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We performed a series of 1381 full numerical simulations of high energy collision of black holes to
search for the maximum recoil velocity after their merger. We consider equal mass binaries with opposite
spins pointing along their orbital plane and perform a search of spin orientations, impact parameters, and
initial linear momenta to find the maximum recoil for a given spin magnitude s. This spin sequence for
s ¼ 0.4, 0.7, 0.8, 0.85, 0.9 is then extrapolated to the extreme case, s ¼ 1, to obtain an estimated maximum
recoil velocity of 28; 562� 342 km=s, thus approximately bounded by 10% of the speed of light.
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Introduction.—Ever since the discovery through full
numerical simulations [1,2] that the merger of binary black
holes may lead to large (astrophysically speaking) gravi-
tational recoil velocities, a fascinating search for such
events in nature takes place [3,4]. Since the first modeling
of large recoils [5], it was clear that the spins of the black
holes played a crucial role in their merger remnant reaching
a speed up to several thousand kilometers per second. Next,
a configuration was found [6] that maximized the recoil
nearing 5000 km=s. This configuration combined the
opposite spins of [5] that maximized asymmetry with
the hang-up effect [7] that maximized radiation. All those
configurations assumed negligible eccentricities at the time
of merger, when most of the asymmetric radiation takes
place. While this is the most plausible astrophysical
scenario, new gravitational wave observations show the
potential for large residual eccentricity in some events [8].
Here, we will explore the extreme scenario of high

energy collisions of black holes, in the realm of high-
energy colliders, to discover the fundamental laws of nature
[9,10], with applications to the gauge-gravity duality,
holography [11], primordial black hole collisions in the
early Universe [12–14], and as tests of the radiation bounds
theorems and cosmic censorship conjecture in general
relativity [15–17]. The growth of structure seeded by
primordial black holes has been studied in [18], and the
effects of gravitational-wave recoil on the dynamics and
growth of supermassive black holes has been studied
in [19]. While the scenario of supermassive rotating black
holes potentially accelerating orbiting black holes to high
energies was discussed in [20].
This high energy collision of black holes scenario was

studied in [21] to compute the maximum energy radiated by
equal mass, nonspinning black holes in an ultrarelativistic
head-on collision. This first study was then followed up by
the claim that the spin effects did not matter for these
collisions in [22]. In [23] we then revisited the head-on

scenario using new initial data [24] with low spurious initial
radiation content that allows for more accurate estimates of
the maximum energy radiated placing it at about 13%.
Non-head-on high energy collisions have also been studied
in [25], and in notable analytic detail in [26]. Some of the
early reviews on the subject are [9,10], and more up-to-date
ones are [27–29].
Here, we extend those studies with much larger numeri-

cal simulations set by directly solving numerically the
general relativity field equations in supercomputers, and by
focusing on the computation of the maximum achievable
gravitational recoil from grazing, high energy collisions of
binary black holes, where the holes’ spin orientation and
magnitude play a crucial role.
Numerical techniques.—The full numerical simulations

were performed using the LAZEV code [30] implementation
of the moving puncture approach [31]. We use the
general relativistic BSSNOK formalism of evolutions
systems [32–34]. The LAZEV code uses the CACTUS [35]–
CARPET [36]–EINSTEINTOOLKIT [37,38] infrastructure.
The CARPET mesh refinement driver provides a “moving
boxes” style of mesh refinement. To compute the numerical
(Bowen-York) initial data, we use the TWOPUNCTURES [39]
code. We use AHFINDERDIRECT [40] to locate apparent
horizons and measure the magnitude of the horizon spin
SH, using the isolated horizon algorithm as implemented in
Ref. [41]. We measure radiated energy, linear momentum,
and angular momentum, in terms of the radiative Weyl
scalar ψ4, using the formulas provided in Refs. [42,43]. As
described in Ref. [44], we use the Teukolsky equation to
analytically extrapolate expressions for Rψ4 from a finite
observer location (Robs > 100M) to infinity (Iþ).
One can hypothesize on asymmetry properties that one

can search for the maximum recoil within a family of equal
mass, opposite spins on the orbital plane configurations, as
displayed in Fig. 1. The compromise with maximizing the
energy radiated via the hang-up effect [7] that we needed to
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find the maximum recoil for quasicircular orbits in [6] is
replaced here by the determination of the critical impact
parameter bc separating merger from scattering of the
holes. Besides, a certain independence of the energy
radiated with the spin of the holes is displayed in Ref. [22].
This Fig. 1 configuration has been studied earlier

in [45,46] leading to a wide range of maximum velocity
estimates of 10 000 km=s and 15 000 km=s from simula-
tions to potential extrapolations up to 45 000 km=s. Here,
we will study this problem in detail with our new set of
specially designed simulations to explicitly model the
problem in terms of the Bowen-York initial momentum
of the holes γv, impact parameter b, and spin, s⃗ ¼ S⃗H=m2

H
(where mH ¼ m1;2 is the horizon mass of each hole), i.e., a
four dimensional parameter search.
Simulations’ results.—Our simulations families consist

of a choice of an initial (Bowen-York) data spin magnitude,
here s ¼ 0.4, 0.7, 0.8, 0.85, 0.9, and for each of them an
initial momentum per irreducible mass γv, and impact
parameter bM, as measured at the initial separation of the
holes D ¼ 50M (with M ¼ m1 þm2 the addition of the
horizon masses of the system). We then vary the orientation
of the spins pointing on the orbital plane by an angle φ
with respect to the line initially joining the black holes.
This allows us to model the leading φ dependence of the
recoil velocity as a cosφ [47]. In practice one needs about

four to seven simulations to fit this dependence and
determine the amplitude of the curve leading to the
maximum recoil for this configuration, as for instance
displayed in Fig. 2.
To compute recoil velocities from these waveforms in the

time domain, we subtract, at the postprocessing stage, the
initial burst of spurious radiation. This Bowen-York initial
data radiation content reaches earlier the fiducial observer
than its more physical components, and thus can be simply
excised. The effects of this spurious radiating is, never-
theless, relatively much smaller on the recoil velocities than
it is on the radiated energy. For instance, for a case closest
to maximum kick ðs ¼ 0.9; b ¼ 2.38; γv ¼ 1.1Þ we get a
kick of about 22 700 km=s total, with the spurious burst
contributing around 25 km=s. While for the energy radi-
ated, the spurious burst contributes approximately
5% ð0.018=0.336ÞM.
The next step in the search for the maximum recoil is to

find the peak velocities in the γv and b parameter space.
This is achieved as displayed in Fig. 3.
This search process of the impact parameter b to find the

value bmax leading to the largest recoil velocity is then
repeated for each spin value. Figure 4 displays this search

FIG. 1. Maximum high energy collision kicks binary black hole
initial configurations. On the orbital plane equal mass m black
holes with opposing spin S⃗ and momentum P⃗ with critical impact
parameter bc and starting separation D ¼ 50M.

FIG. 2. A series of simulations versus φ orientation of the spin
for b ¼ 2.38, s ¼ 0.85, γv ¼ 0.874.

FIG. 3. A series of simulations versus γv and b to search for
Vmax for the spin s ¼ 0.80 case.

FIG. 4. Maximum recoil velocity for different impact param-
eters b. For all the high spins studied here this peaks at b ≈ 2.38.
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for each of the spin magnitudes we considered here. In
practice, the bmax corresponds closely to the critical value
of the impact parameter bc separating the direct merger
from the scattering of the holes.
A similar analysis can be done by varying the initial

velocity v, or rather the linear momentum per irreducible
mass of the holes, γv ¼ P=mirr, with γ ¼ ð1 − v2Þ−1=2, the
Lorentz factor, and AH ¼ 16πm2

irr the measured horizon
area. As displayed in Fig. 5 those curves display the same
feature of maximizing the recoil velocity for values about
the critical momentum separating the direct merger from
scattering of the holes. The return loop of the curves around
its maximum represents an overshot of the impact param-
eter compensated by the lowering of the initial velocity to
warrant merger instead of scattering.
The explicit dependence on both parameters, b and γv is

displayed in Fig. 6 as a heat map for each of the spin
magnitudes s ¼ 0.7, 0.8, 0.85, 0.9.
The final results of the maximum recoil velocities for

each s and the corresponding relaxed (at around t ¼ 30M)
spin magnitude jsrj, are summarized in Table I and in
Fig. 7, where we display the error bars of each point and fit

to a quadratic dependence fit on sr to extrapolate to the
ultimate recoil velocity finding 28; 562� 342 km=s for the
extremely spinning, sr ¼ 1, binary black holes case. We
also display for comparison with the extrapolated to infinite
resolution values (in blue) used for the fit, the n100 low
resolution results (in red), used for the parameter searches.
Note also that in Table I we provide the number of runs

(simulations) we performed in the three-dimensional search
ðφ; b; γvÞ of the maximum recoil for a given spin s. In the
case of s ¼ 0.4, to simplify the search, and in the light of
the previous results with the higher spin cases (as seen in
Figs. 4 and 6) we assumed b ¼ 2.38, hence the lower
number of simulations needed.
For the majority of the simulations, for spins of s ¼ 0.4

to s ¼ 0.85, we use a grid, labeled as n100, with ten levels
of refinement, the coarsest of which has resolution of 4M
and outer boundary of r ¼ 400M, with each successive grid
with twice the resolution. If we label the coarsest grid
n ¼ 0, and the finest grid n ¼ 9, the resolution on a given
level isM=2ðn−2Þ. The wave zone is n ¼ 2 with a resolution
ofM=1 and boundary out to r ¼ 125M. The finest grid has
a resolution ofM=128 with a size of 0.5M centered around
each black hole. The spin s ¼ 0.9 case has an additional
refinement level around each black hole with resolution
M=256 and a radius of r ¼ 0.3M.
To evaluate the finite difference errors and extrapolation

of our simulations, we have performed three simulation sets
with increasing global resolutions by factors of 1.2 (n120,
n144) with respect to our base resolution, n100, for the
peak velocity cases with b ¼ 2.38, ðγvÞmax, and four
φ ¼ 0°, 60°, 120°, 150° degrees for each of the spins
s ¼ 0.40, 0.70, 0.80, 0.85, 0.90. The resulting measured
recoil velocities are given in Table I. Extrapolation to
infinite resolution leads to V∞

max values representing about a
3% increase from the n100 results. The third order
convergence rate found for the net recoil (computed as

FIG. 5. Display of peak velocity vs γv and spin for merging
holes.

FIG. 6. Maximum recoil velocity for different initial momenta
parameters γv and impact parameters b as a color map.

FIG. 7. Maximum recoil velocity versus the settled spins value
sr and its extrapolation to maximal spin sr ¼ 1. (Blue points are
extrapolation to infinite resolution, red points are the n100 low
resolution results).
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large differences of anisotropic radiation), is what one
expects from the fourth Runge-Kutta time integrator used
by our code.
As a further check of our numerical accuracy, we have

recalculated a set of cases for the spin 0.8 and 0.85 with the
extra refinement level and increased grid sizes as we used for
the spin 0.9 runs. We then recalculated the series that gives a
maximum value for spin 0.8 of 21 802� 191 km=s.
Compared to the original grid computation of 21 903�
213 km=s, this leads to a difference of 101 km=s or 0.46%.
Conclusions.—In Fig. 8 we display the spectrum of

radiated energy by adding the leading ðl ¼ 2; m ¼ 0;�2Þ
modes for one of the peak recoil cases (b ¼ 2.38, s ¼ 0.85,
γv ¼ 1.1) for different orientation angles φ of the spin. We
observe a bulge at low frequencies, corresponding to the
initial data content and “bremsstrahlunglike” radiation of
the holes approaching each other from D ¼ 50M and that
the different spin orientations do not produce notable
differences in this part of the spectrum. Meanwhile, at
higher frequencies (by an order of magnitude), correspond-
ing to when the holes reach the critical separation 2bcM ¼
4.76M and then subsequently merge, the spectrum shows a
strong dependence on the spin orientations.
To summarize, we have been able to provide an accurate

estimate of the ultimate recoil, product of the high energy

collision of two black holes. In order to perform the four
dimensional search (momentum γv, impact parameter b,
spin orientation φ, and magnitude s) we performed 1381
simulations in search for the critical bc marginally leading
to merger and the corresponding value of γmax that
maximized the recoil all as a function of φ for each s.
Extrapolation to extreme spins (as shown in Fig. 7) have led
us to estimate the value of 28 562� 342 km=s for the
ultimate recoil, placing thus a bound for it of below 10% the
speed of light.
We thus note here the crucial relevance of the holes’ spin

magnitude and orientation in the determination of the high
energy collision kicks. In a follow-up paper [48] we plan to
study in detail also the role of the spins in the determination
of the absolute maximum energy and angular momentum
radiated by such systems.
Figures 4 and 6 display a cusplike dependence with the

impact parameter b around its bmax value that is reminiscent
of critical behavior separating direct merger from scattering
of the holes. Critical behavior was discussed in detail in
Ref. [26] in the context of the energy radiated by this
ultrarelativistic black hole encounters, identifying impacts
parameters for direct merger b� and unbound scattering
bscat. Here, we observe this kind of behavior regarding the
approach to the maximum radiated linearmomentum as the
impact parameter reaches its critical value bmax and γvmax,
analogous to the critical temperature and pressure in a
liquid-gas system. The intermediate impact parameter
region between direct merger and direct scattering acts
in a way to match those values of the recoil velocity in a
continuous way, thus conforming the equivalent of a
second order phase transition (in the Ehrenfest classifica-
tion). Further studies to verify critical behavior and to
obtain critical exponents, as to verify to what extent one can
speak of universality, order parameters, and scaling proper-
ties in this context, is certainly of interest and deserves
follow-up research, preferably with semianalytic methods
[48] since 3D critical phenomena remains extremely
challenging with full numerical relativity.
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TABLE I. All simulations have equal mass m1 ¼ m2 black holes, and are initially placed at x1;2 ¼ �25M. The relaxed spin
magnitudes jsrj are used for the final fit. Measured maximal recoil velocities and its extrapolation (order) to infinite resolution are given
on the right panel.

Number of runs �s jsrj bmax ðγvÞmax Vn100
max (km=s) Vn120

max (km=s) Vn144
max (km=s) V∞

max (km=s) Order

72 0.40 0.400 2.38 1.20 11 637� 67 11 827� 67 11 944� 64 12 133� 189 2.7
233 0.70 0.699 2.38 1.10 19 832� 267 20 163� 267 20 360� 262 20 649� 289 2.9
472 0.80 0.789 2.38 1.10 22 212� 228 22 583� 226 22 800� 217 23 104� 304 3.0
305 0.85 0.838 2.38 1.10 23 291� 514 23 666� 486 23 892� 482 24 231� 339 2.8
299 0.90 0.885 2.38 1.09 24 172� 579 24 609� 565 24 870� 552 25 256� 386 2.8

FIG. 8. The spectrum of the (l ¼ 2 modes) energy radiated
dEl¼2=dω by a representative set of simulations (with b ¼ 2.38,
s ¼ 0.85, γv ¼ 1.1) for different orientation angles φ of the spin.
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