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Discrimination of entangled states is an important element of quantum-enhanced metrology. This
typically requires low-noise detection technology. Such a challenge can be circumvented by introducing
nonlinear readout process. Traditionally, this is realized by reversing the very dynamics that generates the
entangled state, which requires a full control over the system evolution. In this Letter, we present nonlinear
readout of highly entangled states by employing reinforcement learning to manipulate the spin-mixing
dynamics in a spin-1 atomic condensate. The reinforcement learning found results in driving the system
toward an unstable fixed point, whereby the (to be sensed) phase perturbation is amplified by the
subsequent spin-mixing dynamics. Working with a condensate of 10 900 87Rb atoms, we achieve a
metrological gain of 6.97þ1.30

−1.38 dB beyond the classical precision limit. Our work will open up new
possibilities in unlocking the full potential of entanglement caused quantum enhancement in experiments.
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Introduction.—Entanglement plays a crucial role in
quantummetrology [1,2],which aims at beating the standard
quantum limit (SQL) or classical limit achievable with
uncorrelated particles by using quantum resources. To fully
harness the quantum advantages offered by entangled states,
it is necessary to discriminate between entangled states with
and without parameter perturbations. However, detecting
entangled states is often vulnerable to technical noise,
compromising the metrological advantage derived from
using entanglement. To overcome this challenge, nonlinear
readout techniques have been introduced [3–5], based on
amplifying the distinction between perturbed and unper-
turbed entangled states by disentangling the particles [see
Fig. 1(a)]. Such a nonlinear process exhibits high sensitivity
to perturbations, producing markedly different output states
evenwithminute perturbations, and thus promises quantum-
enhanced sensing via signal amplification.
A straightforward implementation of nonlinear readout

of entangled states comes from time-reversing the very
dynamics that generates the entanglement in the first place
[6–12]. Such a procedure, however, requires a precise
knowledge of the history of the dynamical process, as
well as a full control over the system, which is highly
nontrivial for a general many-body quantum system. In this
Letter, we demonstrate an easily implementable nonlinear
readout process supported by reinforcement learning (RL)
[13] that requires no knowledge of entanglement generation
history and is realized by modulating only a linear control
field.
As an important branch of machine learning, RL targets

an optimal strategy for accomplishing a specific task

(a)

(b)

FIG. 1. (a) The precision of measurements is constrained by the
quantum fluctuations of probe states, as depicted by the shaded
region in the figure. Entangled states with squeezed fluctuation
distributions (the fluctuation along the phase-encoding direction
is squeezed, as a cost, the fluctuation along the orthogonal
direction is enlarged) allow for more precisely estimating
parameter ϕ than classical resources (left panel). The benefit
of squeezed noise, however, can be easily overshadowed by
detection noise, which, combined with quantum fluctuations,
establishes the overall noise level. By introducing a nonlinear
readout process (right panel), which preferentially amplifies
signal over noise, noise-robust detection with high phase sensi-
tivity can be realized. This work exploits RL to guide nonlinear
readout of highly entangled states. (b) A typical interaction loop
between neural network and system for RL training. In this work,
the system is a spin-1 condensate. The QZS q is modulated
according to the policy from RL to manipulate the dynamics.
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without prior knowledge. It optimizes decision making
based on interacting with the system instead of hints or
guidances to the solutions. In quantum science and tech-
nology, RL has been applied to quantum state engineering
[14–21], quantum control [22–26], quantum metrology
[27–30], quantum error correction [31–33], and quantum
compiling [34–36], etc., with great successes. Here, we
employ RL to guide nonlinear readout of highly entangled
states for quantum enhanced sensing.
Our system is composed of a 87Rb atomic condensate in

the ground hyperfine F ¼ 1 manifold ðmF ¼ 0;�1Þ,
described by the Hamiltonian (ℏ ¼ 1 hereafter)

H ¼ c2
2N

½ð2a†0a†0a1a−1 þ H:c:Þ
þ ð2N0 − 1ÞðN − N0Þ� − qðtÞN0

under the assumption of the same spatial mode for the three
spin components [38]. Here, amF

(a†mF ) denotes annihilation
(creation) operator and NmF

¼ a†mFamF
counts the number

of atoms in mF component with N ¼ P
mF

NmF
the total

number of atoms. The Hamiltonian can also be written as
H ¼ ðc2=2NÞL2 − qðtÞN0 in terms of collective spin L≡
P

μ;ν a
†
μFμνaν with Fμνðμ; ν ¼ −1; 0;þ1Þ the spin-1 matrix

element. It conserves magnetization Lz ¼ Nþ1 − N−1, as
well as the total particle number N. The first term in the
Hamiltonian describes spin-exchange interaction of ferro-
magnetic type at strength c2 < 0, whereby atoms in mF ¼
0 are transferred to mF ¼ �1 in pairs and vice versa. The
second term describes an effective quadratic Zeeman shift
(QZS) q which can be tuned experimentally [39]. The
competition between the above interactions gives rise to
intriguing spin-mixing dynamics [38]. In this work, q is
modulated according to the policy from RL to manipulate
the dynamics.
Reinforcement learning.—In a typical RL task [see

Fig. 1(b)], the agent learns from trial and error to achieve
a prespecified goal. By inspecting the system through some
observables (state), the agent makes decisions (action)
according to a certain tactic (policy, a mapping between
state and action) to alter the state of the system. At the same
time, it collects a feedback (reward) from the system, which
measures whether the decision is constructive or not. After
many rounds of such interactions, the agent refines the tactic
based on the collected information and updates continuously
until it gains sufficient experience to arrive at an optimal
tactic for achieving the goal (see SupplementalMaterial [40]
for more details).
We first benchmark the RL training in a small system

with N ¼ 50 atoms. In the quantum metrology application
concerned here, our aim is to precisely detect a phase ϕ
that is encoded by a rotation operation described by Uϕ ¼
e−iϕLx with Lx ¼ ða†1a0 þ a†0a−1 þ H:c:Þ= ffiffiffi

2
p

. Starting
from the polar state with all atoms in mF ¼ 0 component,

the probe state is prepared by targeting the balanced spin-1
Dicke state [17,40], which is the ground state of the system
at q ¼ 0. Instead of direct detection after phase encoding
[41], we employ RL to guide a nonlinear readout operation
before the measurement, thereby inducing significant dis-
tinctions between the final states evolved from without and
with encoding rotation Uϕ. The encoded phase is extracted
by measuring the fractional population in mF ¼ 0 compo-
nent, ρ0. Inferred from error propagation, the phase sensi-
tivity of ϕ reads

Δϕ ¼ Δρ0=j∂ϕhρ0ij; ð1Þ

which is determined by the fluctuation of ρ0 and the slope of
itsmeanwith respect toϕ. The reward of RL training is set to
maximize the metrological gain, −20 log10ðΔϕ=ΔϕSQLÞ,
over the three-mode SQL ΔϕSQL ¼ 1=ð2 ffiffiffiffi

N
p Þ.

We present the results of RL training for a global search
(without constraints on q) in Fig. 2(a) by blue data, with the
q profile for the nonlinear readout process, the correspond-
ing metrological gain, and ρ0 evolution (in the absence of
phase encoding) shown from top to bottom. From the ρ0
evolution, one can see that the learnt readout operation
drives the system toward the initial polar state where all
atoms occupy the mF ¼ 0 component (ρ0 ¼ 1). Similar
behavior is found when noises due to experimental imper-
fections are taken into account [40].
The pivotal role played by the polar state in achieving

high phase sensitivity is further elaborated in the learning
progress of readout operation; see Fig. 2(b). Here, we
inspect the metrological performance of the readout proc-
esses governed by a collection of qðtÞ profiles. For each
qðtÞ profile, one can extract the maximal ρ0 during the
readout process and the maximal metrological gain. A
summary of them from 2000 trajectories each for three
different training epochs (0, 10, 100) is shown in Fig. 2(b).
As the learning proceeds, the distribution shrinks toward
the upper right corner where achieving enhanced metro-
logical performance and passing through the initial polar
state (large maximal ρ0) are found to be strongly correlated.
One can understand the observed behavior by inspecting

the system from phase space spanned by mean fields [37],
ρ0 and the spinor phase θ ¼ θ1 þ θ−1 − 2θ0, where θmF

denotes the phase of the mF component. These two
variables are constrained by the single particle mean field
energy ε ¼ c2ρ0ð1 − ρ0Þð1þ cos θÞ − qρ0. The phase
space for jqj < 2jc2j [see top panel of Fig. 2(d)] is divided
by a separatrix (thick black line). The polar state sits at the
north pole, which is an unstable fixed point of the system
for 0 < q < 2jc2j [see the energy surface in the middle
panel of Fig. 2(d)], rendering the dynamics starting from it
highly susceptible to perturbations. This explains why the
readout operation drives the system toward the dynamically
unstable polar state.
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To justify our interpretation, we perform another RL
training, with q constrained in the negative regime, where
the unstable fixed point shifts to the south pole [see bottom
panel of Fig. 2(d)]. If our above understanding is correct,
the optimal strategy is expected to drive the system toward
the south pole with ρ0 ¼ 0. This is indeed what we observe,
as shown by the orange data in Figs. 2(a) and 2(c). It is
worthy to point out these results suggest that for realizing
nonlinear readout it is in fact not necessary to return to the
starting point of entanglement generation, which was
unanimously believed as a guiding principle in traditional
protocols [3–10,12,42]. Such an interesting finding offers
an alternative to implementing nonlinear readout.
We make use of the above observation to simplify the

training task for larger systems. The calculations of phase
sensitivity [Eq. (1)] involve time-consuming computations
of various output states under a span of encoded phases. To
simplify the numerics, we replace the training task for large
systems by targeting the initial polar state. To further speed
up training and avoid sparse reward, we adopt transfer
learning [40], with experience gained from trained neural
networks for smaller sized systems in the absence of atom
loss applied as initial values to larger or/and realistic
experimental systems with loss. This benefits from the
remarkable generalization ability of the RL policy [17]. For
treating large systems including atom loss, truncated
Wigner approximation method [40,42–45,55–59] is used
in our numerical simulations.

Experimental implementation.—The RL protocols are
implemented experimentally in a spinor condensate of about
10 900 87Rb atoms at c2 ¼ −2π × 2.6ð2Þ Hz. The net QZS
q ¼ qB þ qMW includes a magnetic field contribution qB,
and a microwave dressing field (detuned from the jF ¼
1; mF ¼ 0i to jF ¼ 2; mF ¼ 0i clock transition) contribu-
tion qMW [60]. The bias magnetic field is set at 0.537 G
corresponding to qB ∼ 8jc2j as a trade-off between mini-
mizing the influence of rf noise andmaintaining the stability
of QZS [40]. The experiment starts from a polar state BEC at
q ∼ 17jc2j, followed by quenching q to 1.5jc2j through
tuning the microwave power before the state generation
operation. Subsequently, q is ramped to prepare the probe
states [40], which serve as the input states for the nonlinear
readout operations. Here, three different probe states are
studied, prepared by targeting the ground states of the
system at qtg ¼ 0, 0.5jc2j, and jc2j, respectively. The metro-
logical potential of a probe state jψpi is limited by the quan-
tum Cramér-Rao bound [2] to, ðΔϕÞ2⩾1=FQðjψpi; LxÞ,
with the quantum Fisher information FQðjψpi; LxÞ ¼
4ðΔLxÞ2 ¼ 4hL2

xi ¼ 2hL2i in the Lz ¼ 0 subspace for a
pure state. In our system, the ground state possesses larger
collective spin length hL2i than excited states, and hL2i
increases when jqj decreases [see Fig. 3(a)], with the
balanced spin-1 Dicke state at q ¼ 0 offering the highest
quantumFisher information, and thus the highest theoretical
phase sensitivity. On the other hand, preparing the ground

(b)

(c)

(a) (d)

FIG. 2. (a) RL training results for the readout operation in a small system of N ¼ 50 particles, with the q profile, the metrological gain,
and fractional population ρ0 evolution (in the absence of phase encoding) shown from top to bottom. The blue (orange) data denotes the
results for a global (constrained) search without (with) constraints (q < 0) on q. The shaded regions denote the fluctuation of ρ0, Δρ0.
(b) Maximal achievable metrological gain vs maximal accessible ρ0 during the readout process from 2000 trajectories for each sampled
according to the policy at 0, 10, and 100 epoch. As the learning proceeds (from left to right), the readout operation tends to drive the
system toward the polar state with a large hρ0i for getting a large metrological gain. (c) Similar results as (b), but for the case with q < 0
constraint. (d) Spin-nematic sphere [37] with energy contours for q ¼ jc2j (top) and q ¼ −jc2j (bottom). The three axes are
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cosðθ=2Þ, y ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sinðθ=2Þ, and z ¼ 2ρ0 − 1, with θ being the spinor phase. Middle panel: energy surface. The polar

state (marked with a red sphere) sits at the north pole, which is a saddle point for 0 < q < 2jc2j. The south pole becomes an unstable
fixed point when −2jc2j < q < 0.
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state by ramping q from q ≫ jc2j to smaller qtg requires
longer time [40], and thus suffers more from atom loss.
Therefore, it is nontrivial to predict which state provides the
highest phase sensitivity in experiment.
Phase encoding is enacted by a well-calibrated Rabi

rotation of the state using rf field that SU(2)-symmetrically
couples all three mF components. To detect the phase in a
noise-robust way, we perform nonlinear readout operation
guided by RL. Namely, q is ramped according to the RL
profile, as shown in Fig. 3(b). The evolution of ρ0 during
the readout process, measured by absorption imaging after
spatial Stern-Gerlach separation [40], is shown in Fig. 3(c).
The experimental data (markers) shows an excellent agree-
ment with theory (solid lines). Approaching ρ0 ¼ 1 at the
end of the readout process signals the success of the RL
protocol.
To illustrate the sensitivity of the system to phase

perturbation, we compare the dynamics of the system
when a finite phase (red data) or no phase (blue data) is
encoded to the probe state (balanced spin-1 Dicke state).
The results are shown in Figs. 3(d) and 3(e). Before the
system approaches the polar state (t < 491 ms), one can
hardly distinguish these two cases, while a substantial
difference is observed after the system passes through the
polar state (t > 491 ms). Such a sensitive dependence of ρ0
on phase perturbation exemplifies the discrimination of the
encoded states with slightly different phases.
We show the metrological performance of the three

probe states in Fig. 4. The mean value of ρ0 and its
fluctuation Δρ0 (measured at 208 ms after the system

(a) (b)

(c)

(d)

(e)

P

FIG. 3. (a) The collective spin length of the spinor BEC. The black solid line (gray shaded region) denotes theoretical results of the
ground state (excited states). The markers denote results of the correspondingly prepared target probe states at qtg=jc2j ¼ 0 (blue), 0.5
(green), and 1 (orange) from 500 continuous experimental runs on measuring transverse spins [40], whose distributions are shown in the
insets. The solid lines in the insets come from numerical simulations. (b) The RL-learnt q profile for the nonlinear readout of the three
probe states. (c) The evolution of ρ0 during the readout process. (d) Illustration of states at the end of the RL-learnt readout operation
[t ¼ 491 ms, marked by vertical dashed line in (e)] (gray data) and at the detection time [t ¼ 699 ms, marked by vertical dot-dashed line
in (e)] (colored data) on the spin-nematic sphere. The left (right) panel denotes the case when no (a) phase is encoded into the probe state.
(e) The evolution of ρ0 when no phase (blue data) or a phase (red data) is encoded to the balanced spin-1 Dicke state prepared at t ¼ 0.
The QZS is q ¼ jc2j. For (c) and (e), markers are data from 100 experimental runs. The solid lines (shaded regions) denote numerically
computed mean (uncertainty).

(a) (b)

(c)

FIG. 4. (a) The averages (upper panel) and standard deviations
(lower panel) of fractional spin population in mF ¼ 0, ρ0, in the
vicinity of phase ϕ ¼ 0. Each data point comes from 100
continuous experimental runs. (b) The averages (upper panel)
and standard deviations (lower panel) of L2

z , for the balanced
spin-1 Dicke state without nonlinear readout operation. Each data
point comes from 50 continuous experimental runs. For (a) and
(b), dashed lines are fitted results. (c) The corresponding
metrological gains over three-mode SQL (dot-dashed line).
The dashed lines are obtained based on error propagation by
using the fitted results in (a) and (b). The shaded region indicates
the fitting uncertainty.
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approaches the polar state [61]) for small encoded phases
are shown in Fig. 4(a), with circles denoting experimental
data and dashed lines the fitted curves. Phase sensitivity is
calculated based on error propagation [Eq. (1)] by using the
fitted data [dashed lines in Fig. 4(a)] and shown as colored
data in Fig. 4(c). The optimal metrological gains for the
three states with qtg=jc2j ¼ 0, 0.5, and 1 are found to

be ξ2 ¼ −20log10fΔϕ=½1=ð2
ffiffiffiffi
N

p Þ�g ≃ 4.96þ0.96
−1.02 , 6.97

þ1.30
−1.38 ,

and 2.32þ1.56
−1.73 dB, respectively, beyond three-mode SQL

[41] of 1=ð2 ffiffiffiffi
N

p Þ with the atom number of the probe state
N ≃ 10 400. The probe state at qtg=jc2j ¼ 0.5 therefore
outperforms due to the aforementioned tradeoff between
theoretical metrological gain and atom loss.
For comparison, we also directly detect the phase-

encoded spin-1 Dicke state [40,41], i.e., without nonlinear
readout process. In this case, the phase can be extracted by
measuring L2

z , whose mean values and fluctuations for
small phases are shown in Fig. 4(b). The inferred phase
sensitivity [gray line in Fig. 4(c)] gives ξ2 ≃ 2.42þ1.78

−1.84 dB
beyond three-mode SQL. Hence, an enhancement of 2.5 dB
is observed by introducing the nonlinear readout operation.
The main constraint for further improvement on the
achievable phase sensitivity is atom loss, which is an extra
price to pay for performing the nonlinear readout operation.
In conclusion, we employ RL to guide nonlinear readout

of entangled states based on manipulation of the spin-
mixing dynamics of a spin-1 condensate by modulating the
QZS. Remarkably, the optimal strategy is found to drive the
system toward an unstable fixed point, where small
perturbations grow in time. Our results suggest that there
are various approaches to realizing nonlinear readout
besides the paradigmatic one of returning to the starting
point of entanglement generation. Our method can be
generalized to other systems; see Ref. [40] for a discussion
of applying our method to a spin-1=2 system.
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