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to Magnetocaloric Entropy Change

Lokanath Patra

and Bolin Liao

Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA

® (Received 6 March 2023; revised 27 June 2023; accepted 20 July 2023; published 11 August 2023)

Materials with a large magnetocaloric response are highly desirable for magnetic cooling applications.
It is suggested that a strong spin-lattice coupling tends to generate a large magnetocaloric effect, but no
microscopic mechanism has been proposed. In this Letter, we use spin-lattice dynamics simulation to
examine the lattice contribution to the magnetocaloric entropy change in bec iron (Fe) and hep gadolinium
(Gd) with exchange interaction parameters determined from ab initio calculations. We find that indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction in hcp Gd leads to longer-range spin-
lattice coupling and more strongly influences the low-frequency long-wavelength phonons. This results in a
higher lattice contribution toward the total magnetocaloric entropy change as compared to becc Fe with
short-range direct exchange interactions. Our analysis provides a framework for understanding the
magnetocaloric effect in magnetic materials with strong spin-lattice couplings. Our finding suggests that
long-range indirect RKKY-type exchange gives rise to a larger lattice contribution to the magnetocaloric
entropy change and is, thus, beneficial for magnetocaloric materials.
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Introduction.—Magnetic refrigeration is based on the
magnetocaloric effect (MCE), which is the material’s
ability to heat (cool) when magnetized (demagnetized) in
an adiabatic process [1-4]. The MCE originates from
the magnetic order-disorder transition induced by an
external magnetic field and the associated entropy change.
Understanding and designing materials with a strong
MCE are of both great scientific and technological
importance. Fundamentally, MCE provides a convenient
probe to examine the interplay between magnetism and
other excitations in condensed matter systems [5,6].
Technologically, MCE has been widely adopted to obtain
cryogenic temperatures in space missions [7], observatory
astronomy [8], and scientific experimentation [9], where
compact and reliable cooling solutions are required.
Magnetic refrigeration near room temperature has also
been considered as an environmentally friendly alternative
to conventional refrigeration based on vapor compression
cycles [10]. MCE materials can be characterized by the
isothermal entropy change AS, which measures the
change in the equilibrium entropy of a material as a result
of an externally applied magnetic field. Under isothermal
conditions, the entropy change AS manifests itself as the
amount of heat released or absorbed by the material
when an external magnetic field is applied or removed.
Therefore, AS is a metric for the cooling capacity of an
MCE material.

Magnetocaloric materials with a strong coupling
between spin and lattice degrees of freedom are known
to exhibit a large MCE. Prominent examples are the
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first-order MCE materials, where the magnetic transition
is associated with a first-order structural phase transition
[11-13]. The observed large MCE is governed by the
concurrent magnetic and structural phase transition as a
result of the strong spin-lattice coupling since the applied
magnetic field can simultaneously change the magnetic and
lattice entropy in these materials. The lattice contribution to
the entropy change AS; has been reported to be 50%—60%
or more of the total entropy change in the materials
undergoing a magnetostructural or magnetoelastic transi-
tion [14-16]. Even in conventional second-order MCE
materials, a strong spin-lattice coupling is usually an
indicator of a strong MCE [17]. Earlier efforts to isolate
the lattice contribution to the magnetocaloric entropy
change were based on either empirical assumptions (e.g.,
the lattice contribution is proportional to magnetostriction
[18]) or mean field theories with empirical parameters
[19,20]. More recently, the combination of first-principles
calculation based on density functional theory (DFT) and
statistical models has enabled evaluations of the lattice
contribution in several materials [21-24]. These studies
enhanced our understanding of the interplay between lattice
dynamics and magnetic entropy but did not reveal the
origin of the large lattice contribution to the entropy
change, and an atomic-level understanding of the relation-
ship between spin-lattice coupling and the MCE is cur-
rently lacking. In particular, it is unclear what microscopic
mechanisms are responsible for the strong spin-lattice
coupling and the associated high MCE. In this light,
atomistic computational methods to quantify the entropy
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contributions from the spin and the lattice degrees of
freedom separately are of pivotal importance for the
discovery and optimization of the MCE materials.

The isothermal entropy change in magnetocaloric mate-
rials can be calculated from their magnetizations as
functions of temperature and applied magnetic field,
following the thermodynamic Maxwell relation [1]:

AS(T, AH) = pg A H’ (‘W(aTT’H))HdH, (1)

where AH = Hy — H; is the change of the applied external
field (H s and H; are final and initial fields, respectively), y
is the Bohr magneton, M is the magnetization, and 7 is the
temperature. The field- and temperature-dependent magneti-
zation can be obtained by simulating the dynamics of atomic
spins in magnetic materials using atomic spin dynamics
(ASD) simulations with magnetic exchange interaction
parameters (J;;, where i and j label the interacting spins)
calculated from ab initio methods [25-27]. However, these
simulations ignore the effect of thermal fluctuations of the
atoms (lattice vibrations) at finite temperatures and, thus,
cannot capture the spin-lattice coupling effect and the
resultant lattice contribution to the magnetocaloric entropy
change (AS;). Hence, ASD simulations need to be modified
to account for the lattice vibrations and explicitly include
the dependence of the spin exchange interactions on the
dynamical lattice positions in order to simulate the dynamics
of materials with strong spin-lattice coupling [28,29]. For
this purpose, spin-lattice dynamics (SLD) simulations
add the lattice dynamics and the lattice-dependent spin
exchange interactions to the ASD simulations and have
been reported to be an effective tool to predict magnetic and
thermodynamic properties of magnetic materials more
accurately [30-33]. However, SLD simulations have not
been applied to analyze the spin and lattice contributions to
the magnetocaloric entropy change thus far.

In the current study, we use SLD simulations to quantify
the spin and lattice contributions to the magnetocaloric
entropy change with a particular focus on understanding the
effect of different types of magnetic exchange interactions
on MCE. For this purpose, we carry out a thorough
comparison between two representative direct and indirect
exchange materials, body-centered-cubic (bcc) Fe and
hexagonal-closed-pack (hcp) Gd, respectively [34]. In
magnetic materials with direct exchange interactions, such
as bee Fe, the magnetic exchange interactions are mediated
directly by spin-polarized conduction electrons near the
Fermi level. In this case, the strength of the direct exchange
interaction decreases rapidly with the distance between
magnetic ions. In contrast, indirect exchange interactions
can couple magnetic moments over relatively large dis-
tances [35]. Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction is a particular form of indirect magnetic
exchange interaction that is dominant in metals with little

or no direct overlap between neighboring magnetic elec-
trons [36]. Instead, the exchange interactions between
magnetic ions are mediated by conduction electrons.
hep Gd is an archetypal example of the RKKY interaction
[37-39]. The RKKY interaction features an oscillating
interaction strength with a periodicity determined by the
Fermi wave vector that can lead to longer-range inter-
actions between magnetic ions [40]. With detailed SLD
simulations of bcc Fe and hcp Gd, we demonstrate that
longer-range RKKY interactions can lead to stronger
spin-lattice coupling affecting low-frequency and long-
wavelength phonons, which gives rise to a much higher
contribution from the lattice to the magnetocaloric entropy
change. Our study provides a microscopic mechanism for
the enhancement of MCE via spin-lattice coupling and
suggests that RKKY interaction is a preferable type of
exchange interaction when searching for materials with a
strong MCE. We note that, since the electronic contribution
to the magnetocaloric entropy change is negligible in hcp
Gd [22], the electronic entropy contribution is not dis-
cussed in this Letter.

Results and discussions.—Details of the computational
methods are provided in the Supplemental Material
(SM) [41]. The spin-dependent electron density of states
(DOS) of bece Fe and hep Gd is shown in Fig. S1 in the SM.
In bee Fe, the conducting d electrons near the Fermi level
are spin polarized and are responsible for the direct
exchange interactions. In contrast, in hcp Gd, the con-
ducting electrons near the Fermi level are not spin polarized
while the magnetism comes from the deep f electrons. In
this case, the conducting electrons mediate the RKKY
interactions. The magnetic exchange parameters (J;;) as a
function of interatomic distance (R;;) for bce Fe are given
in Fig. 1(a). In bee Fe, J;; is short-ranged as it decreases
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FIG. 1. Comparison of direct exchange and RKKY exchange
interactions in bce Fe and hep Gd. Exchange coupling constants
J;; as a function of interatomic distance (R;;/a, where a is the
lattice constant) between atoms i and j for (a) bce Fe and (b) hep
Gd. “Current fit” refers to analytical Bethe-Slater equations
[Eq. (S4) in the SM [41]] fitted to the calculated exchange
interaction parameters. “RKKY fit” in (b) refers to the analytical
RKKY equation [Eq. (S5) in the SM] fitted to the calculated
exchange interaction parameters in hcp Gd. The exchange
interaction in bee Fe decays rapidly and is, thus, short-ranged.
In contrast, the exchange interaction in hcp Gd shows an
oscillatory behavior and decays more slowly with distance.
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rapidly with distance and the values are smaller by at least
an order of magnitude after the first two nearest neighbor
interactions. The calculated exchange parameters have
similar values as reported by previous studies [50-53].
The calculated J;; values were fitted to the Bethe-Slater
equation [Eq. (S4) in the SM] to analyze the behavior as a
function of interatomic distance, as shown in Fig. 1(a).

The behavior of J;; as a function of interatomic distance
in hep Gd is quite different as compared to that in bece Fe.
Despite the fact that Gd is ferromagnetic at a lower
temperature, many of the exchange constants are antifer-
romagnetic. The dependence of the magnetic exchange
parameters on the interatomic distance [Fig. 1(b)] reveals
an oscillatory behavior between ferromagnetism and anti-
ferromagnetism as the interatomic distance grows. This is
characteristic of the RKKY exchange [36,54,55]. The
exchange parameters within the first ten nearest neighbors
were considered for further calculations, beyond which
the interaction strength becomes negligible. Unlike the
transition metals, the large magnetic moment (~7.5up per
atom) and strongly correlated behavior of rare-earth hcp
Gd originated from half-filled 4f shells. Because of the
strong localization of these orbitals, the overlap between
neighboring atomic sites is dominated by the 6s, 6p, and
5d states [56]. The direct exchange contribution from the
4f orbital has been found to be small and antiferromag-
netic and hence does not affect the magnetic ordering
significantly [57]. The simulated J;; values for hcp Gd
agree well with previously reported computational and
experimental values [39,58,59]. The calculated RKKY-
type J;; values were fitted with piecewise Bethe-Slater
curves using different cutoff radii, as shown in Fig. 1(b).
The details of the fitting process are given in the SM [41].
The fitted analytical Bethe-Slater equations were used to
evaluate distance-dependent exchange interactions in the
SLD simulation.

The calculated J;; values were used to simulate the Curie
temperatures (7'c) of bcc Fe and hcp Gd using ASD as
well as SLD simulations. Notably, the Dudarev-Derlet
embedded atom method interatomic potenial [60] was
used for the SLD simulation of bcc Fe to capture the
itinerant nature of the 3d electrons. The resulting magneti-
zation versus temperature curves are displayed in Figs. 2(a)
and 2(b). The results were then fitted to a simple power-law
decay function of the form M(T) = [1 — (T/T¢))?, where
M is the magnetization and f is the critical exponent. The
fitted 7' values with the static-lattice-based ASD approach
are 1180 and 330 K for bcc Fe and hep Gd, respectively,
and in fair agreement with experimental measurements.
However, ASD simulations are not adequate for quantita-
tive studies of materials with spin-lattice coupling [30]. The
lattice effect in the description of the finite-temperature
magnetism in bcc Fe and hcp Gd has been done recently
[27]. Incorporating the lattice dynamics into effect, our
SLD simulations predicted the T to be 1060 and 310 K,
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FIG. 2. ASD and SLD simulation of the Curie temperature and
isothermal entropy change in bee Fe and hep Gd. The simulated
magnetization as a function of temperature is shown for (a) bcc Fe
and (b) hcp Gd using both ASD and SLD. The total isothermal
entropy changes (AS) are shown for (c) bcc Fe and (d) hep Gd
calculated using both ASD and SLD methods for a field change
of 2 T. The T~ and AS values are provided and compared with the
experimentally measured values when available. Including lattice
dynamics and spin-lattice coupling leads to a better agreement
with experimental values. We did not find available experimental
AS data for bee Fe.

respectively, for becc Fe and hep Gd, with better agreements
with the experimentally measured values.

To understand the difference between the magnetocaloric
responses of materials with direct and indirect RKKY
exchange coupling parameters, we calculated the iso-
thermal entropy changes with both ASD and SLD simu-
lations for bec Fe [Fig. 2(c)] and hep Gd [Fig. 2(d)]. The
external-field-dependent magnetization versus temperature
curves were simulated (Figs. S2 and S4 in the SM [41])
and the entropy changes were evaluated using Eq. (1). The
calculated total entropy change of bcc Fe and hep Gd as a
function of temperature and external magnetic field using
SLD is shown in Figs. S3 and S5 in the SM. The total
entropy change of bcc Fe was calculated to be 2.33 and
2.63 Jkg™' K~! with ASD and SLD simulations, respec-
tively, for a magnetic field change of 2 T. We did not find
experimental entropy change values in bcc Fe to bench-
mark our simulation. However, the adiabatic temperature
change estimated (Fig. S6 in the SM [41]) based on our
simulated entropy change and the experimental specific
heat of bcc Fe [61] is in good agreement with early
measurements [62]. The difference between the entropy
change values obtained from ASD and SLD simulations
(0.3 Jkg~' K=1) can be attributed to the lattice contribution
to the isothermal entropy change at the transition temper-
ature, which amounts to 13% of the pure spin contribution
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from the ASD simulation. Next, we analyze the effect of
indirect RKKY exchange on the isothermal entropy change
in hcp Gd using similar approaches. The evaluated iso-
thermal entropy change using the spin-only Hamiltonian
through the ASD simulation is ~4.1 Jkg™'K~! for a
magnetic field change of 2 T. This calculated value based
on ASD is smaller compared to the experimentally mea-
sured value of ~5.4 Jkg=! K=! [63]. The sizable discrep-
ancy suggests that the missing lattice dynamics in the ASD
simulation can be significant in indirect RKKY exchange
materials such as hcp Gd. To verify this hypothesis, we
performed SLD simulations of hcp Gd using the inter-
atomic potential developed by Baskes and Johnson [64]
and an isothermal entropy change of ~6.3 Jkg=!' K~! was
predicted. This result suggests a lattice entropy contribution
of 2.2 Jkg7' K~ for a magnetic field change of 2 T,
which is 53.6% of the pure spin contribution. Our findings
agree with Martinho Vieira et al. [22]. The SLD-evaluated
total entropy change is higher than the measured value by
0.9 Jkg=' K~!, which can be potentially attributed to the
sample purity and measurement uncertainty in the experi-
ment, as well as the uncertainty of certain computational
parameters, such as the “U” parameter used in our
DFT + U calculation (details in the SM [41]).

The significant lattice entropy change with an applied
magnetic field indicates a stronger magnon-phonon
coupling in indirect RKKY-exchange-based materials.
Microscopically, this result suggests that the phonon
structure in hcp Gd near the Curie temperature is sensitively
tuned by the external magnetic field. Therefore, it is
informative to explicitly examine the phonon dispersion
relation of hcp Gd as influenced by an external magnetic
field to determine which phonon modes are mostly affected
by the applied field. For this purpose, the frequencies of the
phonon modes were calculated by solving the dynamic
matrix elements obtained from the lattice Green’s functions
that can be directly calculated from the atomic trajectories
in the SLD simulation [65]. Figure 3 shows the phonon
dispersions of bee Fe and hep Gd calculated with magnetic
fields of 0 and 5 T, respectively. As seen from Fig. 3(a),
in bee Fe, significant changes in the phonon dispersion
can only be noticed at higher phonon frequency ranges
(>3 THz) and near the Brillouin zone boundaries, whereas
the low-frequency and long-wavelength phonons remain
unaffected. This feature is more clearly shown in the
phonon density of states shown in Fig. 3(b). This obser-
vation can be understood as follows. Since the spin-
lattice coupling originates from the dependence of the
magnetic exchange parameters on the interatomic distance
(dJ;;/dR;;), the rapidly decreasing J;; as a function of R;;
in direct exchange materials [such as bcc Fe, as shown in
Fig. 1(a)] determines that the spin-lattice coupling mainly
affects the short-wavelength lattice vibrations, with a
wavelength on the order of the range of the direct exchange.
These short-wavelength phonons usually reside near the
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FIG. 3. External-magnetic-field-dependent phonon spectra

and density of states (DOS). Simulated phonon spectra and
DOS in (a),(b) bee Fe and (c),(d) hep Gd at 0 and 5 T with the
SLD approach. The changes in low-frequency phonons for hcp
Gd are indicated with arrow marks. The magnetic field has a
stronger influence on low-frequency and long-wavelength
phonons in hep Gd.

Brillouin zone boundary and within the higher-frequency
range, so their occupation is lower at a given temperature,
leading to a smaller contribution to the entropy change. In
contrast, the phonon dispersion of hcp Gd, as shown in
Fig. 3(c), shows noticeable changes in lower-frequency
and longer-wavelength ranges, as labeled by the arrows in
Fig. 3(c), indicating that the spin-lattice coupling in hcp Gd
occurs on a larger length scale. This is consistent with the
oscillatory behavior of the magnetic exchange parameters
as a result of the indirect RKKY exchange interaction, as
shown in Fig. 1(b). Although the overall magnetic exchange
strength in hcp Gd is weaker than that in bee Fe, which leads to
a lower Curie temperature in hcp Gd, the much slower decay
of the magnetic exchange parameters and their oscillatory
behavior as a function of distance leads to significant
(dJ;;/dR;;) at longer distances. As a result of this long-
range spin-lattice coupling, lattice vibrations associated with
phonons with longer wavelengths are more affected by the
external field, which can also be seen in the field-dependent
phonon density of states shown in Fig. 3(d). Since these
phonons have lower frequencies and, thus, higher occupation
numbers at a given temperature, they contribute more to the
field-induced isothermal entropy change.

To compare the lattice entropy contribution from differ-
ent phonon modes in bcc Fe and hcp Gd more clearly,
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we further evaluated the lattice entropy change directly
based on the field-dependent phonon dispersions. The
vibrational entropy of a particular phonon mode with
frequency w in a harmonic crystal is given by the standard
formula for noninteracting bosons [66]:

Spn(@,T) = kg[(n+1)In(n+1)—nlnn],  (2)

where kp is the Boltzmann constant and 7 is the occupation
number of this phonon mode. Although this result is only
rigorously true in harmonic crystals, it has been shown
that [67], to the leading order in perturbation theory, Eq. (2)
is still valid in anharmonic crystals as long as the renor-
malized phonon frequencies are used. In our case, the
phonon frequencies extracted from the SLD simulation
include the full renormalization effect due to both anhar-
monic phonon-phonon interactions and spin-lattice inter-
actions. Using Eq. (2), the calculated total lattice entropy
change from the field-dependent phonon dispersions for a
field change of 2 T is 0.65 Jkg~' K~! for bec Fe and
2.5 Jkg=! K~! for hep Gd. These values are similar to those
evaluated by comparing the ASD and SLD simulations, as
shown in Figs. 2(c) and 2(d). To further contrast the effects
of direct exchange and indirect RKKY exchange inter-
actions on lattice entropy changes, the accumulated con-
tribution to the total lattice entropy change from phonons
with different frequencies in becc Fe and hep Gd under a
field change of 2 T is shown in Fig. 4. As clearly seen in
Fig. 4, the lower-frequency phonons have negligible con-
tributions toward the lattice entropy change in bcc Fe,
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FIG. 4. Accumulated contribution to the total lattice entropy
change from phonon modes as a function of phonon frequency in
bee Fe and hep Gd. The phonon frequency is normalized to the
maximum phonon frequency in either material. The accumulated
contribution is also normalized to the total lattice entropy change.
The entropy change is evaluated with a magnetic field of 2 T. It is
clearly shown that lower-frequency phonons in hcp Gd have a
much more significant contribution than those in bcc Fe.

whereas, in hcp Gd, the lower-frequency phonons have a
significant contribution toward the lattice entropy change.
This result confirms that the indirect RKKY-type exchange
in hep Gd can impact the short- as well as long-wavelength
phonons due to its long interaction range, while the direct
exchange in bcc Fe is short-ranged and can only affect
the short-wavelength phonons. We note that the strong
spin-lattice coupling in hcp Gd is also reflected in other
phonon-related properties of Gd, for example, the strong
magnetic field effect on its elastic moduli and ultrasonic
attenuation [68,69] and the minimum in its thermal
conductivity near the Curie temperature [70,71]. Our
analysis provides a microscopic mechanism of how indirect
RKKY exchange can lead to longer-range spin-lattice
coupling and a significantly enhanced lattice contribution
to the isothermal magnetocaloric entropy change.
Conclusion.—In summary, we applied SLD simulation
to directly evaluate the spin and lattice contributions to the
isothermal magnetocaloric entropy change in bcc Fe and
hcp Gd. Based on a detailed analysis of the field-dependent
phonon properties, we conclude that the indirect RKKY-
type exchange in hcp Gd leads to a long-range spin-lattice
coupling that affects long-wavelength and low-frequency
phonons and, thus, causes an enhanced lattice contribution
to the total entropy change. Our Letter provides a micro-
scopic picture of how different types of spin-lattice cou-
pling can give rise to distinct magnetocaloric responses and
suggests that indirect RKKY exchange interactions are
more desirable for a large MCE response, potentially
guiding the future search for more efficient MCE materials.
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