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Berry curvature and skew scattering play central roles in determining both the linear and nonlinear
anomalous Hall effects. Yet in PT -symmetric antiferromagnetic metals, Hall effects from either intrinsic
Berry curvature mediated anomalous velocity or the conventional skew-scattering process individually
vanish. Here we reveal an unexpected nonlinear Hall effect that relies on both Berry curvature and skew-
scattering working in cooperation. This anomalous skew-scattering nonlinear Hall effect (ASN) is PT even
and dominates the low-frequency nonlinear Hall effect for PT -symmetric antiferromagnetic metals.
Surprisingly, we find that in addition to its Hall response, ASN produces helicity dependent photocurrents,
in contrast to other known PT -even nonlinearities in metals that are helicity blind. This characteristic
enables us to isolate ASN and establishes new photocurrent tools to interrogate the antiferromagnetic order
of PT -symmetric metals.
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Nonlinear response can be a powerful diagnostic of a
material’s intrinsic symmetries. A prime example is the
nonlinear Hall effect that manifests in time-reversal invari-
ant but inversion broken metals [1–13]. Arising at second
order in an applied electric field, the nonlinear Hall effect is
often attributed to quantum geometric properties of Bloch
electrons such as the Berry curvature dipole (BCD) [3,5,6]
or skew-scattering processes [7,8,11,13]. Such nonlinear-
ities can persist even in antiferromagnets (e.g., BCD
nonlinear Hall effect [14]) when both inversion (P) and
time-reversal (T ) symmetries are broken. However, an
unusual situation occurs in antiferromagnets that respect
the combination of P and T symmetries, i.e., PT sym-
metry [15–17]. Even though antiferromagnetism breaks P
and T symmetries simultaneously, PT symmetry zeroes
out net Berry flux and ensures that the BCD [17] and
conventional skew-scattering nonlinearities vanish [18].
Can Berry curvature or skew scattering play any role in
Hall responses of PT -symmetric materials?.
Here we reveal a new paradigm for nonlinear transport

where skew scattering (extrinsic scattering) and Berry
curvature (quantum geometric) cooperate to produce
a second-order nonlinear Hall effect that persists in
PT -symmetric materials. This anomalous skew-scattering
nonlinear Hall effect (ASN) arises from combining a spin-
dependent anomalous velocity and a skew-scattering
spin-dependent distribution, Fig. 1(b). ASN is T odd,
vanishing in T -symmetric materials; as such, it has been
neglected. However, as we argue, ASN is PT even,
rendering PT -symmetric antiferromagnets a prime venue
for its realization.

Surprisingly, ASN also mediates a helicity dependent
chiral photocurrent in the metallic limit peaking in the
THz. This is striking since all other known intraband

FIG. 1. Anomalous skew-scattering nonlinear Hall effect in
PT -symmetric materials. (a) Scattering k → k0 for up-spin
(green) shares the same rate as k0 → k for down-spin (red) in
a PT -symmetric system. In particular, this PT symmetry
produces opposite skew-scattering contributions to the scattering
rate for up- and down-spins, respectively [see Eq. (2)]. (b) Be-
cause of PT symmetry, the first-order skew-scattering driven
deviations of the electronic distribution (from equilibrium, solid)
have opposite signs for up- and down-spins; blue and yellow
indicate sign of deviation. PT symmetry also enforces opposite
anomalous velocity for up- (green horizontal arrows) and down-
(red horizontal arrows) spins. When this spin dependent anoma-
lous velocity is combined with skew-scattering driven deviations
of the electronic distribution, a nonvanishing nonlinear Hall effect
manifests even in a PT -symmetric metal.
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chiral photocurrents active in metals [3,19] vanish in PT -
symmetric materials and are insensitive to magnetic order-
ing [19]. ASN, as we will see below, not only survives in
PT -symmetric materials but is T odd, making it a useful
new tool for accessing helicity dependent THz chiral
photocurrents locked to magnetism.
Our work lies in the context of a recent surge of interest

in second-order nonlinearities [16–22] in PT -symmetric
antiferromagnets (e.g., CuMnAs [23,24], MnBi2Te4
[25,26]); such nonlinearities can be used to detect anti-
ferromagnetic order, see, e.g., Ref. [15]. In the metallic or
intraband limit, these have largely focussed on an intrinsic
nonlinear Hall (INH) effect that arises from the Berry
connection polarizability tensor [16,17]. INH produces
nonlinear Hall currents that are independent of the scatter-
ing time, τ. In contrast, ASN is extrinsic and depends on τ
at low frequencies. As a result, ASN is expected to
dominate the nonlinear Hall effect in PT -symmetric
antiferromagnets in the clean limit providing a much
needed engineering strategy for boosting nonlinear Hall
signals in PT antiferromagnets [15].
PT partners and spin-dependent skew scattering.—We

begin by examining the effectPT symmetry can have on the
motion of electrons. As a simple illustration, consider the

minimal Bloch Hamiltonian Hð0ÞðkÞ¼Hð0Þ
↑ ðkÞþHð0Þ

↓ ðkÞ,
where s ¼ f↑;↓g are spins and k is the electron wave
vector. PT symmetry enforces double degeneracy and

ðPTÞHð0Þ
↑ ðkÞðPTÞ−1 ¼ Hð0Þ

↓ ðkÞ [23] yielding
ϵ↑ðkÞ¼ϵ↓ðkÞ¼ϵðkÞ; hu↑ðkÞju↑ðk0Þi¼hu↓ðk0Þju↓ðkÞi;

ð1Þ
where jusðkÞi is a Bloch state ofHð0ÞðkÞwith a spin label s.
For brevity of notation, we have omitted the band index.
Equation (1) conveniently relates the properties of the PT
partners↑ and↓. For example,↑ and↓ share the same group
velocity vðkÞ ¼ ∂kϵðkÞ=ℏ, but possess opposite Berry
curvature ΩsðkÞ ¼ ih∇kusðkÞj × j∇kusðkÞi signs.
Equation (1) also constrains electronic scattering.

In the presence of a scalar impurity potential V, the
scattering rate in a single band is given by Ws

k→k0 ¼
ð2π=ℏÞjhusðk0ÞjVjψ sðkÞij2δ½ϵsðkÞ − ϵsðk0Þ� [27] that cap-
tures skew-scattering processes that occur beyond the Born
approximation. Here jψ sðkÞi is an eigenstate of the
full Hamiltonian Hð0ÞðkÞ þ V and can be expanded order
by order using the self-consistency relation: jψsðkÞi ¼
jusðkÞi þ ½ϵsðkÞ −H0ðkÞ þ iη�−1Vjψ sðkÞi [27]. For sca-
lar impurities and elastic scattering, we find (see Supple-
mental Material [28]),

W↑
k→k0 ¼ W↓

k0→k; wðS;AÞ
↑;k;k0 ¼ �wðS;AÞ

↓;k;k0 ; ð2Þ

wherewðS;AÞ
s;k;k0 ¼ ½Ws

k0→k �Ws
k→k0 �=2 are the symmetric and

skew (antisymmetric) scattering contributions to the total

scattering rate, respectively. Crucially, the scattering proc-
ess ↑;k → ↑;k0 is the PT partner of ↓;k0 → ↓;k and
have the same rate [Fig. 1(a)]. As a result, the ↑, ↓ have
opposite skew-scattering contributions. This conclusion
persists for any PT -symmetric scattering potential.
Equation (2) applies order by order in V, and can be

obtained by applying Eq. (1) to the scattering rate. For an
intuitive illustration of the origins of Eq. (2), we examine
the familiar third order in V expression for the skew-
scattering rate [27,33,34],

wA
s;k;k0 ¼ 4π2niV3

0

ℏ

X
k00

δðεÞk;k0δ
ðεÞ
k;k00 ImfLsðk;k00;k0Þg; ð3Þ

where V0 is the impurity strength, ni the impu-

rity density, δðεÞk;k0 ¼ δ½ϵðkÞ − ϵðk0Þ�, and Lsðk;k00;k0Þ ¼
husðkÞjusðk00Þihusðk00Þjusðk0Þihusðk0ÞjusðkÞi is the
Wilson loop associated with the Pancharatnam-Berry phase
of the skew-scattering process [34]. Directly applying
Eqs. (1) to (3) yields a sign changing wA in Eq. (2). The
inclusion of bothPT partners (in our case, spin) is essential
since applying the same reasoning to a spinless system
produces a vanishing wA (e.g., Ref. [18] computed a
vanishing wA to V4 in a spinless system).
Equations (1) and (2) have a profound impact on transport

behavior of PT -symmetric materials (e.g., PT -symmetric
antiferromagnets). Because Ω↑ðkÞ ¼ −Ω↓ðkÞ, the net
Berry flux and the net Berry curvature dipole (BCD) vanish
thereby zeroing out the intrinsic linear anomalous Hall as
well as theBCDnonlinearHall effect. Similarly, the changes
to the distribution function due to skew scattering in Eq. (2)
are opposite for ↑ and ↓ [see Fig. 1(b) and detailed dis-
cussion below]; when combined with vðkÞ¼∂kϵðkÞ=ℏ, the
conventional skew-scattering anomalous Hall effect at both
linear and second order vanishes under PT symmetry.
Anomalous skew-scattering nonlinear Hall effect.—

However, when both Berry curvature mediated anomalous
velocity (PT odd) as well as the changes to the distribution
function driven by skew scattering (PT odd) combine, a
nonvanishing second-order ASN Hall effect (PT even) can
be produced [Fig. 1(b)]. To see this in a systematic fashion,
we analyze the net charge current

jðtÞ ¼ −e
X
k;s

ðvðkÞ þ eEðtÞ=ℏ × Ω̄sðkÞÞfsðk; tÞ; ð4Þ

where −e < 0 is the carrier charge, EðtÞ is a time-varying
uniform electric field, fsðk; tÞ is the distribution function,
and Ω̄sðkÞ is the modified Berry curvature that includes
both intrinsic Bloch band Berry curvature [ΩsðkÞ] as well
as field-induced corrections [16,17,35]

Ω̄sðkÞ ¼ ΩsðkÞ þ∇k × GðkÞEðtÞ: ð5Þ
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Here GðkÞ is the Berry-connection polarizability tensor in
the metallic band of interest [16,17,35]. For band n,
½G�abðkÞ¼2eRefPn0≠nA

nn0
a ðkÞAn0n

b ðkÞ=½ϵnðkÞ−ϵn0 ðkÞ�g,
with Ann0

b ¼ hunðkÞji∂kbun0 ðkÞi. Here, a, b denotes Carte-
sian coordinates and GðkÞ is even under PT .
For clarity, we concentrate on the intraband limit and

focus on scalar impurities that preserve PT symmetry and
conserve spin. The distribution function in Eq. (4) can be
directly computed via a spatially uniform kinetic equa-
tion, ∂tfsðk;tÞ−eEðtÞ ·∂kfsðk;tÞ=ℏ¼ Iffsðk;tÞg, where
[27,36,37]

Iffsðk; tÞg ¼
X
k0

½Ws
k0→kfsðk0; tÞ −Ws

k→k0fsðk; tÞ� ð6Þ

describes the spin-dependent collision integral.
The distribution function can be solved in the standard

perturbative fashion: in powers of E and for weak skew
scattering by using the relaxation time approximation, see
Supplemental Material for a detailed derivation [28]. As
such, we expand fsðk; tÞ as

fsðk; tÞ ¼ f0ðkÞ þ
X
l;m

fðmÞ
l;s ðk; tÞ; ð7Þ

where the second term captures the deviation of the
distribution function from the equilibrium distribution
function, f0ðkÞ. Here subscript l ¼ 1; 2;… denote order
in E and the superscriptm ¼ 0; 1;… denote its dependence
on the skew-scattering rate; m ¼ 0 captures the purely
symmetric part independent of skew scattering.
Note f0ðkÞ is the same for both ↑ and ↓ due to PT

symmetry. Similarly, even as m ¼ 0 contributions depend
on the (transport) relaxation time: ðτsÞ−1 ¼ hPk0 wS

s;k0;kð1−
cos θvv0 Þi, PT symmetry in Eq. (2) ensure fð0Þl;sðk; tÞ are the
same for ↑ and ↓ since τ↑ ¼ τ↓ ¼ τ. Here θvv0 is the angle
between vðkÞ and vðk0Þ, and h� � �i indicates an average over
an energy contour. In contrast, skew-scattering (m ¼ 1)

contributions to the distribution function fð1Þl;sðk; tÞ have
opposite signs for opposite spins, see Fig. 1(b): a property
key to ASN.
Writing EðtÞ ¼ Eeiωt þ c:c: and substituting the distri-

bution functions into Eq. (4) enables us to directly discern
the nonlinear Hall responses. Among the possible second-
order nonlinear Hall responses obtained (see Table I), two
are PT even; the rest are odd. The first PT -even response
is the intrinsic nonlinear Hall (INH) effect [16,17,35]
obtained by combining the second term in Eq. (5) with
f0ðkÞ. This yields an INH current ½jINH�aðtÞ ¼ Reðj0a þ
j2ωa ei2ωtÞ with j0a ¼ χINHabc ½Eb��Ec and j2ωa ¼ χINHabc EbEc,
where χINHabc [16,17,35] depends only on band geometric
quantities. χINHabc is independent of τ and insensitive to ω in
the semiclassical limit.

The second PT -even nonlinear Hall response, ASN, is
the main result of our work. This nonlinear Hall effect
arises from combining ΩsðkÞ × EðtÞ with the skew dis-

tribution function fð1Þ1;sðk; tÞ. This produces a nonlinear Hall
response: ½jASN�aðtÞ ¼ Reðj0a þ j2ωa ei2ωtÞ with j0a ¼
χASNabc ½Eb��Ec and j2ωa ¼ χASNabc EbEc with

χASNabc ¼ 2
e3εadb
ℏ2

X
k;k0;s

Ωs
dðkÞτ̃2ωwA

s;k;k0

�
∂f0ðk0Þ
∂k0

�
c
; ð8Þ

where Ωs
dðkÞ denotes the d component of ΩsðkÞ, τ̃ω ¼

τ=ð1þ iωτÞ and εadb is the Levi-Civita symbol. Since Ωs
d

and wA
s are both odd under PT , their product is even

producing a finite extrinsic nonlinear Hall effect.
Importantly, χASNabc scales as τ2wA for ωτ ≪ 1. As a result,
χASNabc is expected to dominate the nonlinear Hall response in
clean systems. At finite ω, χASNabc displays a characteristic ω
dependence varying rapidly on the scale 1=τ (see below);
this ω dependence distinguishes it from both the ω
insensitive χINH as well as interband effects that have
characteristic ω dependence on the scale of interband
transition energy ϵn − ϵm.
Symmetry, scattering, and chiral photocurrents.—ASN

has several striking attributes. Because of its Berry curva-
ture roots, χASNabc is antisymmetric in its first two indices
yielding a nonlinear Hall effect [38] always transverse to
the applied electric field. This antisymmetric nature
imposes additional point-group symmetry constraints as
compared to conventional skew-scattering nonlinearities
[7,11,13]. For example, in two dimensions, antisymmetric
nonlinear χabc requires broken rotational symmetry [3,17].
ASN’s antisymmetric behavior contrasts with that of

another PT -even nonlinear response that arises from

combining vðkÞ with fð0Þ2;sðk; tÞ [16,18] to produce a
classical nonlinearity, χDrudeabc . Importantly, χDrudeabc has a
susceptibility that is completely symmetric when its indices
are permuted yielding a response that need not always be
transverse as required of Hall type responses [38].
Experimentally, this fully symmetric nonlinear Drude
response can be weeded out via interchanging the

TABLE I. Symmetry of intraband nonlinear Hall responses.
þ indicates the response is even (i.e., allowed by symmetry),
− means it is odd (i.e., forbidden by symmetry). Starred non-
linear Hall susceptibility is the new PT -even response discussed
in this work in Eq. (8) for the ASN, see also Supplemental
Material [28].

Nonlinear Hall effects T PT Refs.

Berry curvature dipole (BCD) þ − [3,5,6,14]
Intrinsic (INH) − þ [16,17]
Conventional skew scattering þ − [7,8,11]
Anomalous skew scattering (ASN)* − þ This Letter

PHYSICAL REVIEW LETTERS 131, 076601 (2023)

076601-3



directions of driving field and response: symmetric χabc is
even under exchange, whereas nonlinear Hall responses
are odd.
Perhaps most striking is how ASN produces

a helicity-dependent chiral photocurrent: ½j↺�a ¼
ði=2ÞIm½χabc�ðE�

bEc − EbE�
cÞ. ASN chiral photocurrent

arises from its part quantum geometric and part skew-
scattering origins. First, since ASN depends on skew
scattering χASNabc possesses both real and imaginary compo-
nents arising from the complex valued τ̃2ω in Eq. (8).
Second, because ASN proceeds from the anomalous
velocity Ω ×E, its susceptibility is asymmetric allowing
for a nonzero j↺ after both b and c indices are summed.
Importantly, ASN’s combination of geometric nature and

scattering processes is essential. For instance, even as
symmetric scattering alone enables a nonlinear Drude
conductivity χDrudeabc [16,18] that has an imaginary compo-
nent, it nevertheless is completely symmetric under any
interchange of indices yielding a zero j↺. Similarly, while
χINHabc is also asymmetric, it nevertheless is purely real,
producing helicity blind photocurrents. As a result, to our
knowledge, χASNabc is the only intraband nonlinearity that
produces a helicity dependent chiral photocurrent in
PT -symmetric antiferromagnets; see below for a discus-
sion of interband effects.
ASN in two-dimensional PT-even antiferromagnets.—To

illustrate ASN, we adopt a minimal spinful model where
both P and T symmetries are simultaneously broken, but
compositePT symmetry is preserved.PT enforced doubly
degenerate bands can be modeled by spinful massive Dirac
fermions [23]

H ¼ ℏvkxσx þ ℏvkyσy þ Δσzsz þ ℏβvky; ð9Þ
where the Pauli matrices σ and s describe orbital and spin
degrees of freedom, respectively. Here Δ opens up a gap, v
is a velocity, and β tilts the Dirac cone. The tilt term breaks
rotational symmetries but preserves PT . Models like
Eq. (9) were recently used to successfully capture the
behavior of PT -symmetric antiferromagnets [17,39].
Spinful Dirac fermions can be found in a variety of
materials, e.g., CuMnAs [23,24], even-layer MnBi2Te4
[25,26], as well as the antiferromagnet nodal line metal
MnPd2 [40]. While we concentrate on a simple model in
Eq. (9) to illustrate ASN, our conclusions persist for more
complex situations, e.g., an effective model of Dirac
fermions in tetragonal CuMnAs [24], see Supplemental
Material [28].
Broken rotational symmetry [tilt β in Eq. (9)] is essential

in enabling a nonvanishing χASN to develop in two dimen-
sions (see discussion above); indeed, β ≠ 0 means that
anomalous velocities accrued at opposite ends of the
Fermi surface [see Fig. 1(b)] do not cancel. Nevertheless,
thePT andmirror symmetries of Eq. (9) still constrain χASN:
its only nonvanishing components are χASNyxx ¼ −χASNxyx . To
demonstrate ASN, we plot the second-order nonlinear

susceptibility in Eq. (8) for chemical potential in the
conduction band of Eq. (9) in Fig. 2 to leading order in
β. In so doing, we have used short range impurities
VðrÞ ¼ V0

P
j δðr − rjÞ, with strength V0 and impurity

concentration ni, see caption for parameter values.
In the low frequency limit ωτ ≪ 1, ASN scales as τ2wA

and grows with increasing τ, while INH, as an intrinsic
response, is independent of τ. As a result, we find that ASN
dominates the nonlinear Hall effect in clean PT -symmetric
materials [see Fig. 2(a)] with a peaklike structure as a
function of chemical potential [Fig. 2(a)(inset)]. It displays
a sensitive dependence on frequency: its real part changes
sign at ω ¼ 1=τ. This nonmonotonic dependence, as well
as its τ scaling can be used as a simple diagnostic of its
manifestation. In Fig. 2(c), we find that ASN dominates
over wide swathes of the parameter space; the dimension-
less ratio κ ¼ jReχASNyxx j=jReχINHyxx j is controlled by three
dimensionless quantities: the dimensionless Fermi level
μ=Δ, dimensionless frequency ωτ, and τ2Δ=ðτskℏÞ ¼
τ=τsk × ðτΔ=ℏÞ capturing the product of the characteristic
skew scattering strength and a characteristic Compton-like

FIG. 2. ASN in a PT -symmetric antiferromagnetic metal.
(a) Real part of the ASN susceptibility χASNyxx ¼ −χASNxyx (solid
lines) at different driving frequencies for Hamiltonian in Eq. (9)
dominates over χINH (green dashed). (inset) ReχASNyxx ðω → 0Þ
displays a peak away from the band bottom. (b) Imaginary part
of ASN susceptibility can mediate a helicity dependent photo-
current (see text) and displays a maximal response at an inter-
mediate frequency. (inset) ASN susceptibility can be isolated by
probing the intraband helicity dependent photocurrent response. In
both panels, red,magenta, and blue denote density of impurities set
as ni ¼ 1; 2; 4ð×109 cm−2Þ that correspond to τ ≈ 400, 200,
100 fs, respectively. (c) The ratio of magnitude of ASN to INH
κ, depends on dimensionless parameters see text. The dashedwhite
curve corresponds to κ ¼ 1. Parameters: for (a) and (b),
Δ ¼ 20 meV, μ ¼ 50 meV, and V0 ¼ 6.2 × 10−13 cm2 eV; for
all three panels, v ¼ 106 m=s, β ¼ 0.1.
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scale that describes the effectiveness of the Berry curvature.
We have used dimensionless quantities. Here the character-
istic skew-scattering strength τ=τsk ¼ 2πV0νðΔÞ, where
νðϵÞ is the density of states. The region of κ > 1 is largest
at small frequencies but still covers sizable areas even for
larger frequencies.
Arising from the complex valued τ̃2ω in Eq. (8), ImχASNabc

peaks when ω ∼ 1=τ [see Fig. 2(b)]. Strikingly, peak
ImχASNabc is on par with ReχASNabc maximum. For typical τ,
ImχASNabc produces a chiral photocurrent peaked in the THz
regime. Interestingly, in the interband regime at larger
frequencies, other chiral photocurrents in PT antiferro-
magnets can also arise [19,20,41]. In particular, interband
transitions can activate a circularly polarized light induced
gyration current [19] that is PT even but T odd (also
known as the circular shift photocurrent [20]); the gyration
current corresponds to an imaginary nonlinear susceptibil-
ity. Importantly, gyration currents possess an ω dependence
that tracks interband transitions (with characteristic scales
ω ∼ 2Δ=ℏ). This enables to distinguish from that of ASN
chiral photocurrent that features characteristic frequency
dependence in the intraband regime (ω ∼ 1=τ), see
Fig. 2(b).
ASN arises from the cooperative action of skew-

scattering and Berry curvature; both are individually
PT odd, but when combined, produce a PT -even non-
linear Hall effect that can dominate over the currently
known intrinsic mechanisms [16,17] in the clean limit.
This provides an engineering strategy (i.e., making the
metal cleaner) for boosting the nonlinear Hall signals in
PT antiferromagnets for more sensitive detection. Indeed,
we estimate ASN provides sizable nonlinear susceptibil-
ities (see Fig. 2 for values) on par with those recently
measured in other nonlinear materials [6]. Perhaps most
striking is ASN’s ability to mediate a helicity dependent
photocurrent response enabling it to be directly isolated
using circularly polarized drive fields. This can provide
new tools for accessing a new type of quantum geometric
opto-electronics [42,43] and pronounced nonlinearities in
antiferromagnets.
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