22–24]. An important outcome of our study is
that even remaining in the context of linear models, the
introduction of a suitable non-Gaussian noise is sufficient
to catch the nonequilibrium statistical properties of the
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system. We expect such an ingredient to be relevant not
only for granular systems but for other kinds of macro-
scopic “baths,” e.g., in active matter [25].
Setup.—The setup used here is an improved version of the

one used in [18], see also [26,27]. The granular medium
made ofN spheres (N ¼ f500; 750; 1000g) of diameter d ¼
4 mm is placed in a cylindrical container of volume ∼7300
times that of a sphere [the average volume fraction is
therefore in the range∼ð7–14Þ%]. The container is vertically
shaken with a sinusoidal signal whose amplitude and
frequency are A ¼ 1.6 mm and fext ¼ 53 Hz. A blade,
our “massive tracer” with cross section ∼32 mm × 5 mm,
is suspended into the granular medium and rotates around a
vertical axis z (see left panel of Fig. 1). Its angular velocity
ωðtÞ and the traveled angle of rotation θðtÞ ¼ R

t
0 ωðt0Þdt0 are

measured with a time resolution of 2 kHz. The blade,
interacting with the spheres, performs amotion qualitatively
similar to an angular Brownian motion (right panels Fig. 1).
The shaking intensity is measured by the normalized mean
squared acceleration of the vibrating plate Γ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ḧz2i

p
=g ≃

18 where g is the acceleration of gravity.
Results.—The time correlation function of the angular

velocity CðtÞ ¼ hωðtÞωð0Þi contains information on the
relevant timescales of the system, where h·i denotes ensem-
ble averages and can be replaced by temporal averages over
long trajectories assuming stationarity and ergodicity. At
first glance, it might seem that the correlations decay
exponentially with a single relaxation time. Since CðtÞ →
0 fast enough when t → ∞, i.e.,

R
∞
0 CðtÞdt < ∞, at large

times the angle θ of the blade performs a standard diffusion,
i.e., hjθðtÞ − θð0Þj2i ∼ t. One might be tempted to describe
the system with a simple one-dimensional Gaussian model,
i.e., ω̇þ ηω ¼ ξwhere η is the damping and ξ is a Gaussian
white noise. However, a closer inspection reveals that the
system has at least two relevant timescales, see Fig. 2 and its

inset. Thus, such a model with a single timescale is
inadequate to reproduce the CðtÞ. This is not enough, since
“Fickian yet non-Gaussian diffusion” has been observed in
many physical systems ranging from colloidal systems to
supercooled liquids [28–31], therefore it is crucial to
investigate the signal statistics by calculating higher order
moments. Moreover, the non-Gaussian statistics of the
signal allows one to deduce information about the time
reversal symmetry of the system. In fact, as discussed in
[12], a one-dimensional Gaussian signal is always invariant
under time reversal, even if produced by an out-of-equilib-
rium physical system. On the contrary, if its statistics is
non-Gaussian, the signal may break time reversal symmetry,
and therefore one may quantify the distance from equilib-
rium of the underlying physical system. Often, the entropy

FIG. 1. Scheme of the experimental setup (left) and time series
of the probe’s angular velocity ωðtÞ (right) for different values of
the number of spheres N.

FIG. 2. Comparison between experiment (red) and models
(blue and green) in the case of N ¼ 1000: time correlation
function CðtÞ (a) andHðtÞ (b). Numerical integration of Eq. (1) is
done with two different choices for the noise ξ1: it is a Poisson
compound noise (green line) or a white noise (blue line). The
model parameters were obtained by fitting in linear scale the
experimental curves for CðtÞ andHðtÞ (or only CðtÞ in the case of
the Gaussian simulation) with the expressions in (2). By looking
at the best fit with CðtÞ ¼ Ae−at both in linear (inset) and
logarithmic scale, one notes the impossibility to mimic the
experimental data with a single timescale. All simulation data
are obtained with the same statistics of experimental data in order
to appreciate the relevance of the finite-time fluctuations.
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production is used for quantifying temporal asymmetries,
but it is a notoriously difficult quantity to measure, given the
large amount of data required to obtain accurate estimates
[32]. Therefore, we take an alternative route by using higher
order correlation function for detecting temporal asymme-
tries. Indeed, a system is at equilibrium if CfgðtÞ ¼
hfðtÞgð0Þi ¼ CgfðtÞ ¼ Cfgð−tÞ for all functions f and g.
Thus, as proposed by Pomeau [33], if observables f and g
exist, such that CfgðtÞ ≠ Cfgð−tÞ, the difference CfgðtÞ −
Cfgð−tÞ can quantify the distance from equilibrium.We find
that the simplest functions that provide nontrivial results are
f ¼ ω and g ¼ ω3. As shown in Fig. 2(b), HðtÞ ¼
Cωω3ðtÞ − Cωω3ð−tÞ is significantly different from zero
for short times t, indicating that the underlying dyna-
mics is out of equilibrium. Further corroboration of the

non-Gaussianity of the system is obtained by looking at the
statistics of the standardized angular velocity increments
aτðtÞ ¼ Δτω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔτωÞ2i

p
fΔτω ¼ ½ωðtþ τÞ − ωðtÞ�g by

varying the lag time τ. Note that, as in turbulence, derivatives
or other filters are widely used to highlight the statistical
properties of a system [34]. It has been found [15] that the
probability density function (PDF) of the probe’s velocity is
Gaussian-like but the PDFs of the increments aτ are not for
small values of τ and become Gaussian-like for τ > 10−2 s,
as shown in Fig. 3(a) in particular, by looking at the excess
kurtosis κðtÞ ¼ ðha4τi=ha2τi2 − 3Þ we note that it is much
larger than the statistical fluctuations due to the finiteness of
the observations as shown in Fig. 3(b) and that is close to
zero, corresponding to the Gaussian-like case, just at
τ > 10−2 s. An effective model should therefore be able
to account for multiple timescales, standard diffusion at
large times, Gaussian-like velocity PDF, non-Gaussianity of
velocity increments, and time reversal asymmetry.
Model.—Typically, the information available to an

observer does not allow one to adopt a prescribed protocol
to determine a model. Therefore, it is necessary to assume
that a certain description is relevant (at a given scale) and
check a posteriori its validity. The presence of multiple
timescales as well as non-Gaussianity could be explained
by considering nonlinear 1D models driven by white noise
processes. However, such 1D models cannot be out of
equilibrium, unless with periodic boundary conditions, and
therefore cannot reproduce one of the main observed
property, that is the aforementioned lack of time reversal
symmetry of the angular velocity signal. Thus, a mean-
ingful effective model should have at least 2 degrees of
freedom [12]. Among the possible 2D systems, we choose
to focus our attention on linear systems for two reasons.
The first is that they have already been shown to correctly
reproduce many properties of this system [15,18,22,24].
The second one is related to the observation that
hðθ − θ0Þ2i ∼ t even if ω is not Gaussian. Popular theo-
retical frameworks to explain this phenomenon rely on
superstatistics such as diffusing diffusivity or, differently,
on continuous time random walk [35–37]. But we note that
every linear system driven by a delta-correlated noise
shows a standard diffusion, regardless of the distribution
density of the stochastic forcing. There is of course a third
clue about the linearity of the process, which is the
observation of a correlation function which decays expo-
nentially in time. None of these arguments is compelling,
but together they are a strong hint in favor of the choice of a
linear process. We also note that in [15] the linearity of the
model is not assumed a priori but obtained from the
analysis of the signal. Of course, in an Occam razor based
approach one should prefer a linear model (which has fewer
parameters than nonlinear ones) if there is no evidences for
nonlinearities. In the following, we propose a linear non-
Gaussian stochastic process and give evidence that it is

FIG. 3. Statistical distribution of the standardized angular
velocity increments aτðtÞ ¼ Δτω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔτωÞ2i

p
: comparison be-

tween models and the experiment with N ¼ 1000. In panel (a) we
show the distributions of the variables at three different lag times
τ: the empty symbols are experimental data, while solid curves
are the interpolation of the numerical integration of the model in
Eq. (1) with Poisson compound noise ξ1. The black line is the
normal distribution for reference. Panel (b) shows the absolute
value of the excess kurtosis κðτÞ as a function of τ for
experimental measurements (red circles) and numerical simula-
tions with ξ1 chosen to be a compound Poisson noise (green
squares) or white noise (blue triangles).
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suitable to model the vibrofluidized granular gas experi-
ment investigated in this Letter. Let us consider the
following linear stochastic differential equation

ω̇þ γω ¼ Ωþ ξ1; Ω̇þ μΩ ¼ ξ2; ð1Þ
where γ is a damping coefficient for the probe and arises both
from the average effect of collisions with the granular gas as
well as with other sources of viscosity (air, solid friction,
etc.), the variable Ω is a collective variable which takes into
account the inertial effect of the surrounding granular
medium and 1=μ is its typical relaxation timescale. The
fluctuating force ξ2ðtÞ is a typical white noise representing
fluctuations of Ω [hξ2ðtÞi ¼ 0 and hξ2ðtÞξ2ðt0Þi ¼
σ22δðt − t0Þ], while for ξ1ðtÞ we will consider two cases: a
white Gaussian noise or a compound Poisson process, i.e.,
ξ1ðtÞ ¼

P
j zjδðt − tjÞ [where δðtÞ is a Dirac delta] with

intensity λ and normally distributed jumps. This means
that the time intervals between jumps Δj ¼ tj − tj−1 are
independent of each other and exponential distributed
[PðΔÞ ∼ λe−λΔ], while the amplitude of the jumps zj is
sampled from a normal distribution [PðzÞ ∼N σðzÞ] with
zero mean and standard deviation σ. Note that hξ41ic ¼
hξ41i − 3hξ21i2 ¼3λσ4 and that ξ1 tends to a standard
Gaussian white noise [hξ1ðtÞi ¼ 0 and hξ1ðtÞξ1ðt0Þi ¼
σ21δðt − t0Þ] in the limit λ → ∞, σ → 0 with λσ2 ¼
σ21 ¼ constant. The use of such noise has both a physical
and a mathematical justification. From a physical point of
view, ξ1 can be interpreted as the process originating from
instantaneous collisions of granular particles with the blade.
A rigorous justification for the model in Eq. (1) could be
obtained by the design of a kinetic theory for inelastic hard
spheres including the specific setup of our experiment.
Recently, it has been shown that non-Gaussian white noises
like ξ1 can be derived from microscopic theories through a
systematic expansion of the Boltzmann-Lorentz equation
governing the evolution of the blade [38–40]. In our opinion
those studies offer a general justification for non-Gaussian
white noise in vibrated and diluted granular experiments.
However, this reasoning cannot explain the existence of the
second degree of freedomΩ. We conjecture that the missing
ingredient in those previous theories is the interaction
between the granular bath and the particular boundary
conditions in our setup, which prevent the rapid thermal-
ization of the tangential components of the velocities of the
spheres, which is likely to be responsible for the memory
here modeled in terms of Ω. In addition, even from a
mathematical point of view, by virtue of the Levy-Ito
decomposition theorem, the used noise has an interesting
structure since it is one of the three contributions to process
with independent and identically distributed increments
[41–43]. As shown in [38–40,44,45], a system driven by
Levy noises (like ξ1) is necessarily out of equilibrium. Thus,
it should be sufficiently general to capture, at least

qualitatively, the relevant features of the granular gas. For
our model CðtÞ and HðtÞ are given by

CðtÞ ¼ Ae−γt þ Be−μt; HðtÞ ¼ Dðe−γt − e−3γtÞ;

A ¼ λσ2 − B; B ¼ σ22
γ2 − μ2

; D ¼ 3λσ4

4γ
: ð2Þ

These expression can be employed to infer the model
parameters from the experimental results. For instance, to
get a good and robust match of both curves without fitting
too many parameters at once, we infer the inverse relaxation
time γ and the product 3λσ4 ¼ 4Dγ fromHðtÞ, then, once γ
fixed, we can fit CðtÞ via A, B, and μ so, by inverting the
expressions in (2), weget the remaining parameters. In Fig. 2
we verify that the numerical integration of the model is able
to reproduce experimental results when ξ1ðtÞ is a compound
Poisson noise, while the choice of ξ1ðtÞ to be white noise
only reproduces the time correlation of the system,while it is
inadequate to predict the nonequilibrium nature of the real
process.
We can check the consistency of the model by comparing

the distribution of the increments aτ and the behavior of
κðτÞ as a function of τ. Figure 3(a) shows a very good
agreement in a wide range of lag times: the model correctly
reproduces the PDFs as well as their behavior for
τ ≫ 1=λ ∼ 10−3 s. Regarding κðτÞ, it can be seen from
Fig. 3(b) that the model has a little discrepancy in the long
time behavior but matches well enough the functional
shape of experimental curve in almost all the range of lag
times and, moreover, correctly predicts its relaxation time-
scale τ ∼ 1=γ ∼ 10−2 s. To conclude, we note that the
model reproduces quite faithfully the dynamics of the
system as the experimental conditions vary, as can be seen
from Fig. 4 showing CðtÞ and HðtÞ for a different number
of particles N. The upper rows of Table I report the

FIG. 4. Comparison between experiments with different N. The
empty symbols are experimental data, while solid curves come
from numerical integration of the model in Eq. (1) with Poisson
process for ξ1ðtÞ. The inset shows the corresponding correlation
functions.
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parameters of the model obtained with the procedure
explained above by varying N. We observe that the
observed trends of the parameters follow a simple physical
interpretation in agreement with our expectations. Indeed,
since in all experiment the shaker injects a similar amount
of energy (weakly dependent upon the number of particles)
which is then dissipated through the collisions, increasing
N leads to a lower kinetic energy per particle and therefore
lower values for the noise amplitudes σ and σ2. On the
contrary, since the number of collisions increases, both the
damping coefficient γ and the collision rate λ are observed
to increase. Moreover, in order to check whether our
physical interpretation is consistent, we performed addi-
tional experiments with a different blade (h ¼ 15 mm) in
the most diluted case (N ¼ 500). Having increased the
cross section of the probe we expect a greater number of
collisions between particles and blade which should lead to
an increase of the damping coefficient γ and of the collision
rate λ on the one hand, and in a decrease of the noise
amplitudes σ and σ2 on the other. These expectations are
confirmed by the experimental results, as can be seen by
comparing the last two rows of Table I.
Conclusions.—We have analyzed out-of-equilibrium

Brownian-like motion in an experiment with a rotating
tracer immersed in a vibrofluidized granular medium. We
provide a detailed quantification of how far from equilib-
rium such a system is by just looking at the ω signal of the
tracer. Until now such a task was only possible through the
use of auxiliary observables or specific experiments such as
perturbation-response experiments. Careful examination of
the angular velocity time series revealed clear nonequili-
brium features in the shape of non-Gaussian velocity
increments and asymmetric time correlations. These obser-
vations led us to propose a model for the tracer’s dynamics
incorporating Poissonian (non-Gaussian) noise, coherent
with the physical intuition of a dynamics where collisions
are sparse in time. We underline that for this model entropy
production diverges, since most of the trajectories have no
time-reversed counterpart [46]. Finally, we stress that the
techniques we used to analyze experimental signals are
absolutely general and can be applied for modeling other
systems well beyond the realm of granular material. In
addition, these techniques open the perspective of extend-
ing the general procedure used in [15] to derive Langevin
equations also for non-Gaussian noises.
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