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We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn
generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary
in their physical parameters. The iMODE method learns metaknowledge, the functional variations of the
force field of dynamical system instances without knowing the physical parameters, by adopting a bilevel
optimization framework: an outer level capturing the common force field form among studied dynamical
system instances and an inner level adapting to individual system instances. A priori physical knowledge can
be conveniently embedded in the neural network architecture as inductive bias, such as conservative force
field and Euclidean symmetry. With the learned metaknowledge, iMODE can model an unseen system within
seconds, and inversely reveal knowledge on the physical parameters of a system, or as a neural gauge to
“measure” the physical parameters of an unseen system with observed trajectories. iMODE can be generally
applied to a dynamical system of an arbitrary type or number of physical parameters and is validated on
bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
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Building predictive models of dynamical systems is a
central challenge across diverse disciplines of science and
engineering. Traditionally, this has been achieved by first
manually deriving the governing equations with carefully
chosen state variables and then fitting the undetermined
physical parameters using observed data, e.g., [1–3]. In
order to avoid the painstaking formulation of analytical
equations, researchers have recently leveraged advances
in machine learning and the data-fitting power of neural
networks (NNs) to make the modeling process both
automatic and more expressive [4]. This is achieved by
either adopting the conventional physics-based approach
as a starting point and then replacing various components
with data-driven modules [5,6], or directly learning
discrete dynamics using autoregressive models from
high-dimensional observations [7–9]. These works, while
promising, need to fit dedicated models separately for
different system instances with different parameters, which
limits a model’s applicability to one specific instance.
In this Letter, our goal is to learnmetaknowledge, the form

of dynamics that is unrestricted to specific physical param-
eters or initial and boundary conditions, on dynamical
systems to reveal physical insights [10–12] and to signifi-
cantly improve the generalization ability of data-driven
models. Specifically, we learn the shared dynamics form
from the trajectories generated by a series of dynamical
system instances in spite of their diversified behaviors in
data, without knowing the system parameters. This separates

our work fromRefs. [13,14] and neural operators [15–18], in
which true parameters should be provided. This goal aligns
with that of multitask metalearning [19], which aims to
leverage the similarities between different tasks to enable
better generalization and efficient adaptation to unseen tasks.
We propose an efficient and interpretable method to

model a family of dynamical systems using their observed
trajectories, by combining gradient-based metalearning
(GBML) [20–24] with neural ordinary differential equa-
tions (NODEs) [6,25,26]. In recognizing that the systems
have shared dynamics form and varying physical param-
eters, we separate the model parameters into two parts: the
shared parameters that capture the shared form of dynam-
ics, i.e., the metaknowledge, and the adaptation parameters
that account for variations across system instances. The
method generalizes well on unseen systems from the same
family, and the adaptation parameters show good interpret-
ability. The intrinsic dimension of the varying system
parameters can be estimated by analyzing the adaptation
parameters. Given ground truth of the system parameters,
simple correspondence can be established between the
adaptation parameters and actual physical parameters
through diffeomorphism, which can be utilized as a “neural
gauge” to measure properties of new systems through
observed trajectories. We name our method interpretable
meta neural ODE (iMODE).
In a general autonomous second-order system, the

state of the system y contains the position (generalized
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coordinates) x and the velocity _x. The dynamics of the
second-order system is expressed equivalently as a first-
order system

_y ¼
�
_x

ẍ

�
¼

�
_x

M−1FϕðyÞ
�
; where y ¼

�
x

_x

�
ð1Þ

where Fϕ is the force vector containing all the internal and
external forces, and M is the mass matrix. With a set of
physical parameters ϕ, the force function Fð·Þ dictates the
dynamics of the system, which determines a unique
trajectory yðtÞ given an initial condition yðt0Þ. In the
remainder of the Letter, without loss of generality,
mass is normalized to an identity matrix, i.e., M ¼ I. It
should be noted that, with this general formulation, the
proposed method is applicable to systems other than second
order (e.g., first-order diffusion-reaction systems; see
Supplemental Material (SM) [27] S6) and can be easily
extended to nonautonomous systems (the forcing term
should be provided).
Trajectories are collected from multiple system instances

into a dataset D. Consider Ns instances that share the
dynamics form Fϕð·Þ, but have distinct physical parameters,
fϕ1;…;ϕNs

g, respectively. From each system instance,
Ntr trajectories are observed, each containing observations
across T time steps. In summary, D ¼ ffyi;jðtkÞgTk¼0ji ¼
1;…; Ns; j ¼ 1;…; Ntrg. The data-driven model is trained
on D, knowing which trajectories are from the same
system instance (i.e., given both the index i and j of
trajectories), but is not given the knowledge of fϕigNs

i¼1.
Take the pendulum system as an example. An instance is
a pendulum with a specific arm length (since the inertia is
normalized), therefore ϕ includes only the arm length.
A trajectory contains the location and speed of the
pendulum during a time period.
In our framework, a neural network fθðy; ηÞ [Fig. 1(a);

see SM [27] S7 for detailed description] replaces FϕðyÞ in
Eq. (1) to approximate the observed trajectories, where η is
adapted to each system instance such that with a certain ηi,
fθðy; ηiÞ approximates the force function of the ith system
instance Fϕi

ðyÞ. After training, η becomes a proxy for the
physical parameters ϕ. θ is the model parameters that
capture the functional form of dynamics shared across
system instances. The predicted trajectory starting from an
initial condition y0 is given by integration (the fifth-order
Dormand-Prince-Shampine solver is used throughout this
Letter to compute integrals)

ŷðt; y0; θ; ηÞ ¼ y0 þ
Z

t

t0

fθðŷðτÞ; ηÞdτ ð2Þ

For brevity, we denote the trajectory yi;jðtÞ as yi;j, the
corresponding prediction ŷðt; yi;jðt0Þ; θ; ηÞ as ŷi;jðθ; ηÞ,

and use kyi;j − ŷi;jðθ; ηÞk2 to denote
P

T
k¼0 ðyi;jðtkÞ−

ŷðtk; yi;jðt0Þ; θ; ηÞÞ2, the squared difference between yi;j
and ŷi;jðθ; ηÞ across all time steps.
The goal of the modeling is formulated as a bilevel

optimization [Fig. 1(b)],

outer∶ min
θ

L̃ðθÞ ¼ 1

Ns

XNs

i¼1

Liðθ; ηðmÞ
i Þ; where ð3Þ

Liðθ; ζÞ ¼
1

NtrT

XNtr

j¼1

kyi;j − ŷi;jðθ; ζÞk2; ð4Þ

inner∶ ηðlþ1Þ
i ¼ ηðlÞi − α∇ηLiðθ; ηðlÞi Þ; ηð0Þi ¼ η ð5Þ

where the inner level involves an m-step gradient descent
adapting η for each instance, while the outer level finds the

(a) (b)

(c) (d)

FIG. 1. (a) In iMODE, a neural module Fθ parameterized by θ
takes the concatenation of system state y and the adaptation
parameters η and generates the estimated force as output. (b) The
bilevel iteration process in the iMODE method. The NN weights
θ are shared across system instances while η is adapted for each
instance. The metagradient with respect to θ aggregates the
gradients evaluated with instance-adapted η. (c) Examples of
estimated force field fθð·; ηÞ for Van der Pol system instances that
differ in their ϵ parameter (in ascending order from top to
bottom). The estimation quality is further evaluated through
the trajectories generated by the fields as shown in (d). (d) The
estimated force field can be used to predict system trajectories
for unseen initial conditions through integration [Eq. (2)]. The
signature limit cycles of Van der Pol systems are faithfully
reproduced.
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optimal initialization for θ. α is the inner-level stepsize and

ηðmÞ
i is the adaptation parameters for the ith system instance
after m steps of adaptation. For short, we denote such ith
adaptation result as ηi. Note that ηi depends on both θ and η
as shown in Eq. (5). To avoid higher-order derivatives, we
simplify such dependency following the first-order model
agnostic metalearning (first-order MAML) [20] and use the
outer-level step as

θ←θ−
β

Ns

X
i

∇θLiðθ;ηiÞ;
�
assuming that

∂ηi
∂θ

¼0

�
ð6Þ

where β is the outer-level stepsize. At both the inner level
and outer level, the gradient calculation for functions
involving integrals is enabled by NODEs [6,25,26].
As shown in Fig. 1(c), fθð·; ηÞ specifies a force field that

morphs as η changes. Note that m is normally quite small
(e.g., 5), so given trajectories of a previously unseen
system, η can be efficiently updated with few gradient
steps, adapting the NN to specify a force field explaining
behaviors of the new system, which is one order-of-
magnitude faster compared to training from scratch
[Fig. 3(a)]. Trajectories with arbitrary initial conditions
can be inferred based on the force field [Fig. 1(d)].
Generally speaking, there is no restriction to the dimension
of ϕ, i.e., the number of physical parameters of the system.
However, as it increases, more system instances (larger
training dataset) and hence longer training time of iMODE
is expected.
First we validate the modeling capability of the iMODE

algorithm on three cases: oscillating pendulum, bistable
oscillator, and Van der Pol system (see SM [27] S1 for
detailed description). The oscillating pendulum has one
physical parameter, i.e., the arm length (rotational inertia
normalized). Figure 2(a) shows that the predicted trajecto-
ries using task-adapted NNs match the ground truth of each
system. Figure 2(b) shows that the learned η correlates well
with the effective stiffness of the pendulum, i.e., 1=L.
Effectively η acts as a proxy of the true arm length and can
be used to infer such parameters of unseen systems.
The bistable system has a potential energy function

controlled by two parameters, k1 and k3. Its potential
energy has two local minima, or potential wells. When
the initial conditions vary, the bistable system can oscillate
intrawell or interwell. Figure 2(c) shows that the task
adapted trajectories (m ¼ 5) match the ground truth well.
Figure 2(d) shows that the identified η ∈ R2 has two
principal axes, along which k1 and k3 increases. As
mentioned, η is effectively a proxy for k1 and k3. Later
wewill show that the mapping from η toϕ ¼ ½k1; k3� can be
constructed as a diffeomorphism with NODEs.
The Van der Pol system has three physical parameters

ϕ ¼ ½ϵ; δ;ω�. It exhibits limit cycles due to the negative
damping for small oscillation amplitudes. Figure 2(e)
shows that the evolution of limit cycles due to the change

of physical parameters is well predicted. Three principal
axes can be found for the identified η. The one for ω is
shown in Fig. 2(f) (see SM [27] S1 for the other two).
Again, the mapping from η to ϕ ¼ ½ϵ; δ;ω� can be con-
structed as a diffeomorphism.
The fast adaptation of iMODE is demonstrated with

the bistable systems in Fig. 3(a). The iMODE is able to
adjust the adaptation parameters in five steps to learn the
dynamics of unseen system instances. Training the same
network from scratch (random initialization) on the same
test dataset requires much more epochs to achieve a
comparable accuracy. When evaluated on trajectories with
unseen initial conditions (of distinct conserved energies),
the performance of iMODE-adapted models outperforms
that of the model trained from scratch by several orders
of magnitude, showing superior generalization ability
with limited data (see SM [27] S3 for a more disparate
comparison when data is scarce).
Second, we demonstrate the combination of the iMODE

algorithm with certain physics priors for efficient modeling
of more complicated systems. Since iMODE does not

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) The metalearning results for the pendulum. The
iMODE trajectory prediction (circles) with different arm lengths
(different colors) match those of the ground truth (solid lines).
(b) The learned η is in good correlation with the effective stiffness
of different pendulums (1=L). (c) The predicted trajectories
(circles) match those of ground truth (solid lines) with different
initial conditions (black stars) and different system parameters
(different colors) for the bistable system. (d) Two principal axes
can be identified from the latent space of the learned η, each
regarding the variation of one physical parameter. (e) Similar to
(c) but for the Van der Pol system. (f) The principal axis with
respect to the variation of ω for the Van der Pol system.
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assume specific architecture of fθ, a wide range of neural
network architectures can be adopted to embed appropriate
inductive biases. For example, in bistable and the following
wall bouncing and Slinky systems, the assumption of
conservative force is introduced, where the system dy-
namics is determined by a potential energy function.
Accordingly we take a specific form for the neural force
estimator fθðx; ηÞ ¼ ∂Eθðx; ηÞ=∂x. That is, the NN first
outputs an energy field and then induces the force field
from the energy field (using autodifferentiation [29]).
In this way, iMODE enables the fast adaptation of not only
the force field but also the potential energy field for the
parametric systems. The learned potential energy functions
are shown in Fig. 3(b). The wall bouncing system has a
potential energy well that is not a linear function of the well’s
(half-)width w or the particle position x (see SM [27] S2).
However, iMODE is still able to approximate the discon-
tinuous energy function. η correlates well with the true

widthw, i.e., we can control the width of the potential energy
well by tuning η (see SM [27] S2).
The intrinsic dimension dϕ of the physical parameters ϕ

can be estimated by applying principal component analysis
(PCA) to the collection of the η vectors, each adapted to one
of the system instances. Using an “elbow” method on the
cumulative explained variance ratio curve of the PCA
result, the number of the principal components that explain
the most of the variance has a good correspondence
with dϕ, as long as dη ≥ dϕ, where dη is the dimension
chosen for η. The PCA results on the pendulum, bistable
system, and Van der Pol system are shown in Fig. 3(c) (see
SM [27] S4 for the results of other systems). Taking the
Van der Pol system as an example, dη is respectively 3, 4,
or 5 for the three curves with triangle markers. In all three
cases, the first three principal components explain more
than 99% of the variance, and the elbow appears at 3,
which corresponds well with the fact that dϕ ¼ 3 for the
Van der Pol system.
Neural gauge.—Without labels for the physical parame-

ters, iMODE develops a latent space of adaptation param-
eters accounting for the variations in dynamics among
system instances. Given the physical parameter labels of
the system instances in the training data, a mapping between
the space of the physical parameters and the latent space
can be established so that the corresponding physical
parameters can be estimated given any point in the latent
space. iMODE therefore can be exploited as a neural gauge
to identify the physical parameters of unseen system
instances, and the establishment of such mappings can be
seen as a calibration process. We propose to construct such
mappings as diffeomorphism, which can be learned with a
neural ODE dzðtÞ=dt ¼ gξðzÞ, such that starting from a
given point in the latent space, zð0Þ ¼ ηi, the state z at t ¼ 1
gives the corresponding physical parameters, zð1Þ ¼ ϕi,
i ¼ 1;…; Ns. For simplicity, the dimension of the latent
space and that of the physical parameter space are assumed
to match (dη ¼ dϕ); see SM [27] S5 for more general
treatment. gξ is a NN whose weights are optimized
by ξ ¼ argminξ

P
i kzið1Þ − ϕik22.

Figure 3(d) shows the learned diffeomorphism for the
bistable system. The diffeomorphism establishes a bijection
between the physical space and the latent space so that a
grid in the physical parameter space can be continuously
transformed into the adaptation parameter space (see
SM [27] S9). The visualization highlights the advantages
of diffeomorphism mapping: (1) the transformation is
smooth so that the local geometric structure is preserved;
(2) invertible transformation allows a better interpretation
of the latent space compared to degenerating ones.
After constructing the diffeomorphism, we test the physi-

cal parameter identification performance on 100 randomly
selected unseen instances (with random physical parame-
ters). The identification error and time cost are shown in
Fig. 3(e) for pendulum, bistable, and Van der Pol systems.

(a) (b)

(d) (c)

(e)

FIG. 3. (a) Comparison of iMODE test adaptation vs training
from scratch on (50) unseen bistable system instances with
randomly chosen physical parameters. iMODE demonstrates fast
adaptation and good generalization within the first five adaptation
steps. (b) The true and learned potential energy functions for the
wall bouncing system. The width of the potential well increases
as the adaptation parameter increases. (c) The number of top PCA
components that preserve a significant portion (> 99%) of the
variance gives a good estimation of the dimension of true physical
parameters. (d) The diffeomorphism constructed by NODE for
the bistable system. It shows how a grid in the physical space
is continuously deformed into the latent space of adaptation
parameters. (e) The mean error and computation time of the
neural gauge for 100 systems with randomly generated unseen
parameters.
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The end-to-end identification starting from data feeding
normally takes around 2 s (see SM [27] S8 for details).
Complex systems.—We further demonstrate that iMODE

applies to complex systems with two examples: a 40-cycle
Slinky (Fig. 4) and a reaction-diffusion system described by
the Kolmogorov-Petrovsky-Piskunov (KPP) equation. In
the Slinky case, we embed Euclidean invariance for the
energy field and induce equivariance for the force field.
iMODE is able to learn from four Slinky cases (of Young’s
modulus 50, 60, 70, and 80 GPa, dropping under gravity
from a horizontal initial configuration with both ends fixed)
and then quickly generalize (with 2 adaptation steps) to an
unseen Slinky (of Young’s modulus 56 GPa) under unseen
initial and boundary conditions. In the KPP equation case,
iMODE is able to learn the reaction term with different
reaction strength coefficients in five adaptation steps under
Neumann boundary conditions and directly generalize to
unseen Dirichlet boundary conditions. Refer to SM [27] S6
for details.
We have presented the iMODE method, i.e., interpret-

able meta NODE. As a major difference from existing NN-
based methods, iMODE learns metaknowledge on a family
of dynamical systems, specifically the functional variation
of the derivative (force) field. It constructs a parametrized

functional form of the derivative field with a shared NN
across system instances and latent adaptation parameters
adapted for different instances. The NN and adaptation
parameters are learned from the difference between the
ground truth and the solution calculated by an appropriate
ODE solver. We have validated with various examples the
generalizability, interpretability, and fast adaptation ability
of the iMODE method. iMODE could open new possibil-
ities for numerous potential applications. Two examples are
autonomous modeling of dynamical systems where the
underlying physics is difficult to express as an explicit
function of controllable experiment parameters: (1) the
force-deformation constitutive relation of cells as a function
of ion concentrations in the culture medium, and (2) agile
maneuvering of dynamical systems where the timely
knowledge on the interaction between the dynamical
system and its external environment is required, such as
robotic control in a rapidly changing and partially under-
stood environment.
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