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The ability of magnetic materials to modify superconductors is an active research area for possible
applications in thermoelectricity, quantum sensing, and spintronics. We consider the fundamental
properties of the Josephson effect in a class of magnetic materials that recently have attracted much
attention: altermagnets. We show that despite having no net magnetization and a band structure
qualitatively different from ferromagnets and from conventional antiferromagnets without spin-split
bands, altermagnets induce 0-π oscillations. The decay length and oscillation period of the Josephson
coupling are qualitatively different from ferromagnetic junctions and depend on the crystallographic
orientation of the altermagnet. The Josephson effect in altermagnets thus serves a dual purpose: it acts as a
signature that distinguishes altermagnetism from ferromagnetism and conventional antiferromagnetism and
offers a way to control the supercurrent via flow direction anisotropy.
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Introduction.—Spin splitting of quasiparticle bands is a
crucial material property for spintronics [1]. Recent works
have predicted such splitting, and related effects, distinct
from ferromagnetic and relativistically spin-orbit coupled
systems [2–5]. Reference [6] envisioned non-relativistic
momentum-dependent spin splitting due to a spatially
varying magnetic field, albeit in a different context than
compensated magnetic systems. Instead, Refs. [2–5] con-
sidered spin-compensated magnetic systems and demon-
strated the possibility of a huge momentum-dependent spin
splitting even in collinearly ordered antiferromagnets. In
both cases, spin splitting occurs even without atomic spin-
orbit coupling—and can be significantly stronger due to
their nonrelativistic origin. Materials with this type of band
structure have been dubbed altermagnets [7,8] due to the
alternating d=g=i-wave spin order in their electronic
structure. Magnetic octupoles [9] may be a suitable order
parameter for altermagnets. They have a large k-dependent
spin splitting of the bands, which is even in powers of k.
Ab initio calculations identified several potential altermag-
nets, including metals like RuO2 and Mn5Si3 and semi-
conductors or insulators like MnF2 and La2CuO4

[4,5,8,10–13]. High-quality monodomain crystals are cen-
tral to realizing the altermagnetic band structure.
Through the proximity effect, nonsuperconducting met-

als can inherit the two fundamental characteristics of
superconductors: the Meissner effect [14] and dissipation-
less charge flow [15]. When magnets become supercon-
ducting via the proximity effect, both the Meissner effect
and dissipationless transport change in qualitatively new
ways. For instance, the Josephson coupling through ferro-
magnets displays 0-π oscillations [16,17]: The ground-state
phase difference between the superconductors alternates

between 0 and π, depending on junction parameters. As a
result, the supercurrent vanishes at certain lengths and
temperatures. So-called π junctions can be used for qubits
[18,19], and have also been generalized to ϕ0 junctions
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FIG. 1. (a)–(b) Josephson junctions considered here. Each
circle represents one atom in a 2D square lattice in real space.
Experimentally, there is likely a lattice mismatch between the
different regions at the interfaces, which can reduce the super-
current. The unit vectors n, ex, ey point along the interface
normals, x axis, and y axis, respectively. (a) “Straight junctions”
are aligned with the crystallographic axes, thus n ¼ ex.
(b) “Diagonal junctions” have 45° misalignment relative to the
lattice, so n ¼ ðex − eyÞ=

ffiffiffi
2

p
. (c)–(d) Illustration of the alter-

magnetic order parameter mij. (c) Spin-up electrons have in-
creased hopping amplitudes t → tþm along the x axis, and
decreased hopping amplitudes t → t −m along the y axis. (d) For
spin-down electrons, the situation is exactly reversed.
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[20–22] where the system acts as a quantum phase battery
supplying an arbitrary phase ϕ0 ∈ ð0; πÞ.
We here consider Josephson junctions with altermag-

netic interlayers (see Fig. 1). Surprisingly, we find that
despite the absence of any magnetization in altermagnets,
the supercurrent displays 0-π oscillations. The behavior is
different from both ferromagnetic and antiferromagnetic
Josephson junctions. In antiferromagnets, the π state may
occur only in the very specific case of a junction with
exactly an odd number of atoms [23,24], so that a net
magnetic moment exists. In addition, we find that both
the decay and oscillation period of the supercurrent in the
altermagnetic case exhibits anisotropy with respect to
the crystallographic orientation of the interface relative
the superconductors. The combination of these unique
characteristics of the Josephson current in altermagnets
distinguishes it from ferromagnets and antiferromagnets
and can be used as a tool to identify altermagnets among the
list of candidate materials that have recently been identified
through ab initio calculations [8].
Model.—As shown in Fig. 1, we consider two kinds of

Josephson junctions. Both are created from a 2D square
lattice with lattice constant a, but have different junction
orientations relative to the crystallographic axes. At the
ends of each junction is a 20a × 20a BCS superconductor
(for diagonal junctions: 14

ffiffiffi
2

p
a × 14

ffiffiffi
2

p
a). The two super-

conductors that form each Josephson junction have a
variable phase difference δφ. Next to the superconductors
are thin normal-metal spacers of lengths 3a (straight) or
3

ffiffiffi
2

p
a (diagonal). Finally, the center of each junction is an

altermagnet of varying length L ∈ ½0; 40a�. All layers are
metallic; the current would decrease for insulators.
To model the proposed physical setup we employ the

Bogoliubov–de Gennes (BdG)method [25,26]. Our starting
point is amean-field tight-bindingHamiltonian that includes
altermagnetism and conventional superconductivity:

H ¼ E0 −
X

iσ

μic
†
iσciσ −

X

i

ðΔic
†
i↓c

†
i↑ þ Δ�

i ci↑ci↓Þ

−
X

hi;jiσ
tijc

†
iσcjσ −

X

hi;jiσσ0
ðmij · σÞσσ0c†iσcjσ0 ; ð1Þ

where ciσ and c†iσ are the usual electronic annihilation and
creation operators, and σ ¼ ðσ1; σ2; σ3Þ is the Pauli vector.
E0 describes a constant contribution which is not important
for the non-self-consistent calculations below. We choose
constant nearest-neighbor hopping amplitudes tij ≡ t and
chemical potentials μi ¼ −t=2. In the two superconductors,
we set Δi ¼ Δe�iδφ=2. The gap was calculated using the
interpolation formula ΔðTÞ ≈ Δð0Þ tanh½1.74 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tc=T − 1
p �,

where we chose a zero-temperature gap Δð0Þ ¼ t=10. The
critical temperature was determined using the BCS ratio
Δð0Þ=Tc ≈ 1.764. The superconducting and altermagnetic
terms in Eq. (1) are only present in their respective regions

and zero otherwise. In the altermagnet, we set mij ¼ þmez
and mij ¼ −mez for hopping along the x and y axes,
respectively. This corresponds to a low-energy effective
Hamiltonian mkxkyσz or mðk2x − k2yÞσz (see Supplemental
Material [27]) [4,8], depending on the crystallographic
orientation of the sample. This differs from both the
momentum-independent spin-splitting mσz of a ferromag-
net and a Rashba spin-orbit coupling mkxðyÞσz.
Themodel above has three parameters that were varied be-

tween simulations: The phase difference δφ∈f0;0.02π;…g,
the altermagnet lengthL ∈ ½0; 40a�, and themagnitude of its
order parameter m ∈ f0.05t; 0.15t; 0.50t; 0.90tg. While
m ∼ 1 eV is predicted for, e.g., RuO2 [8], we are unaware
of concrete experimental measurements of m, and therefore
explore a range of different m values. For each parameter
combination, we calculated the Josephson supercurrent I
flowing along the junction using the methodology below.
The current-phase relation IðδφÞ for each junction was then
fit to Fourier sine series, IðδφÞ ¼ P

n>0 In sinðn δφÞ. The
amplitude of the first harmonic I1 was extracted from these
fits, andused to judgewhether the Josephson junction is in a 0
state orπ state based on its sign. There also existφ0 junctions,
where also cosine terms must be included in the Fourier
expansion; however, we found no sign of φ0 effects in our
simulations.While I1 is ideal for locating 0-π transitions, we
also calculated the critical current Ic ≡maxδφjIðδφÞj for
some interesting junctions as it is more experimentally
accessible. Note that Ic ≥ 0; if, e.g., I1 and I2 are important,
then Ic → jI2j at 0-π transitions since I1 → 0. For our
junctions, I1 dominates except at 0-π transitions, but higher
harmonics could become dominant in shorter junctions at
lower temperatures.
Methodology.—The fermionic operators at each site i

can be grouped into Nambu vectors ĉi ≡ ðci↑; ci↓; c†i↑; c†i↓Þ,
which may in turn be collected into a 4N-element vector
č≡ ðĉ1;…; ĉNÞ containing every fermionic operator on the
lattice. The Hamiltonian operator can then be expressed via
a 4N × 4N Hamiltonian matrix: H ¼ E0 þ 1

2
č†Ȟ č. The

most common approach to solving the BdG equations
consists of diagonalizing Ȟ, and then expressing physical
observables in terms of its eigenvectors and eigenvalues.
However, an alternative approach has gained momentum
over the last decade: The Kernel Polynomial Method [28–
30]. Instead of diagonalizing the Hamiltonian, one calcu-
lates a Green’s function matrix from the Hamiltonian
matrix, which can be done efficiently and accurately using
a series expansion in Chebyshev polynomials.
There are many variants of the Chebyshev methods

outlined above. We use the Fermi operator expansion
method [31], which for the BdG Hamiltonian is explained
in detail in Ref. [32]. The starting point is then the Fermi
matrix F̌≡ fðȞÞ, where fðϵÞ ¼ ½1þ expðϵ=TÞ�−1 is the
Fermi-Dirac distribution at temperature T. The function f
should be interpreted in terms of its Taylor expansion when
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applied to the matrix Ȟ. Using the kernel polynomial
method, we can expand the Fermi matrix in Chebyshev
polynomials as F̌ ¼ 1

2
f0Ǐ þ

P
M−1
m¼1 fmgmŤm, where fm are

the Chebyshev moments of the Fermi-Dirac distribution
[28,32], gm are the Jackson kernel coefficients [28], Ťm ≡
TmðȞÞ are Chebyshev matrix polynomials [28], and Ǐ is the
identity matrix. The above assumes that Ȟ has been
normalized such that all eigenvalues have magnitudes
below unity; this is in practice easily achieved by scaling
Ȟ by its 1-norm. The Chebyshev polynomials are calcu-
lated via the usual recursion relation Ť0 ¼ Ǐ, Ť1 ¼ Ȟ,
Ťm ¼ 2ȞŤm−1 − Ťm−2 [28]. Calculating fŤmg is the com-
putationally limiting part of our calculation, but was
significantly sped up using sparse matrices with fully
parallelized blockwise matrix multiplication. All simula-
tions presented here were performed using M ¼ 4000
Chebyshev moments. We found that this provides negli-
gible truncation error for typical junctions, consistent with
findings for LDOS calculations in Ref. [29]. This procedure
yields a 4N × 4N Fermi matrix that can be deconstructed
into 4 × 4 blocks in Nambu space: F̌ ¼ ½F̂ij�. Following an
approach similar to Ref. [32], one can show that the
elements of these matrices are F̂ij ¼ hðĉ†jÞTðĉiÞTiT.
Thus, any physical observable that can be calculated from
two-point finite-temperature correlation functions on the
lattice can be extracted directly from F̌. Our calculations
were performed at a temperature T ¼ Tc=20. We evaluate
the current in the normal metal as that is computationally
simplest. (This is our main motivation for including
spacers, which do not significantly affect supercurrents.)
Charge conservation ensures that the current is constant
anywhere along the junction in a stationary system. We
compute the charge current by summing over bond
currents. The bond current between two sites i and j can
be written [25]

Jij ¼ ie
X

σ

ðtijhc†iσcjσi − tjihc†jσciσiÞ; ð2Þ

where e < 0 is the electron charge. The bond current Jij
can be trivially calculated from appropriate traces of F̂ij

and F̂ji. The bond current along the junction direction n is
then simply Jijðδij · nÞ, where δij is a unit vector that points
from site i towards site j. The total current I flowing
through the junction is found by integrating this over a
cross section of the junction.
Results and discussion.—The main results of our

numerical simulations are in Fig. 2. First, we observe that
0-π oscillations are possible in both straight and diagonal
junctions. This finding is interesting since such oscillations
are typically found in Josephson junctions with magnetic
interlayers or fine-tuned conventional antiferromagnets
with exactly an odd number of atoms, both cases featuring

a net magnetization. In contrast, altermagnets have zero
magnetization. Moreover, 0-π oscillations do not appear in
Rashba spin-orbit coupled junctions either, which have a
different spin-momentum coupling (odd-in-momentum)
compared to altermagnets. Second, we see that the 0-π
oscillations behave qualitatively differently from ferro-
magnetic Josephson junctions: the latter typically has an
exponential decay with superimposed oscillations
[17,33,34], whereas in the altermagnet case there is an
initial large decay followed by oscillations with a much
weaker damping. This result is most striking in Fig. 2(b),
where we find a pure decay at L < 8a followed by nearly
pure oscillation at L > 10a.
Physically, the oscillations in straight junctions can be

understood as follows. Conventional superconductivity
consists of singlet Cooper pairs j↑↓i − j↓↑i. As the
Cooper pairs leak into the altermagnet along the x axis,
spin-up electrons have a hopping amplitude tþm while
spin-down electrons have a hopping amplitude t −m (see
Fig. 1). This “speed difference” causes position-dependent
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FIG. 2. First harmonic I1 of the Josephson supercurrent IðδφÞ
as function of the altermagnet length L for the junctions in Fig. 1.
The net magnetization is zero in all cases. To simplify the
comparison between the two different geometries, each curve was
normalized to the amplitude I1ð0Þ in the absence of the alter-
magnetic interlayer. As indicated above the plots, different panels
and curves correspond to different altermagnetic order parameters
and junction types, respectively. The insets zoom in on the
regions in the golden boxes, in order to highlight the 0-π
oscillations for large junction lengths. (a) m ¼ 0.05t,
(b) m ¼ 0.15t, (c) m ¼ 0.50t, and (d) m ¼ 0.90t.
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phase differences between spin-up and spin-down elec-
trons. Such spin-dependent phase shifts are well known to
cause 0-π oscillations from previous studies on ferromag-
netic Josephson junctions [17,33,34]. For diagonal junc-
tions, however, the most direct path between the
superconductors consists of an equal number of hops along
the x and y axes. Since the electrons experience opposite
spin-dependent phase shifts in these two cases, their effects
would be suppressed. However, for other trajectories
through the altermagnet, a net spin-dependent phase shift
still exists since the number of hops along the x and y axes
are different. Overall, the supercurrent oscillations are still
present in the diagonal case, but with a longer periodicity as
function of junction length. The 0-π oscillations are a
robust feature of altermagnetic Josephson junctions, which
despite being antiferromagnets have a lifted spin degen-
eracy of the bands corresponding to a d-wave symmetry
and do not require the extreme fine-tuning needed to see
0-π oscillations in conventional antiferromagnets [23].
Figure 2 shows that the initial decay in I1ðLÞ accelerates

as m increases. However, 0-π oscillations are found over a
much wider parameter range for straight than diagonal
junctions, consistent with the discussion above. For exam-
ple, for small altermagnetic order parameters m ¼ 0.05t
[Fig. 2(a)], the first 0-π oscillation occurs already at
L ¼ 15a for the straight junction, but not until L ¼ 35a
for the diagonal junction. On the other hand, for large
valuesm ¼ 0.50t [Fig. 2(c)], the first 0-π oscillation occurs
simultaneously, but sustained 0-π oscillations for a large
range of junction lengths is found only for straight
junctions. Qualitatively similar results for straight and
diagonal junctions are only found for intermediate values
m ¼ 0.15t [Fig. 2(b)]. For very large values m ¼ 0.90t, the
supercurrent decays extremely fast, limiting the number of
visible oscillations for both junction types.
The 0-π oscillation is robust toward small changes in the

width W of the junction. In Fig. 3, we plot the first

harmonic of the supercurrent vs length L for different
W. In straight junctions, the 0-π oscillations are not affected
qualitatively by the width of the junctions since the width
does not strongly affect the phases the electrons acquire
traversing the junctions. In diagonal junctions, wider
junctions as compared to the length of the junction imply
more possible electron paths straight up-down in Fig. 1(b)
so that the physics more resembles that of straight junc-
tions. This is consistent with Fig. 3, where it is seen that
when W is lowered the first 0-π oscillations vanish.
To understand the behavior of the supercurrent when the

altermagnetic interaction increases, we note that as m → t,
spin-down electrons become nearly immobile along the x
axis. In this limit, spin-zero Cooper pairs clearly cannot
propagate through the altermagnet, and the Josephson
effect vanishes. This explains the extremely sharp decay
in Fig. 2(d). Interestingly, if an altermagnet with m → t
could be realized experimentally, this might also serve as a
new kind of filter for spin-triplet Cooper pairs. Specifically,
we would expect j↑↑i pairs to only move along the x axis,
j↓↓i pairs to only move along the y axis, and any j↑↓i ∓
j↓↑i pairs to decay. This may thus provide a nondestructive
way to separate the different equal-spin-triplet pairs gen-
erated in superconducting spintronics while eliminating
any remaining spin-zero pairs.
In Fig. 4, we show the critical current, rather than just the

first harmonic, for one junction (m ¼ 0.05t). Measuring
IcðLÞ experimentally requires precise control over L, as in
ferromagnetic Josephson junctions [33]. In Fig. 2(a) we
saw that this m yields 0-π oscillations at L ¼ 15a and
L ¼ 21a for straight but not diagonal junctions, causing
significant Ic suppression. However, due to the presence of
higher harmonics, it is difficult from the Ic curve alone in
Fig. 4 to observe that there are two 0-π oscillations in this
area. We also see that both junctions display a 0-π
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FIG. 3. First harmonic I1 of the Josephson supercurrent IðδφÞ
as function of the altermagnet length L for the junctions in Fig. 1,
using different widths W. (a) Straight junction. (b) Diagonal
junction. The parameter set is the same as in Fig. 2(a).

FIG. 4. Critical current Ic vs altermagnet length L for
m ¼ 0.05t and T ¼ 0.05Tc [cf. Fig. 2(a)]. The insets show the
current-phase relations for the indicated lengths, clearly demon-
strating the sign reversal due to the 0-π transition.
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oscillation for L ≈ 35a, which for the diagonal junction is
the first 0-π oscillation.
Figure 5 shows the critical current Ic vs temperature T,

which is one experimental signature of 0-π transitions in
Josephson junctions [17]. For these calculations, we picked
an altermagnet length L ¼ 12a which according to
Fig. 2(b) is close to a 0-π transition for straight but not
diagonal junctions. For the straight junction, we find a
nonmonotonic critical current that dips sharply at
T ¼ 0.6Tc. For both T ¼ 0.5Tc and T ¼ 0.7Tc, the cur-
rent-phase relation is completely dominated by the first
harmonic I1. However, it changes sign between these two
points, so the dip is a signature of a 0-π transition as a
function of temperature. This is in contrast to the diagonal
junction, where we find no 0-π transition for these
parameters. The supercurrent flow anisotropy can be tested
within a single sample by depositing two superconducting
electrode pairs, well separated from each other, on the same
altermagnetic sample. Positioning the electrode pairs so
that they are rotated 45° relative to each other, a current
passed through one such pair would depend differently on
temperature compared to current passed through the other
pair, since each pair probes the diagonal and straight
junction setup, respectively.
In summary, we have demonstrated that the Josephson

effect through altermagnets, despite a vanishing net mag-
netization, displays 0-π oscillations in the Josephson effect.
The decay and oscillation period strongly depends on the
crystallographic orientation of the altermagnet relative the
superconductors. The Josephson effect can be used both to
distinguish the altermagnet from conventional (anti)ferro-
magnetism and additionally offers a way to change the
supercurrent via flow direction anisotropy.
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