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Exchangeable liquid crystal elastomers (XLCEs), an emerging class of recyclable polymer materials,
consist of liquid crystalline polymers which are dynamically crosslinked. We develop a macroscopic
continuum model by incorporating the microscopic dynamic features of the cross-links, which can be
utilized to understand the viscoelasticity of the materials together with the dynamic nematic order. As
applications of the model, we study the rheological responses of XLCEs in three cases: stress relaxation,
strain ramp, and creep compliance, where the materials show interesting rheology as an interplay between
the dynamic nematic order of the mesogenic units, the elasticity from the network structure, and the
dissipation due to chain exchange reactions. Not only being useful in understanding the physical
mechanism underlying the fascinating characteristics of XLCEs, this work can also guide their future
fabrications with desired rheological properties.
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In liquid crystal elastomers (LCEs), the coupling
between the macroscopic shape change and the alignment
of the microscopic mesogenic units offers the possibility of
performing mechanical works by tuning the orientational
order of the mesogenic units, which was first proposed by
de Gennes in 1975 as a competitive candidate of thermo-
tropic mechanical actuators [1]. A well-aligned monodo-
main LCE possesses very attractive mechanical properties
[2–5], e.g., reversible large strain deformations, high
strength, and excellent toughness, and LCEs can exhibit
interesting “soft elasticity” (zero stress for material defor-
mation) due to the coupling between the polymer elasticity
and the nematic order [6,7]. Because of such physical
properties, LCEs can serve as actuators [8–10], dampers
[6,11], adhesives [12,13], etc. Nevertheless, the difficulties
in achieving a uniform alignment of the mesogenic units
due to the random quenched disorder [14,15] and the
nonrecyclability of the material as other common thermo-
sets [16,17] hinder wide applications of LCEs in industry.
In order to overcome such shortcomings of LCEs, the

first exchangeable liquid crystal elastomer (XLCE) was
synthesized in 2014, where the permanent cross-links in
LCEs are replaced by dynamic ones based on the trans-
esterification reaction allowing the network to rearrange its
topology (illustrated in Fig. 1) [18]. After this, various
XLCEs are fabricated in laboratories by utilizing different
dynamic covalent chemistry techniques (transesterification
[19–21], Diels-Alder reaction [22], disulfide exchange
[23], etc.) to implement the bond exchange reaction in
XLCEs, which have been recently reviewed in Ref. [24].
Depending on the dynamics of the bond exchange reaction,

XLCEs can be categorized into associative (new bonds
form first and then old bonds break) and dissociative (old
bonds break first and then new bonds form) ones as for
other covalently adaptive networks; the associative XLCEs
can easily maintain the integrity compared with the dis-
sociative ones because the crosslink number in associative
XLCEs is conserved while that in dissociative ones can
decrease with time. The introduction of the chain exchange
reactions in XLCEs makes it possible to fabricate macro-
scopic LCEs with perfect nematic alignment (first achiev-
ing perfect alignment in XLCEs by mechanical loading or
applying external fields at high temperatures at which chain
exchange reactions can easily happen, and then quenching
the material to the room temperature or other temperatures
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FIG. 1. A main-chain XLCE consists of liquid crystalline
polymers [the mesogenic units (cyan) are embedded into the
flexible polymer backbone], where the polymers are dynamically
crosslinked by covalent bonds (yellow dots).
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in applications), and now XLCEs are treated with signifi-
cant potentials for industrial applications. However, despite
the remarkable experimental advances in fabricating differ-
ent XLCEs and the promising potentials of their future
applications, a theoretical framework for understanding the
rheology of XLCEs is still absent, mainly due to the
complexity in the coupling between the dynamically
evolving nematic order, the entropic elasticity of the
polymeric material, and the dissipation due to chain
exchange reactions.
In this Letter, we construct a macroscopic continuum

model of XLCEs, in which the microscopic dynamics of the
cross-links are incorporated. Based on this model, the
viscoelasticity and the dynamic nematic order of XLCEs
can be analyzed, for which three common rheology tests are
shown: stress relaxation, strain ramp, and creep compliance.
Theoretical framework.—We shall consider associative

XLCEs in the following, which possess a constant number
of cross-links maintaining the integrity of the materials. In
such XLCEs, the bond exchange reaction resembles that in
vitrimers (a class of associative covalent adaptive networks
without mesogenic units [25,26]), which happens with the
rate β ¼ ω0 exp½−We=kBT� [27–29], where ω0 denotes the
thermal fluctuating frequency and We denotes the energy
barrier of the bond exchange reaction. In certain cases,
forces acting on the crosslinked polymers can also influ-
ence the bond exchange rate [30–32], and here we ignore
such mechanochemical effect for seeking the transparency
of the theory. Note that we would not consider other
relaxation modes, e.g., Rouse relaxation, in this work for
simplicity, whose timescale is usually well separated from
that of the chain exchange reactions for most of the XLCEs
fabricated in laboratories currently but can be comparable
in certain cases. The newly crosslinked polymers at the
moment of the bond exchange reaction are assumed to be in
their relaxed state, i.e., the reference states of both the
polymers and the associated mesogenic units depend on the
time when bond exchange reactions happen.
Similarly with ordinary vitrimers of which the polymers

can also dynamically break from and re-cross-link to the
cross-links, the total number of the crosslinked chains in
XLCEs can be expressed as [27]

NðtÞ ¼ N0e−βt þ N0

Z
t

0

dt0βe−βðt−t0Þ; ð1Þ

where N0 denotes the number of the crosslinked chains at
time t ¼ 0, the first term on the right-hand side denotes the
number of the crosslinked chains which are crosslinked at
time t ¼ 0 and remain crosslinked until time t, and the
second term denotes the chains which are crosslinked at
different time t0 > 0 and remain crosslinked until time t.
Obviously, the total number of crosslinked chains is a
constant NðtÞ≡ N0, one of the key features of associative
XLCEs.
Since the reference states of the polymers and the

mesogenic units are defined when they are crosslinked,

the free energy density of an XLCE can be expres-
sed as

FXLCEðtÞ ¼ e−βtFLCEðt; 0Þ þ
Z

t

0

dt0βe−βðt−t0ÞFLCEðt; t0Þ;

ð2Þ
where FLCEðt; t0Þ denotes the free energy density of the
permanently crosslinked XLCE at time t (i.e., LCE),
referenced at its crosslinking time t0. In other words, an
XLCE can be treated as a set of LCEs prepared with
different reference states. In the following, we shall take
nematic XLCEs which are the most common class fab-
ricated in laboratories for illustrating the dynamic features
of XLCEs. The free energy density of a permanently
crosslinked LCE, FLCE ¼ Fpol þ Fnem, consists of the
contributions from both the polymer elasticity and the
nematic elasticity [4]. Suppose the deformation gradient
tensor is E, and the mesogenic units form nematics where
the nematic tensor is Q ¼ Qð3n̂ n̂−δÞ=2 with Q as the
nematic order parameter and n̂ as the nematic director.
Then the polymer elasticity of incompressible XLCEs can
be described by the neoclassical theory [4,33], Fpol ¼
ðG=2ÞfTrðl0 · ET · l−1 · EÞ þ ln½DetðlÞ=Detðl0Þ�g with
G as the shear modulus, and l0 and l as the step length
tensor before and after the deformation, respectively. l0

and l are not unit tensors due to the presence of the
mesogenic units, and the values depend on the nematic
order parameter Q; for LCE of freely joint main chain
polymers, there is a simple relation: l ¼ aðδþ 2QÞ with a
as the length of one mesogenic unit [4], and this will be
taken in the following discussions. For nematic elasticity,
we simply take the Landau-de Gennes model, Fnem ¼
AQ2=2 − BQ3=3þ CQ4=4 with the coefficients A, B, and
C with the same dimension of the elastic modulus [34]; in
this Letter, we take a fixed and reasonable parameter set for
describing the nematic elasticity: A ¼ 20G;B ¼ 4G, and
C ¼ 30G, without losing generality of the discussions. The
effect of the spatial gradient of the nematic order as
described by Frank energy [35] is neglected in this
continuum model, and such approximation is fine when
the characteristic length of the material exceeds the nematic
penetration length of XLCEs/LCEs [4], ξ ¼ ffiffiffiffiffiffiffiffiffiffi

K=G
p

∼
10 nm, where K and G are the Frank constant and the
shear modulus of the material, respectively; the spatial
gradient of the nematic order can be important when there
are nanoscaled orientational patterns formed in the materi-
als, which will not be discussed in this Letter.
We shall discuss the responses of XLCEs subjected to a

uniaxial stretch in the following, in order to demonstrate the
rheological properties of XLCEs quantitatively. The de-
formation gradient tensor of the uniaxial stretch along the
x axis which is referenced at time t ¼ 0 is Eðt; 0Þ ¼
Diag½λðtÞ; 1= ffiffiffiffiffiffiffiffi

λðtÞp
; 1=

ffiffiffiffiffiffiffiffi
λðtÞp �, where λðtÞ denotes the elon-

gation ratio of the sample along the x axis. For the chains
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crosslinked at time t0, the deformation gradient tensor in
the neoclassical theory is Eðt; t0Þ ¼ Eðt; 0Þ · E−1ðt0; 0Þ, cor-
respondingly. Meanwhile, for the chains crosslinked at time
t0, they can have their initial nematic order defined asQðt0Þ ¼
Q0 satisfying ∂Fnem=∂QjQ0

¼ 0; note that Q0 does not
depend on the deformation history of the materials, which
is different from the reference state of the mechanical part
defined based on the deformation history. We shall focus on
the case of Q0 ¼ 0 in this Letter which stands for XLCEs
whose vitrification temperature is higher than the nematic-
isotropic transition temperature, i.e., Tv > Tni, mainly in
order to avoid the possible complexity of the polydomains in
LCEs. The adiabatic approximation for the chains cross-
linked at different time is taken, i.e., the nematic order of the
chains only evolveswith their own experienceddeformations
rather than being influenced by others, which works well
when polymers in the network are not dense. Then at time t,
the nematic order of the chains crosslinked at time t0 can be
expressed as Qðt; t0Þ. Without any direct manipulations on
the nematics, e.g., by applying an electric field, the nematic
order of the sample can be determined at given deformations,
by δFXLCEðtÞ=δQðt; t0Þ ¼ 0, which defines the coupling
between the nematic order Qðt; t0Þ and the mechanical
loading Eðt; t0Þ (see Supplemental Material [36]). Then
we can obtain the constitutive relation by σðtÞ ¼
∂FXLCEðtÞ=∂λðtÞ, as

σðtÞ
G

¼ e−βt
�
λðtÞ

l0
k

lkðt;0Þ
−

1

λ2ðtÞ
l0⊥

l⊥ðt;0Þ
�

þ
Z

t

0

dt0βe−βðt−t0Þ
�
λðtÞ
λ2ðt0Þ

l0
k

lkðt; t0Þ
−
λðt0Þ
λ2ðtÞ

l0⊥
l⊥ðt; t0Þ

�
;

ð3Þ

where l⊥ðt; tÞ ¼ a½1 −Qðt; tÞ� and lkðt; tÞ ¼ a½1þ
2Qðt; tÞ� denote the component of the step length tensor
(diagonal) in the parallel and perpendicular direction regard-
ing the stretch, respectively. For ordinary vitrimers, i.e.,
without the nematic order, one can simply takel⊥ ¼ lk ¼ a
in Eq. (3) to calculate the responses of vitrimers [28], which
will be used for comparisons between XLCEs and vitrimers
in the following discussions. Meanwhile, the total nematic
order of the XLCEs, one of the most characteristic features,
can be obtained by

QtotðtÞ ¼ e−βtQðt; 0Þ þ
Z

t

0

dt0βe−βðt−t0ÞQðt; t0Þ ð4Þ

by summing up the contributions from all crosslinked
polymers. Obviously, the constitutive relation [Eq. (3)]
denoting the viscoelastic properties of the XLCEs is coupled
with the dynamic evolution of the nematic order [Eq. (4)],
which is the key for understanding the differences in the
viscoelastic responses between XLCEs and vitrimers. Based

on the above theoretical framework, we shall discuss the
responses of XLCEs in three common rheology tests: stress
relaxation, strain ramp, and creep compliance.
Stress relaxation.—In a stress relaxation measurement,

the sample of the reference state (λ0 ¼ 1, Q0 ¼ 0) is
stretched instantaneously at time t ¼ 0 with the stretch ratio
λI (strain as εI ¼ λI − 1) along the ex direction, and then the
mesogenic units, randomlyoriented at the beginning, are also
along the same direction now due to the stretch.
Simultaneously, the nematic order of theXLCEwill increase
to QI by optimizing the free energy of liquid crystal
elastomers, which is QI ¼ κðλI − 1Þ for λI → 1 with κ ¼
3=½AðTÞ þ 3� (see the Supplemental Material [36]). By
keeping the stretch ratio as λI, it is obvious from Eq. (3)
that the tensile stress relaxes exponentially with time (see
the comparison with experiments in Fig. 2), σðtÞ=G ¼
e−βt½λIl0

k=l
I
k − l0⊥=ðλ2I lI⊥Þ� with l0;I

k ¼ a½1þ 2Q0;I� and

l0;I
⊥ ¼ a½1 −Q0;I�, since the second term on the right-hand

side of Eq. (3) does not contribute due to the fact that the
current deformation state (with stretch ratio λI) is identical to
the reference state (being crosslinked with stretch ratio λI).
Meanwhile, the nematic order of the XLCE also decays
exponentially due to the chain exchange reaction,
QðtÞ ¼ QIe−βt, which is illustrated in Fig. 2. In experiments,
the stress can relax in the form of the stretched exponential
function, i.e., e−ðβtÞα with 0 < α < 1 as the stretch factor
whose value can depend on the polydispersity of the energy
barriers for the chain exchange reaction [31],mesh sizes [43],
etc. In this case, one needs to change the single exponential-
decaying prefactor e−βt and the memory kernel e−βðt−t0Þ in
Eqs. (1) and (2) to the ones incorporating the distribution of
all relaxation modes, and interested readers can refer to the
Supplemental Material [36].
Strain ramp.—Consider an XLCE subjected to a ramp

deformation, i.e., the elongation ratio (thus the applied
strain) increases linearly with time, λðtÞ ¼ 1þ _γt with _γ as

0.0 2.0×103 4.0×103 6.0×103 8.0×103
0.0

0.2

0.4

0.6

0.8

1.0

st
re

ss
/

0

time [s]

= 1.0×10-3 s-1 (190 C)

= 2.6×10-3 s-1 (210 C)

0.0 4.0×10
3

8.0×10
3

0.0

0.5

1.0

Q
/Q

I

time [s]

FIG. 2. Stress relaxation of XLCEs, with the dots extracted
from the experiments [18] and the solid lines fitted by the
equation σðtÞ=σ0 ¼ e−βt (the inset denotes the accompanying
relaxation of the nematic order).
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the constant strain rate. During such a stretch process, the
stress develops with the strain following the constitutive
relation [Eq. (3)], and the information of the total nematic
order can be obtained by Eq. (4). As illustrated in Fig. 3(a),
the stress-strain curves of XLCEs obviously lie below those
of vitrimers which are stretched with the same strain rate,
due to the feedback of the increased nematic order (induced
by the stretch) in the stress-strain relation. In Fig. 3(a), the
stress of XLCEs first increases and then decreases with the
stress, where the increase is due to the natural elasticity of
the networked material before the occurrence of a signifi-
cant amount of chain exchange reactions, and the decrease
is due to the memory loss by the chain exchange reactions.
We introduce yielding time τy defined by dσ=dtjτy ¼ 0

and the yielding strain as εy ¼ _γτy to characterize when
such elasticity-plasticity transitions happen. Note that the
total nematic order exhibits a similar response with the
stress, but the yielding strain for the nematic order εQy is
larger than that defined in the stress-strain curves, εy
[shown in the inset of Fig. 3(a)]. With the increase of

the strain rate, yielding time τy decreases while the yielding
strain εy increases, which can be obtained by numerically
solving Eq. (3) and is shown in Fig. 3(b). Alternatively, one
can simply take an approximate relation between the
nematic order with the applied strain: Qðt; t0Þ ¼ κ εðt; t0Þ
(see the Supplemental Material [36]) and expand the stress-
strain relationship in terms of ε and ε2 before taking the
time integral, and then the relationship between the yielding
time and the strain rate can be obtained as

τy ≃
1

β
lnð1þ β=2_γÞ: ð5Þ

For _γ=β ≪ 1, this simple relation matches very well with
the full numerical calculations [shown in Fig. 3(b)] and
Eq. (5) can be expressed as τy ≃ 1

β lnð1þ β=2_γ − κ ln κÞ for
large κ].
Creep compliance.—By exerting a constant tensile stress

σ0 on an XLCE, the material will instantaneously elongate
with an initial strain εI as in the stress relaxation measure-
ments; such a stress-strain relation is shown in the inset of
Fig. 4. Three stress values are taken to show the creep
compliance of XLCEs, σ0=G ¼ 0.1, 0.3, and 0.6.
Obviously from Fig. 4, the strain first increases with time
in the linear manner after the instantaneous strain εI and
then accelerates in long time response, which is named as
strain thinning in rheology. Also, the nematic order
responds similarly to the strain (not shown here), i.e., Q
first increases linearly and then accelerates.
In order to quantitatively measure the strain evolution of

XLCEs in the short time limit, we can define an effec-
tive viscosity: η0 ¼ σ0 · ðdεdt jt¼0Þ−1. By expanding the strain
in the short time limit εðtÞ ¼ εI þAtþO½ðβtÞ2� and
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lines with _γ=β ¼ 0.2 and ∞ as two examples for comparison).
Square dots on the curves denote the yielding points where the
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nematic order of XLCEs changes with the strain. (b) Dependence
of the yielding time βτy on the applied strain rate _γ=β (both with
the time unit defined by 1=β) of XLCEs, and the inset shows the
relations between the yielding strain _γτy and the strain rate _γ=β.
The dots denote the numerical results, and the lines denote the
analytic relation shown in Eq. (5).
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imposing the stress in Eq. (3) as the constant σ0, then we
can obtain

η0 ¼ σ0 ·A−1 ≃ ½βεI þ βð1þ κÞε2I �−1; ð6Þ

which shows that the effective viscosity decreases with the
applied strain or the stress. Such a simple linear relation
εðt → 0Þ − ε0 ¼ At nicely captures the initial stage of the
creep compliance of XLCEs (dotted curves in Fig. 4). Note
that the strain of XLCEs is larger than that of ordinary
vitrimers under the same condition (time and stress), which
results again from the coupling between the nematic order
and the mechanical properties in XLCEs. Resembling the
response of ordinary vitrimers [28], the effective viscosity
of XLCEs decreases with time (or strain), exhibiting strain
thinning behaviors due to the mechanical memory loss
arising from chain exchange reactions. Note that it is also
possible for XLCEs to exhibit strain thickening responses
for large deformations due to finite stretchability of the
materials [44], for which one needs to replace the neo-
classical model of Fpol with the one incorporating finite
stretchability of the materials.
In conclusion, we construct a macroscopic continuum

model for describing the viscoelastic properties of XLCEs,
by incorporating the microscopic dynamics of the chain
exchange reactions and the dynamic evolution of the
nematic order. By applying the model, we show how
XLCEs respond in typical rheology tests, including stress
relaxation, ramp deformation, and creep compliance, where
the coupling between the mechanic properties of the
crosslinked network and the nematic order endows
XLCEs with very fascinating rheological responses. This
portable model can be easily generalized to analyze the
rheology of XLCEs in other deformation circumstances,
e.g., oscillatory shear and biaxial stretch-compression,
XLCEs with nonzero initial nematic orders, or even for
XLCEs with more complex network structures such as
double-networked ones. We also hope that this theoretical
work can guide future industrial fabrications of XLCEs
with designed viscoelastic properties.
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