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We consider a system of linear oscillators, or quantum states, described by random matrix theory and
analyze how its time evolution is affected by a nonlinear perturbation. Our numerical results show that
above a certain chaos border a weak or moderate nonlinearity leads to a dynamical thermalization of a finite
number of degrees of freedom with energy equipartition over linear eigenmodes as expected from the laws
of classical statistical mechanics. The system temperature is shown to change in a broad range from positive
to negative values, and the dependence of system characteristics on the initial injected energy is determined.
Below the chaos border the dynamics is described by the Kolmogorov-Arnold-Moser integrability. Owing
to universal features of random matrix theory we argue that the obtained results describe the generic
properties of its nonlinear perturbation.
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In far 1872, 150 years ago, Boltzmann developed
the theory of statistical mechanics and thermalization origi-
nated from the dynamical laws of classical motion of many-
body systems [1]. This result led to the famous Boltzmann-
Loschmidt dispute on a possibility of thermalization and time
irreversibility emerging from the reversible dynamical equa-
tions of particle motion [2,3] (see also Ref. [4]). The modern
resolution of this dispute is based on the theory of dynamical
chaos for generic nonlinear systems characterized by a
positive maximal Lyapunov exponent and Kolmogorov-
Sinai entropy leading to an exponential instability of motion
(see, e.g., Refs. [5–8]). This instability leads to an exponential
growth of errors which breaks time reversibility (see, e.g., an
example in Ref. [9]).
The first numerical studies of how ergodicity, dynamical

thermalization, and energy equipartition appear in a homo-
geneous 1D oscillator chain perturbed by a moderate non-
linearity were reported by Fermi, Pasta, Ulam in 1955 [10]
(see systemHamiltonian in the SupplementalMaterial [11]).
The conclusion was that “The results show very little, if any,
tendency toward equipartition of energy between the
degrees of freedom” [10]. It was argued in Ref. [18] that
in the continuum limit the Fermi-Pasta-Ulam (FPU) prob-
lem is close to the Korteweg-de Vries equation with stable
soliton solutions shown to be completely integrable [19], as
well as the nonlinear Schrödinger equation [20]. In addition,
at weak nonlinearity the FPU α model is close to the
completely integrable Toda lattice [21,22]. Another explan-
ation of equipartition absence in the FPU problemwas given
in Refs. [23–25] showing that below a certain strength of
nonlinear interactions between oscillator modes the system
is located in the regime of Kolmogorov-Arnold-Moser
(KAM) integrability, and only above this border an over-
lap of nonlinear resonances takes place with the emergence

of chaos and thermalization. Numerical simulations
demonstrated a dynamical thermalization with energy equi-
partition reported in Refs. [24,25]. Thus, even 50 years after
[10], various regimes of nonlinear dynamics of the FPU
problem are actively discussed by the community of
dynamical systems [26] (see, e.g., recent Ref. [27]). The
variety of studies clearly demonstrates that this model
played an important role in the investigations of nonlinear
dynamics but also that it has multiple specific features
indicating that it does not belong to a class of generic
oscillator systems with nonlinear interactions.
To construct a generic model of many-body oscillator

systems with nonlinear interactions between oscillators we
take insight from quantum mechanics of many-body
systems whose spectral properties are described by random
matrix theory (RMT) invented by Wigner for a description
of the spectra of complex nuclei, atoms, and molecules
[28]. At present RMT finds applications in multiple areas
of physics [29,30] including systems of quantum chaos
whose dynamics is chaotic in the classical limit [31,32].
The properties of RMT eigenvalues and eigenstates were
established in various studies and are well known. The
RMT eigenstates are ergodic, i.e., uniformly distributed on
the N-dimensional unit sphere, and the level spacing
statistics is described by the universal RMT distribution
[28–32]. Owing to the linearity of the Schrödinger equation
the time evolution of a wave function ψ described by a
RMT Hamiltonian also describes a time evolution of a
system ofN linear oscillators with random linear couplings.
On its own, because of the universal properties of RMT,
it is interesting to understand how a nonlinear perturbation
affects RMT evolution.
With the aim of understanding the effects of non-

linear perturbation of RMT, we consider a simple model
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described by the Schrödinger equation with a Hamiltonian
given by a random matrix with an additional nonlinear
interaction between linear modes:

iℏ
∂ψnðtÞ
∂t

¼
XN

n0¼1

Hn;n0ψn0 ðtÞ þ βjψnðtÞj2ψnðtÞ: ð1Þ

Here Hn;n0 are elements of an RMT matrix Ĥ of size N
taken from the Gaussian orthogonal ensemble (GOE) [29];
they have zero mean and variance hH2

n;n0 i ¼ ð1þ δn;n0 Þ=
½4ðN þ 1Þ�. The averaged density of states is given by the
semicircle law dm=dE ¼ ð2N=πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
with typical

eigenvalues in the interval Em ∈ ½−1; 1� (we use dimen-
sionless units with ℏ ¼ 1), and β is a dimensionless
constant characterizing the nonlinear interaction strength
in the original basis n.
The eigenmodes of Ĥ at energies Em are ϕðmÞ

n which are
ergodic with a uniform distribution on the N-dimensional
unit sphere. The time evolution of the wave function can

be expressed in the basis of eigenmodes as ψnðtÞ ¼P
N
m¼1 CmðtÞϕðmÞ

n with coefficients CmðtÞ giving the occu-
pation probability ρm ¼ hjCmðtÞj2i (with some long time or
ensemble average; see below). The time evolution [Eq. (1)]
has two integrals of motion being the probability normP

njψnðtÞj2¼1 and total energy E¼P
n½hψnðtÞjĤjψnðtÞiþ

ðβ=2ÞjψnðtÞj4�. At β ¼ 0 the model [Eq. (1)] can be viewed
as a quantum system or as a classical system of coupled
linear oscillators whose Hamiltonian in the basis of
oscillator eigenmodes is H ¼ P

EmC�
mðtÞCmðtÞ where

Cm;C�
m is a pair of conjugated variables and Em plays

the role of oscillator frequencies. Since RMT captures the
universal features of quantum and linear oscillator systems
we expect that the model [Eq. (1)] describes the universal
properties of oscillator systems with chaotic dynamics
induced by weak or moderate nonlinear couplings between
oscillators. We call the model [Eq. (1)] the nonlinear
random matrix model (NLIRM).
Above a certain chaos border with β > βc a moderate

nonlinearity destroys KAM integrability leading to chaotic
dynamics with a positive maximal Lyapunov exponent λ.
The nonlinear frequency shift is δω ∼ βjψnj2 ∼ β=N and, as
it was argued in Refs. [33–36], a developed chaos takes
place when this shift δω becomes comparable to a typical
energy spacing between energies (or frequencies) of the
linear system Δω ∼ 1=N. Thus δω > Δω implies chaos
with the chaos border βc ¼ const ∼ 1 being independent of
system size N.
The issue of dynamical thermalization in finite size non-

linear lattices with disorder was studied in Refs. [36,37].
The time evolution in these systems is described by the dis-
crete Anderson nonlinear Schrödinger equation (DANSE)
with hopping between nearby sites (see DANSE in the
Supplemental Material [11]). In the linear case the disorder

leads to Anderson localization of modes [38] which is well
visible when the localization length l is smaller than the
system size N. In this respect our RMT model [Eq. (1)] is
rather different since the linear modes are delocalized and
ergodic in a vector space of dimension N. We expect that
our model [Eq. (1)] is generic and captures also certain
features of the models of the Bose-Einstein condensate
evolution in the chaotic Bunimovich stadium [39] or the
Sinai oscillator [40] described by the nonlinear Gross-
Pitaevskii equation (GPE) [41] (see GPE in the
Supplemental Material [11]). Indeed, the linear eigenmodes
of these systems have properties of quantum chaos similar
to RMT [31,32]. There are however also certain differences
discussed below.
For the GPE models [39,40] it is natural to assume that

the dynamical thermalization induced by moderate non-
linearity leads to the Bose-Einstein (BE) distribution of
probabilities ρm over quantum levels of the linear system.
In the limit of high temperature T this distribution is
reduced to a classical energy equipartition (EQ) distribution
[4,42]. For the DANSE type models [36,37] the quantum
Gibbs (QG) distribution was proposed to explain numeri-
cally obtained results. In fact QG and BE distributions give
very close thermalization properties, and we mainly discuss
the BE case here. Thus there are two options for the
thermalized distributions of probabilities ρm:

ρm ¼ 1

exp½ðEm − μÞ=T� − 1
ðBEÞ; ρm ¼ T

Em − μ
ðEQÞ:

ð2Þ

Here T is the system temperature and μðTÞ is the chemical
potential dependent on temperature. The parameters T and
μ are determined by the norm and energy conservationP

m ρm ¼ 1 and
P

m Emρm ¼ E (for E we assume the case
of weak or moderate nonlinearity which gives only a weak
contribution to the total energy). The entropy S of the
system is determined by the usual relation [4,42]: S ¼
−
P

m ρm ln ρm with the implicit theoretical dependencies
on temperature EðTÞ, SðTÞ, μðTÞ. The derivation of Eq. (2)
is given in the Supplemental Material [11].
Based on classical statistical mechanics [4,42] the

dynamical thermalization should lead to the EQ distribution
[Eq. (2)] since theDANSE,GPE [36,37,39,40], andNLIRM
[Eq. (1)] models describe classical nonlinear fields without
second quantization. In contrast, in Refs. [36,37,39,40] it
was argued that a moderate nonlinearity plays the role of an
effective nonlinear thermostate that leads to quantum BE or
QG distributions [Eq. (2)].
Of course, both BE and EQ approaches [Eq. (2)] give

different thermal characteristics leading to a contradiction
discussed in detail in Refs. [37,39,40]. The main argument
in favor of the BE (or the QG) ansatz was based on a
reasonably good agreement of numerical data for entropy
vs energy with the theoretical thermal dependence SðEÞ
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given by the BE (or QG) ansatz. The quantities S and E are
extensive (self-averaging), and it was argued that their
analysis is more preferable as compared to the direct study
of the strongly fluctuating probabilities ρm [36,37,39,40].
Here we show that the ergodicity of RMT eigenstates of Ĥ
allows one to reduce significantly the fluctuations and to
obtain stable results for ρm that are clearly described by the
EQ ansatz [Eq. (2)].
The numerical integration of [Eq. (1)] is done with the

symplectic scheme of order 4 [43–45] using a step size
Δt ¼ 0.1 up to maximal times t ¼ 4 × 106 − 1.3 × 108

with exact norm conservation, energy conservation with
accuracy ∼10−8, and for the GOE matrix size N ¼ 64 (see
the Supplemental Material [11] for more details and results
for other values N ¼ 32, 128, 256, 512). As initial

condition, we choose an eigenmode ϕðmÞ
n of Ĥ at some

index m (sometimes also noted m0) such that the energy
remains close to the initial energy E ≈ Em. Examples of the
time dependence SðtÞ are shown in the Supplemental
Material [11], Fig. S1, demonstrating a steady-state regime
reached at times t > 104 for β ¼ 1. The obtained depend-
ence SðEÞ is shown in Fig. 1 at different β values for a
specific RMT realization and two timescales and also for 10
RMT realizations at β ¼ 1. At small values β ¼ 0.02, 0.1
the system is close to an integrable KAM regime [7,8]
while at β ¼ 1 essentially all modes are thermalized (see
Fig. 1, Fig. S2 in the Supplemental Material [11], and
additional material in Ref. [46]). These results show that the
critical border for thermalization is located at βc ∼ 0.1

independent of N. However, the exact determination of βc
is a rather complicated task due to the presence of many-
body nonlinear effects like, e.g., the Arnold diffusion [7,8].
Also at the spectral borders E ≈�1 the spacing between
energies Em increases according to the semicircle law [29],
and therefore it is more difficult to reach thermaliza-
tion there.
An important feature of Fig. 1 is that the theory curves

SðEÞ obtained with the BE and the EQ ansatz [Eq. (2)] are
rather close to each other. Thus due to fluctuations of
numerical data for SðEÞ it is difficult to determine which
theory BE or EQ better describes the numerical data.
However, the data points are significantly closer to the
BE curve, especially for moderate energies jEj ≈ 0.5–0.8
where both curves are somewhat different [the difference
between the QG and BE SðEÞ curves, not visible on
graphical precision, is ∼0.003 at the spectral borders and
much smaller at other E values, so that we discuss mainly
the BE case].
For the EQ ansatz the dependencies TðEÞ, μðEÞ,

obtained by the solution of the equations for energy and
norm for a given RMT spectrum, are shown in Fig. 2 (the
Supplemental Material [11], Fig. S3, for the BE ansatz) for
the thermalized regime at β ¼ 1. The numerical points
obtained from E and norm values are by definition exactly
located on the theory curves. If instead of E we use the
numerical data of S then the points slightly deviate from the
theory (Fig. 2 and Fig. S3 in the Supplemental Material
[11]), but the T and μ values themselves are drastically
different between BE and EQ cases.
The most direct way to distinguish between BE and EQ

cases is to compare the probability dependence ρmðEÞ with
the theory [Eq. (2)]. Such a comparison is shown in Fig. 3
for four initial states at m ¼ m0, β ¼ 1, and N ¼ 64 (more
data are in the Supplemental Material [11], Fig. S4, and
Ref. [46]). The dynamical thermalization clearly follows
the EQ ansatz and not at all the BE one, except for an initial
state at Em0

≈ 0 where both approaches are equivalent. This
observation is in agreement with the classical statistical
mechanics [4,42]. The probabilities ρm for all initial
energies Em0

are shown in Fig. 4 with a good agreement
between the numerical data and the EQ ansatz (see
Ref. [46] for figures such as Fig. 3 for all m0 values).

(b)(a)

(d)(c)

FIG. 1. Entropy S versus energy Em of the initial state m at
t ¼ 0 for one RMT realization at N ¼ 64 and β ¼ 0.02 (a), β ¼
0.1 (b), and β ¼ 1 (c) or 10 RMT realizations at β ¼ 1 (d). The
entropy S is computed from ρm averaged over the time range
223 ≤ t ≤ 224 (blue-black ∘) and 216 ≤ t ≤ 217 [red-gray þ in (a),
(b)] or 211 ≤ t ≤ 212 [red-gray þ in (c)]. The theory curves SðEÞ
for BE (red-gray) and EQ [blue-black in (a),(b),(c) or green in (d)]
are from ρm values of [Eq. (2)] with Em values of the used RMT
realization (a), (b),(c) or a fictitious spectrum according to the
semicircle law in (d) [where Em is the solution of m − 1=2 ¼
MðEmÞ, m ¼ 1;…; N with MðEÞ being the integrated density of
states].

FIG. 2. Dependence of T and μ on energy E for EQ ansatz
[Eq. (2)] (curves); data points are for β ¼ 1, N ¼ 64, and time
range 223 ≤ t ≤ 224, with T and μ determined from norm and
numerical entropy values [same RMT realization as in Fig. 1(c)].
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The statistical distribution pðxÞ of fluctuations of the
rescaled quantity x ¼ ðEm0

− μÞjCmðtÞj2=T (with μ, T from
the EQ ansatz for the energy Em0

) also follows the
Boltzmann law pðxÞ ¼ expð−xÞ (see the Supplemental
Material [11], Fig. S5).
In Fig. 5 we show the energy dependence of the maxi-

mal positive Lyapunov exponent λm on energy Em of ini-
tial state m for different β values (more data are in the
Supplemental Material [11], Figs. S6–S10, and Ref. [46]).
In the thermalized phase β ¼ 1 we have a smooth variation
of λ with Em while below or close to the thermalization
border at β ¼ 0.1 high λm values appear only at specific Em
values. We attribute this to the existence of triplets of
energies with very close Em values. Indeed, in a hypothetic
case of three equal Em values the KAM theory is not valid
and developed chaos exists at arbitrary small β values as is
shown in Refs. [33,47]. Nonetheless, in RMT there is level
repulsion, and double or triple degeneracies are forbidden

leaving place only to quasidegeneracy of levels so that
KAM becomes valid at β → 0. Thus for β ¼ 0.02 we have
typically λm approaching to zero with increasing time.
Our preliminary results show that in the thermal phase at
larger jTj (if Em ≈ 0) we have an approximate dependence
λ ∼ βη=Nν with η ≈ 1.52, ν ≈ 1.89 (see the Supplemental
Material [11], Figs. S6–S10). However, the Lyapunov
exponent dependence on β and N requires further detailed
studies.
Finally, we discuss the reasons why the nature of thermal

equipartition, BE or EQ, was so difficult to establish in
previous studies [36,37,39,40]. One of them is the prox-
imity of SðEÞ curves for both approaches. At the same time
the direct determination of the ρmðEÞ dependence is rather
difficult due to significant fluctuations, as it was pointed out
previously. These fluctuations are especially large for the
DANSE case at a large disorder (W ¼ 4 in Ref. [36]) when
the localization length l is significantly smaller than
system size N (l=N ≈ 0.1 at N ¼ 64). We illustrate this
in the Supplemental Material [11], Figs. S11–S12, showing
that at smaller disorder W ¼ 2 with larger localization
length l the fluctuations of ρm are reduced and at long
times we have an agreement of ρmðEÞ with the EQ ansatz
and strong deviations from the BE ansatz. For the NLIRM
model [Eq. (1)] the linear eigenmodes are ergodic, i.e., no
localization, and the fluctuations of ρmðEÞ are significantly
reduced, which allows one to distinguish clearly between
EQ and BE cases.
The cases of GPE in the Bunimivich stadium [39] and

the Sinai-oscillator trap [40] are somewhat different.
Indeed, in these models the spectrum of the linear system
is unbounded so that, even if linear eigenstates are in the
quantum chaos regime, the probability spreading to high
energies is rather slow due to small coupling transitions
induced by nonlinearity between states with significantly
different energies. Thus in these systems there is a

FIG. 3. Dependence of ρmðEmÞ on Em for four initial states at
m0 ¼ 3, 11, 30, and 57 with negative temperature T < 0;
here β ¼ 1, N ¼ 64, and time average range 223 ≤ t ≤ 224.
The blue curve shows the theory of EQ ansatz with
ρEQðEÞ ¼ T=ðE − μÞ. The red line shows BE ansatz theory
ρBEðEÞ¼1=ðexp½ðE−μÞ=T�−1Þ; T, μ theory [Eq. (2)] values
are given in the Supplemental Material [11], Fig. S4, for BE
and EQ cases.

0

0.001
0.01

0.1

0.3

1
(a) (b)

FIG. 4. Density plot of ρm for parameters of Fig. 3 with initial
state index 1 ≤ m0 ≤ 64 in the x axis and 1 ≤ m ≤ 64 in the
y axis. The colorbar shows ρm values in a nonlinear scale to
increase the visibility of small ρm values. (a) Numerical data for
β ¼ 1, N ¼ 64. (b) The EQ ansatz ρEQðEmÞ (see also Fig. 3).

FIG. 5. Lyapunov exponent λm dependence on Em withm being
the index of the initial state forN ¼ 64; λm is determined from the
fit ln kΔψðtÞk ¼ aþ b lnðtÞ þ λmt for β ¼ 2 (gray triangle, top);
1 (black circle); 0.5 (pink square); 0.1 (green cross) at t ≤ 222;
β ¼ 0.02 for t ≤ 227 (red ▽, bottom).
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formation of a relatively compact probability packet at low
energies which spreads to high energies very slowly in
time. Such an energy packet of ρm gives SðEÞ values
compatible with the curve of the BE ansatz; however the
fluctuations of ρmðEÞ are very strong with a significant
difference from the BE distribution at high energies (see,
e.g., Fig. 5 in Ref. [39] and Figs. 8 and 11 in Ref. [40]). To
analyze these features in more detail, we add to the
diagonal RMT matrix element Hn;n an additional diagonal
energy fn with a constant f > 0. Then the variation of
linear energies fN becomes rather large and exceeds
significantly those of the RMT case. The results for this
model at β ¼ 1, f ¼ 0.25 show that at times t ¼ 215 for
N ¼ 32 (or t ¼ 220 for N ¼ 64) the probabilities ρmðEÞ
form a compact packet of approximate BE shape and the
EQ thermal distribution is reached (with fluctuations) only
at very large times t ¼ 227 (see the Supplemental Material
[11], Figs. S13 and S14). Such large timescales were out of
reach in Refs. [39,40] due to the complexity of the
numerical integration of GPE.
In conclusion, we showed that a nonlinear perturbation

of RMT leads to dynamical thermalization with energy
equipartition corresponding to the laws of classical stat-
istical mechanics [4,42]. Such a thermalization appears due
to dynamical chaos in finite systems with a moderate or
large number of degrees of freedom at weak or moderate
perturbation of a linear RMT system. At very weak
perturbations the system dynamics is characterized by a
quasi-integrable KAM regime. We argue that the proposed
NLIRM model captures the generic features of dynamical
thermalization in systems weakly perturbed by classical
nonlinear fields and does not depend on the specific form of
the nonlinear term (see detailed discussion in the
Supplemental Material [11] and Figs. S15 and S16 there).
Of course, for finite many-body quantum systems with
second quantization the interactions lead to quantum dyna-
mical thermalization and distributions of Bose-Einstein for
bosons or Fermi-Dirac for fermions, as has been demon-
strated in numerical studies [48] and Refs. [49–51]
respectively.

This work has been partially supported through the Grant
NANOX No ANR-17-EURE-0009 in the framework of the
Programme Investissements d’Avenir (project MTDINA).
This work was granted access to the HPC resources of
CALMIP (Toulouse) under the allocation 2022-P0110.

Note added.—After submission of this work a dynamical
thermalization at negative temperature in EQ [Eq. (2)] has
been observed in optical fibers [52]. See also the discussion
in the Supplemental Material [11].
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