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Antiferromagnets have no net spin splitting on the scale of the superconducting coherence length.
Despite this, antiferromagnets have been observed to suppress superconductivity in a similar way as
ferromagnets, a phenomenon that still lacks a clear understanding. We find that this effect can be explained
by the role of impurities in antiferromagnets. Using quasiclassical Green’s functions, we study the
proximity effect and critical temperature in diffusive superconductor-metallic antiferromagnet bilayers. The
nonmagnetic impurities acquire an effective magnetic component in the antiferromagnet. This not only
reduces the critical temperature but also separates the superconducting correlations into short-ranged and
long-ranged components, similar to ferromagnetic proximity systems.

DOI: 10.1103/PhysRevLett.131.076001

Introduction.—Antiferromagnets and superconductors
both have prominent roles in condensed matter physics
[1–9]. Separately, they are both theoretically interesting due
to their different types of quantum order [10–13]. They are
also technologically useful: superconductors in part
because of their perfect diamagnetism and dissipationless
current [14,15], and antiferromagnets because of their
ultrafast dynamics [16,17], negligible stray field and
considerable magnetotransport effects [1]. However, while
materials with superconducting or magnetic properties can
be interesting on their own, new physics and applications
can be found in systems that combine both. For instance,
combining superconductivity and ferromagnetism in meso-
scopic heterostructures is now a well-established method to
produce odd-frequency superconductivity and long-range
spin-triplet superconductivity [13,18]. The latter can carry
dissipationless spin currents, giving superconductors a
unique role in the field of spintronics [2].
Superconductor-antiferromagnet (SC-AF) heterostruc-

tures have been studied both theoretically and experimen-
tally [19–29], but much less than their ferromagnetic
counterparts. As a result, much remains to be fully under-
stood about SC-AF heterostructures. For instance, experi-
ments show that proximity to antiferromagnets can severely
suppress the superconducting critical temperature [27–29].
This suppression is much stronger than the prediction by
the theoretical models which considered the AFs to be
similar to normal metals due to their lack of uncompensated
magnetic moments [28–30]. In fact, the suppression has
been reported to be even larger than the suppression seen in
ferromagnetic junctions [27]. Various proposals have been
suggested to explain this suppression, such as finite spin
splitting coming from uncompensated interfaces [29], the
possibility of magnetic impurities having been infused into

the superconductor during sample preparation [27], or the
complex spin structure of the specific antiferromagnetic
materials used in the experiments [28].
More recently, in a theoretical study of superconductor-

antiferromagnetic insulator bilayers with compensated
interfaces, Bobkov et al. [31] suggested that a band-gap
opening mechanism together with the induction of spin-
triplet Cooper pairs could explain the suppression. As these
effects are smaller when the mean free path is shorter, they
argued that the suppression would be larger for cleaner
systems, but noted that a fully detailed analysis of the roles
of impurities and AF length should consider a metallic AF.
Here, we study the proximity effect in diffusive super-

conductor (SC)-antiferromagnetic metal (AFM) bilayers
using our newly derived quasiclassical framework [32].
Interestingly, our results show that the suppression of
superconductivity is not larger for clean systems, but that
impurity scattering is in fact the dominant mechanism for
superconductivity suppression in metallic AFs. The reason
is that the sublattice-spin coupling in the antiferromagnet
gives the nonmagnetic impurities an effective magnetic
component. These effective magnetic impurities are detri-
mental to superconductivity, except for spin-triplet super-
conductivity with spin aligned orthogonal to the Néel
vector. As a result, dirty AFMs work as superconductivity
filters letting only spin-triplet superconductivity with
orthogonal spin projection to the Néel vector pass through.
After studying the critical temperature in SC-AFM bilayers,
we show how the superconducting correlations penetrate
into the antiferromagnetic metal, as well as the inverse
proximity effect. Moreover, we show how the long-range
spin-triplet components can be induced by either uncom-
pensated or magnetic interfaces with magnetic misalign-
ment relative to the AFM Néel vector.
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Theory.—To study SC-AFM bilayers, we employ the
quasiclassical Keldysh formalism derived in [32]. It is valid
under the assumption that the Fermi wavelength is short
compared to the coherence length and the mean free path,
and the chemical potential μ is much larger than all other
energy scales in the system, except possibly the exchange
energy between localized spins and conducting electrons J.
Note that jJ=μj < 1, since jμj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ t2

p
, where t is the

hopping parameter evaluated at the Fermi surface. We also
assume the dirty limit, meaning that the system is diffusive,
and that there is no electromagnetic vector potential. In this
case, the quasiclassical Green’s function ǧ solves [32]

i∇ · ǰþ
�
τzðεþ iδÞ þ Δ̂þ iJ2

2τimpμ
2
σzτzǧσzτz; ǧ

�
¼ 0: ð1Þ

Here, ǰ is the matrix current, τz and σz are Pauli matrices in
Nambu- and spin space, respectively, ε is energy, δ is the
Dynes parameter, τimp is the elastic impurity scattering
time, and Δ̂ ¼ Δiτy, under the assumption that the gap
parameter Δ is real. The spin-quantization axis is chosen to
be parallel to the Néel vector, which is assumed homo-
geneous within the AFM. We let the system be large in the
directions parallel to the interface, such that the problem
becomes an effective 1D problem.
The quasiclassical Green’s function can be written

ǧ ¼
�
ĝR ĝK

0 ĝA

�
; ð2Þ

where ĝR, ĝA, and ĝK are the retarded, advanced, and
Keldysh Green’s functions, respectively. In thermal equi-
librium, which is assumed here, it is sufficient to solve for
ĝR, since ĝA ¼ −τzðĝRÞ†τz and ĝK ¼ ðĝR − ĝAÞ tanhðβε=2Þ.
Equation (1) is similar to the Usadel equation for normal

metals [33] but is modified by the antiferromagnetic order
in two important ways. First, the expression for the matrix
current is now

ǰ ¼ −Dǧ∇ǧ − ǧ

�
J2

2μ2
σzτzǧσzτz; ǰ

�
; ð3Þ

where D is the diffusion constant. The second way
AFMs differ from normal metals is through the term
proportional to σzτzǧσzτz in Eq. (1). This is exactly the
way magnetic impurities enter the Usadel equation for
normal metals [34]. Hence, the antiferromagnetic order
gives rise to effective magnetic impurities with scattering
time equal to τimpμ

2=J2.
The presence of τ−1imp in the equations requires some

special care, as discussed in detail in Ref. [32]. Since the
impurity scattering rate, τ−1imp, is small in the dirty limit, one
should project onto only the long-ranged components
of ǧ when J2=μ2 ≈ 1. This is possible because some

components become negligible in this limit of very strong
exchange coupling. Here, we consider smaller values of
J2=μ2. Consequently, the effective magnetic scattering rate
J2=ðμ2τimpÞ is not necessarily large, and we must keep all
components of ǧ.
To model SC-AFM bilayers, we set J ¼ 0 in the SC and

Δ ¼ 0 in the AFM. The dimensionless quantity J=μ is
nonzero in the AFM, while the gap parameter in the SC is
determined through the self-consistency equation [35],

Δ ¼ 1

4acoshðωD=Δ0Þ
Z

ωD

0

dεTr½ðτx − iτyÞĝK�; ð4Þ

where symmetries of the Green’s function were used to
write Δ as an integral over only positive energies, ωD is a
cutoff energy and Δ0 is a material-specific parameter
defining the gap parameter in the bulk. We set ωD ¼ 30Δ0.
The two materials must be connected through a boun-

dary condition, which is also derived in [32]. We consider
both compensated and uncompensated interfaces. Let the
interface be located at x ¼ 0, and let ǧSC ¼ ǧð0−Þ and
ǧAF ¼ ǧð0þÞ be the quasiclassical Green’s functions on the
superconducting and antiferromagnetic sides of the inter-
face, respectively. We similarly let ǰSC and ǰAF be the
matrix current on the SC and AFM sides, respectively. The
general boundary condition for the matrix current going out
of material α ∈ fSC;AFg and into material β ∈ fSC;AFg
is [32]

en · ǰα ¼ ½T̂αβǧβT̂βα þ iR̂α; ǧα�; ð5Þ

where en is the outward-pointing normal vector, T̂αβ is the
tunneling matrix, and R̂α is the reflection matrix. For the
case of a compensated interface, we assume that tunneling
and reflection are independent of spin and sublattice. In this
case T̂αβ ¼ T̂�

βα ¼ t and R̂α are scalars.
In the case of an uncompensated interface, we assume

that tunneling can only occur between the SC and the A
sublattice in the AFM. In this case, we find from Ref. [32]
that the tunneling matrix becomes

TSC;AF ¼ T†
AF;SC ¼ t

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J=μ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J=μ

p

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J=μ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J=μ

p
Þτzm · σ�: ð6Þ

Here, we have allowed for a possible misalignment
between the magnetization direction in the AFM and the
magnetization direction at the interface through the unit
vector m. When the system is uncompensated, there should
in general also be spin-dependent reflection. For simplicity,
we set the reflection matrix equal at both sides of the
interface and equal to R̂SC ¼ R̂AF ¼ rτzm · σ. Note that
instead of an uncompensated interface, one can instead use
a thin ferromagnetic (F) layer. For instance, one could
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consider an SC=F=I=AFM structure, where the insulator (I)
is used to reduce the exchange bias effect. In this case, m
would be the magnetization direction of the ferromagnet.
We solve Eqs. (1) and (3)–(5) numerically using the

Ricatti-parametrization [36,37] and a collocation method
[32], and determine the matrix current by fixed-point
iterations of Eq. (3). For simplicity, we set the diffusion
constant to be equal in both materials. We denote by LAF
and LSC the lengths of the AFM and SC, respectively, and
ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

D=Δ0

p
is the diffusive coherence length. To find the

critical temperature, we use the algorithm described
in Ref. [38].
Critical temperature.—We plot the critical temperature

as a function of AFM length for various values of J=μ in
Fig. 1 for the case of a compensated interface. As J=μ is
increased, the critical temperature is reduced substantially,
which is consistent with experiments [27–29]. While TC
decays slowly, reaching only around one-third of the bulk
value in the SC=NM bilayers (J=μ ¼ 0), TC is reduced all
the way to 0 in the SC=AFM bilayers. The AFM length
needed to make TC vanish reduces with increasing J=μ.
This can be understood from the effective magnetic
impurities in the AFM, which has a scattering rate propor-
tional to J2=μ2. It has long been known that even a small
amount of magnetic impurities can strongly reduce the
superconducting transition temperature [39–41]. The mag-
netic impurities give rise to spin-flip scatterings which
break the spin-singlet Cooper pairs, thereby lowering the
transition temperature.
Note that the maximal suppression of TC depends on the

length of the superconductor and the magnitude of the
tunneling amplitude. When the superconductor is long
compared to the coherence length, TC will be nonzero no
matter how much the gap is suppressed near the interface.

Therefore, while one can observe total TC suppression for
short superconductors, as in Ref. [28], one should expect
only a partial suppression, as in Refs. [27,29], when the
superconductor is long or the tunneling amplitude is small.
In the case of partial suppression, one should expect the
minimal value to be reached when the length of the
antiferromagnet reaches approximately the penetration
depth of spin-singlet correlations, determined by τimp

and J=μ.
To understand the origin of the effective magnetic

impurities, consider the spatial distributions of the two
degenerate spin states of the antiferromagnetic conduction
band. The spin-down state is sketched in Fig. 2. The spin-
down (spin-up) state has larger amplitude on sublattice
BðAÞ compared to sublattice AðBÞ. As a result, nonmag-
netic impurities on sublattice BðAÞ act like superpositions
of nonmagnetic impurities and impurities with magnetiza-
tion in the −zðþzÞ direction on the conduction band
electrons. Therefore, electrons in the conduction band
experience an effective magnetic impurity potential giving
rise to spin-flip scattering described by the term propor-
tional to iJ2=2τimpμ

2 in Eq. (1). The spin orientations of
these impurities are locked along the direction of the Néel
vector. This gives rise to the possibility of long-ranged
triplet correlations, as is shown in the following.
Proximity effect.—To study how the proximity effect is

affected by the antiferromagnetic order, we consider the
anomalous Green’s function, Tr½ðτx − iτyÞĝR� ¼ f0 þ f · σ.
Here, f0 describes the conventional spin-singlet super-
conducting correlations while f ¼ ðfx; fy; fzÞ describes the
spin-triplet correlations. Note that since we are working
with diffusive systems, the spin-singlet and spin-triplet
correlations are also even and odd in frequency,
respectively.
Figure 3 shows the anomalous Green’s function for

various SC=AFM structures evaluated at ε ¼ D=L2
AF.

There is a large singlet component in the SC as expected.
In Fig. 3(a), the neighboring material is a normal metal,
meaning that J=μ ¼ 0, and therefore the proximity induced
f0 penetrates deeply without significant decay. On the other
hand, in Fig. 3(b), the neighboring material has

FIG. 1. Critical temperature TC as a function of AFM length
LAF normalized by the coherence length ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

D=Δ0

p
. TC0 is the

bulk critical temperature. The inset shows a sketch of an
SC=AFM bilayer with a compensated interface. The length of
the superconductor is LSC ¼ ξ, the impurity scattering rate is
1=τimp ¼ 100Δ0, the Dynes parameter is δ ¼ 0.001Δ0, and the
tunneling amplitude is t ¼ 3

ffiffiffiffiffiffiffiffi
Δ0ξ

p
.

FIG. 2. Exaggerated sketch of the spatial distribution of the
conduction electron state with spin down. The overlap is larger
with the B sublattice than with the A sublattice. As a result, the
conduction band electrons with spin-down will be affected more
strongly by nonmagnetic impurities on the B sublattice than by
nonmagnetic impurities on the A sublattice.
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antiferromagnetic ordering with J2=μ2 ¼ 0.1 and
J2=μ2τimp ¼ 10Δ0. In this case, the spin-singlet f0 induced
through the compensated interface decays over a much
shorter length scale because of the effective magnetic
impurities discussed above. Additionally, f0 is also more
suppressed on the SC side, as expected from the TC results.
With an uncompensated interface, as shown in Figs. 3(c)

and 3(d), spin-triplet correlations f are also induced at the
interface. These correlations are aligned parallel to the
magnetization direction of the interface. When the corre-
lations are parallel to the Néel vector of the antiferromag-
net, as in Fig. 3(c), they are affected by the magnetic
impurities in the same way as the spin-singlet correlations,
and therefore decay over the same length scale. However,
when f is orthogonal to the Néel vector, as in Fig. 3(d), the
spin-triplet correlations become long ranged, decaying over
a length scale that is the same as for a normal metal.
Thus, one can distinguish between short-ranged triplets

and long-ranged triplets in diffusive AFMs, just as in FMs.
The reason why spin-singlet correlations and fkh are short
ranged in FMs with spin-splitting field h is because h
induces an energy difference between the electrons in the
Cooper pairs, causing decoherence. On the other hand, the
spins of the two electrons in f⊥h are both parallel to h,
such that they have the same wavelength as they propagate
into the FM. In diffusive antiferromagnets with Néel vector
n, the reason for the decoherence is nonmagnetic impu-
rities, but the effect is similar. Spin-singlet f0 and spin-
triplet fkn are short-ranged while f⊥n are long-ranged.
In order to compute the decay length associated with

long-ranged and short-ranged correlations, we linearize the

retarded component of Eq. (1) in the AFM. We let
ĝR ¼ τz þ iτyf. To first order in f, we get from Eq. (3)
that ĵR ¼ −Dτx∇f=ð1þ J2=μ2Þ. Inserting this into Eq. (1),
we get to first order in f that

D∇2f
1þ J2=μ2

¼ −
�
2iε − 2δ −

J2

τimpμ
2

�
f þ J2

τimpμ
2
σzfσz: ð7Þ

Thus, if limx→∞fðxÞ¼0 and fð0Þ ¼ a0 þ a · σ for some
constants a0, and a¼ðax;ay;azÞ, then f¼ða0þazσzÞeikkxþ
ðaxσxþayσyÞeik⊥x, where k⊥¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þJ2=μ2Þðiε−δÞ=D

p

and kk ¼ k⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiε − δ − τ−1impJ

2=μ2Þ=ðiε − δÞ
q

, such that

the imaginary parts of kk and k⊥ are positive.
To find the decay lengths, we must take the imaginary

parts of kk and k⊥. When ε ≫ δ, the long-ranged corre-
lations decay over a length scale equal to λ⊥ ¼
1=Imðk⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=½ð1þ J2=μ2Þε�

p
. This is on the same

order as in a normal metal, λNM ¼ ffiffiffiffiffiffiffiffiffi
D=ε

p
. On the other

hand, if J2=μ2τimp ≫ ε, the short-ranged correlations decay

over a length scale equal to λk ¼ μlmfp=½J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þ J2=μ2Þ

p
�,

which can be compared to the decay length for short-ranged
correlations in ferromagnets [18], λFM ¼ ffiffiffiffiffiffiffiffiffi

D=h
p

, where h
is the spin-splitting energy. Here, lmfp ¼ vFτimp is the mean
free path, where vF is the Fermi velocity.
Local density of states.—In Fig. 4 we show the normal-

ized density of states, N=N0 ¼ ReðĝR11 þ ĝR22Þ=2, as a
function of energy at various positions with the same
parameters as in Fig. 3, except that J2=μ2 ¼ 0.01 in
Figs. 4(b)–4(d). The local density of states in the
SC=NM bilayer is shown in Fig. 4(a), and one can see a
minigap in the spectrum as expected [42]. However, no
minigap is present in the SC=AFM bilayers. This is because
the effective magnetic impurities act similarly to inelastic
scattering for the spin-singlet correlations, leading to a

FIG. 3. The nonzero components of the anomalous Green’s
function f0 þ fxσx þ fzσz evaluated at energy ε ¼ D=L2

AF for
various bilayer cases illustrated by the insets. The SC=AFM
interface is at x ¼ 0 and the Néel vector points in the z direction.
(a) SC=NM (J=μ ¼ 0), (b) SC=AFMwith compensated interface,
(c) SC=AFM with uncompensated interface aligned in the z
direction, (d) SC=AFM with uncompensated interface aligned in
the x direction. (a)–(d) have Dynes parameter δ ¼ 0.001Δ0,
tunneling amplitude t ¼ 2

ffiffiffiffiffiffiffiffi
Δ0ξ

p
, temperature T ¼ 0.05TC0, SC

length LSC ¼ 2ξ, and AFM length LAF ¼ 2ξ. (b)–(d) have
J2=μ2 ¼ 0.1, 1=τimp ¼ 100Δ0. (c),(d) have r ¼ Δ0ξ.

FIG. 4. The local density of states N, normalized by the normal
state density of states N0, at different positions inside the
antiferromagnet. The parameters are the same as in Fig. 3, except
that J2=μ2 ¼ 0.01 in (b)–(d).
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much weaker suppression in the density of states, and a
more smeared-out spectrum. This is true also very close to
the interface, as can be seen in Fig. 4(b). As one moves
away from the interface as x ¼ 0, the spectrum in the
Fig. 4(b) rapidly becomes flatter. This is in contrast to the
spectrum in the SC=NM system, which retains the minigap
also away from the interface. The flatness of the spectrum
away from the interface can be understood from the
exponential decay coming from the effective magnetic
impurities.
Figures 4(c) and 4(d) show the local density of states for

SC=AFM bilayers with short-ranged and long-ranged
triplets, respectively. Both show a pronounced peak in
the density of states at zero energy, similar to ferromagnetic
systems with spin-triplet superconductivity [43]. Close to
the interface, the spectrum in Fig. 4(c) is more smeared out
than the spectrum in Fig. 4(d), probably because the
effective magnetic impurities act on the short-ranged
spin-triplet correlations in a similar way as they do on
the spin-singlet correlations. However, the biggest differ-
ence can be observed when going away from the interface.
While the spectrum in Fig. 4(c) becomes flatter, as expected
from the exponential decay of the superconducting corre-
lations, the spectrum in Fig. 4(d) transforms in the opposite
way. The zero-energy peak becomes sharper as the distance
to the interface increases.
Conclusion.—We have theoretically studied diffusive

SC=AFM bilayers with both compensated and uncompen-
sated interfaces. We find a strong suppression of the critical
temperature, consistent with experiments [27–29]. This
suppression can be explained in terms of effective magnetic
impurities. Nonmagnetic impurities interact with conduc-
tion electrons in the AFM in a similar way as magnetic
impurities in NMs. Thus, we predict that cleaner AFMs will
suppress superconductivity to a smaller degree, giving rise
to higher critical temperatures. The impurities in AFMs not
only suppress spin-singlet superconductivity, and thereby
TC, but they also suppress spin-triplet correlations that are
oriented parallel to the Néel vector. As a result, spin-singlet
correlations and spin-triplet correlations with parallel
orientation are short-ranged, decaying exponentially over
a length scale determined by the mean free path and the
exchange energy between localized spins and conducting
electrons. In contrast, spin-triplet correlations with orien-
tation orthogonal to the Néel vector are long-ranged. They
can penetrate as far as in normal metals. Such long-range
triplets can be induced by misaligned uncompensated
interfaces, or by more complicated heterostructures.
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