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The Su-Schrieffer-Heeger (SSH) model is an important cornerstone in modern condensed-matter
topology, yet it is the simplest one-dimensional (1D) tight binding approach to dwell into the characteristics
of spinless electrons in chains of staggered bonds. Moreover, the chiral symmetry assures that its surface-
confining states pin to zero energy, i.e., they reside midgap in the energy dispersion. Symmetry is also an
attribute related to artificial media that are subject to parity P and time-reversal T operations. This non-
Hermitian family has been thoroughly nourished in a wave-based context, where anti-PT (APT )
symmetric systems are the youngest belonging members, permitting refractionless optics, inverse
PT -symmetry breaking transition, and asymmetric mode switching. Here, we report the first extension
of APT symmetry in an acoustic setting by endowing a SSH lattice with gain and loss components. We
show that the in-gap topological defect state hinges on the non-Hermitian phase, in that the broken
symmetry suppresses it, yet when PT or APT symmetry is intact, it is observed with either damped or
evanescent decay, respectively. Our experiments showcase how the non-Hermitian SSH lattice serves as a
utile platform to investigate topological properties across various PT symmetric phases using sound.
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Systems respecting space-time reflection symmetry have
been synthesized using gain and loss profiles in man-made
materials. Owing to their broad implications in both science
and technology, these PT symmetric metamaterials and
lattices remain an active area in quantum physics, optics,
acoustics, plasmonics, etc. [1–5]. Loss, the often regarded
unfavorable non-Hermitian ingredient, has lately been put
in a more advantageous spotlight, particularly in combi-
nation with its time-reversed image, that is, the gain
counterpart. Beyond the phase where these two compo-
nents only cancel each other out, at a certain gain-loss
contrast, the threshold is reached at which the complex
eigenvalues coalesce, yet even higher-order or encircling
exceptional points have been reported [6–8]. This non-
Hermitian avenue has lately been even further enriched
by adding topology to the picture. Governed by the
conventional bulk-boundary correspondence (BBC), the
Hermitian nontrivial band topology determines the pres-
ence of localized interface states. However, the absence of
Hermiticity not only alters the BBC, but also localizes the
bulk states at the interfaces in the guise of skin states [9,10].
Other combinations of topology and non-Hermiticity have
led to topological robust lasers [11,12], non-Hermitian
second-order topological corner states [13,14], and a wealth
of theory explaining the pivotal interplay between gain and

loss and their geometrical arrangements [15]. It is worth
noting that non-Hermitian topology stems from early
advances in condensed matter physics [16], yet, facile
fabrications and a high degree of tunability has pushed
forward significant headway in analogous acoustic and
photonic settings [17,18].
Parity-time (PT ) and anti-parity-time (APT ) symmetry

refer to the symmetry and antisymmetry with respect to the
simultaneous action of the parity-inversion P and time
reversal symmetry operators T . Mathematically, properties
associated with PT symmetry conjugate with the ones
of APT symmetry as their Hamiltonians only differ by
an imaginary unit. Therefore, while PT symmetric
Hamiltonians commute with the joint parity-time operator,
the APT Hamiltonians anticommute with it. The stringent
requisite to realize PT symmetry demands balanced gain
and loss units, whereas the implementation of the APT
counterpart is somewhat eased, yet elaborate experiments
on the basis of positive-negative index stacks, cold atomic
lattices, flying atoms, electrical circuits, and optical fibers
have rendered the observation possible [19–23]. What
remains elusive is to add the notion of topology in the
context of a APT symmetric phase [24], as this combina-
tion will unearth even more unusual topological wave
characteristics, both in the presence and the absence of
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this unfamiliar non-Hermitian symmetry. Here, we construct
a non-Hermitian SSH model by 3D printing connected
cavities to emulate an implementation using sound waves.
The acoustic SSH lattice is inherently lossy due to visco-
thermal wall losses, fortunately, by adequately modulated
thermoacoustic gain using carbon nanotube (CNT) films, we
are able to endow the lattice with controllable gain and loss
constituents. Our findings demonstrate an in-gap state of
topological origin across the entire non-Hermitian phase
spectrum. Unlike laterally confining edge states, damped or
evanescently confined defect states are spawned in direct
dependence of the non-Hermitian space-time reflection
symmetry.
Non-Hermitian SSH model and its phase transition.—

We begin from a 1D non-Hermitian SSH chain, which is
composed of on-site loss and gain components [A and B,
respectively, see Fig. 1(a)] coupled through intracell-
intercell hopping amplitudes v=w. In an analog acoustic
setting, as seen in the lower panel of Fig. 1(a), we utilize
waveguide-connected cavities that constitute the 1D

non-Hermitian sonic crystal (NHSC). The acoustic
hopping is mimicked by parallel waveguides of width d1
and d2, positioned at H=4 and 3H=4, respectively, accord-
ing to the resonator height. We employ a metamaterials
approach comprising effective parameters to add non-
Hermiticity to the NHSC, in that the complex mass density
is defined as ρA ¼ ð1 − iβÞρ0 for the loss components,
and ρB ¼ ð1þ iβÞρ0 for the gain counterpart, while the
bulk modulus is κ0. The value of β controls the amount
of the gain or loss, and ρ0 and κ0 represent the parameters
for air (see Supplemental Material Sec. I [25]).
Consequently, the non-Hermitian Hamiltonian of our
system (see Supplemental Material Sec. II [25] for the
detailed derivation from acoustic motion equations) is
expressed as

HaðkÞ ¼ HeðkÞ þ f0σ0; ð1Þ

with

FIG. 1. Non-Hermitian phase diagram. (a) Schematics of the non-Hermitian SSH chain and corresponding SC composed of the
coupled sublattices A and B. (b) Non-Hermitian phase diagram of the SSH chain while modulating the non-Hermiticity and coupling
strengths. (c),(d) Real (c) and imaginary (d) band diagrams calculated by varying the non-Hermiticity factor β with jv − wj=jvþ wj ¼
0.5287 as highlighted in (b). (e)–(g) Theoretical and simulated band diagrams with β ¼ 0.02 (e), 0.06 (f), and 0.10 (g) in the
PT symmetric, PT symmetry broken and APT symmetric phases, respectively. In (c)–(g), the ratio of coupling strength is fixed at
jv − wj=jvþ wj ¼ 0.5287 as highlighted by the gray dashed line in (b).
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HeðkÞ ¼
"
−if0β=2 vþ we−ika

vþ weika if0β=2

#
; ð2Þ

where σ0 denotes the 2 × 2 identity matrix, f0 is the
resonance frequency, and a represents the lattice constant.
In theHermitian case (β ¼ 0), theHamiltonian is symmetric
under both parity P (σx; k → −k) and time reversal T
(i → −i; k → −k) operations with σx;y;z for the Pauli matri-
ces. On the contrary, adding a lossy or amplifying non-
Hermitian channel (β ≠ 0) breaks both P and T symmetry,
yet, their combination, PT ¼ σx; i → −i preserves the
symmetry, which means that the Hamiltonian in Eq. (2)
commutes with PT operation ½He;PT � ¼ 0. On the other
hand, the combination of chiral and time reversal sym-
metries suggests another operator, APT , which satisfies
APT ¼ σz; i → −i; k → −k [30–32]. From Eq. (2), it can
be proven that the Hamiltonian of the NHSC anticommutes
with an APT operation as fHe;APT g ¼ 0. It is worth-
while to note that while the effective Hamiltonian remains
always both PT and APT symmetric, β determines the
symmetric phase of the eigenfunctions [33]. As a result, we
are able to characterize the NHSC by different phases [as
shown in Fig. 1(b)] according to the symmetry of the states
as discussed in the following. By solving the eigenvalue
equationHeψ ¼ λψ with thewave functionψ , we obtain the
following eigenvalues:

λðkÞ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þw2þ 2vwcosðkaÞ− ðf0β=2Þ2

q
; ð3Þ

which can be rewritten to acoustic frequencies f ¼ f0 þ λ.
Its solutions constitute a non-Hermitian phase diagram that
displays three sections in dependence on the coupling ratio
jv − wj=jvþ wj and β as shown in Fig. 1(b). The yellow
zone marks the section of PT symmetric eigenfunction,
i.e., inside which all eigenvalues are simultaneously real
for sufficiently small values of β < 2jv − wj=f0 (see
Supplemental Material Sec. III [25]). Beyond this section,
for 2jv − wj=f0 < β < 2jvþ wj=f0, the sign of the radi-
cand depends on the wave number k, which gives rise to
PT -symmetry broken eigenfunctions (light-green zone), of
which some eigenvalues are real while others are complex.
If the non-Hermiticity factor is further increased beyond the
threshold β > 2jvþ wj=f0, the negative radicand gives rise
to purely imaginary eigenvalues. It also implies a transition
from the PT symmetry broken into the intact APT
symmetric phase (dark-green zone). To expand on these
phase transitions, in Figs. 1(c)–1(d) we illustrate the
calculated real and imaginary band diagrams of the
NHSC as a function of the added non-Hermiticity.
The coalescence among the two-band dispersion takes
place at the cavity resonance frequency f0 in the form of
an uneven exceptional line. As captured in Figs. 1(e)–1(g),
the transition from intact, toward broken PT symmetry,
leads to the APT symmetric phase, by virtue of vanishing
(emerging) real (imaginary) eigenvalues. The simulated
results exhibit good agreement with the theoretical ones.
We emphasize that, although the coupling ratio is fixed at
jv − wj=jvþ wj ¼ 0.5287 for the sake of simplicity in
Figs. 1(c)–1(g), any generic points in the phase diagram
of Fig. 1(b) obey the above-discussed rules (see
Supplemental Material Sec. III [25]).

FIG. 2. Non-Hermiticity modulation in an acoustic cavity. (a) Structural schematic and the effective lumped-circuit model of a
Hermitian acoustic cavity. (b) Effective lumped-circuit models where the non-Hermiticity is introduced through a metafluid, which is
experimentally realized (c),(d) thanks to an active CNT lid coating. (e),(f) Simulated spectral amplitude modulation Δp vs the non-
Hermiticity factor β of the metafluid (e), and vs the electrical signal modulation S applied to the CNT film (f). (g) Corresponding
detected pressure modulation spectrum with the electrical signal strength from (f).
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Modulating acoustic non-Hermiticity.—To realize the
APT symmetric NHSC, a relatively large non-Hermiticity
factor is required that up until this point remains a
challenging experimental undertaking. Here, we design
an approach to attain the desired gain and loss factors,
based on electrically activated CNT films. Figure 2(a)
illustrates a Hermitian acoustic cavity, which could be
considered as an acoustic capacitance C0 using an effective
lumped-circuit model. Thus, the pressure response can be
derived as p0 ¼ U0ð1=−iωC0Þ, where U0 represents the
volume velocity and ω is the angular frequency. Acoustic
gain (loss), i.e., sound amplification (attenuation), is mod-
eled thanks to a metafluid with the effective mass density as
discussed earlier. In the lumped circuit model, it corre-
sponds to an additional acoustic resistance R [Fig. 2(b)],
which leads to the deterministic modulation of the pressure
change Δp [Fig. 2(e)], compared with the Hermitian case.
Gain (loss), therefore results in a pressure increment (drop),
i.e., Δp > 0 (Δp < 0). Further, in the circuit model, this
pressure modulation is accounted for through the electro-
motive force [ε, see Fig. 2(c)]. The experimental realization
shown in Fig. 2(d), contains CNT film coating of the top lid
of the acoustic cavity, which is connected with the electric
circuit board via electrodes. With an appropriately applied
time-varying current, the film operates as an acoustic active
device thanks to the electrothermoacoustic coupling effect.
By varying the amplitude and phase of the input current
signal S, the frequency dependent pressure modulation Δp
can be determined [Fig. 2(f)] to shape the range of the

accessible non-Hermitian component. These simulated
current signals aid in obtaining the equivalent experimental
spectrum of the acoustic non-Hermiticity modulation using
CNT films, as shown in Fig. 2(g).
Experimental observation of non-Hermitian phase tran-

sitions.—In what follows, we expand on the afore-
discussed phenomena by utilizing the non-Hermitian
CNT coated cavities for the coveted non-Hermitian SSH
chain. In Fig. 3(a), we show the fabricated finite 1D NHSC
consisting of eight unit cells. The non-Hermiticity is
precisely electrically modulated through the CNT film
pasted on the top lid of each cavity as shown in Fig. 3(b).
Also shown here is a thermography of the film when
electrothermoacoustically activated. By steadily increasing
the non-Hermiticity [dashed line across the phases in
Fig. 1(b)], we aim at detecting the nontrivial dispersion
comprising the PT symmetric, PT symmetry broken, and
APT symmetric phase transitions. To predict the real
bands, we Fourier transform the detected acoustic pressure
fields from each cavity numerically (using 48 unit cells), as
rendered in Fig. 3(c) for five different values of β ranging
from 0.02 to 0.10. In the same way, the experimental data
are obtained and illustrated in Fig. 3(d). Additionally, we
superimpose matching theoretical bands obtained from
Eq. (3). In the PT symmetric phase regime we observe
a gapped dispersion (β ¼ 0.02, 0.04). However, when the
two bands coalesce along the uneven exceptional line [see
Fig. 1(c)], we enter the PT symmetry broken phase
comprising finite sections in momentum space (along

FIG. 3. Measured dispersion across various PT symmetric phases. (a) Photograph of the experimental setup. The inset shows the
arrangements of non-Hermitian sites in the finite NHSC. (b) CNT film mounted of the top lid of the cavity and its corresponding
thermogram. (c),(d) Simulated (c) and experimentally measured (d) band diagrams with the non-Hermiticity factor β ranging from 0.02
to 0.10 as indicated. Yellow solid lines represent the theoretical results.
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the k axis) of flat vanishing real eigenfrequencies, f ¼ f0
(β ¼ 0.06, 0.08). Beyond this curved section, entering the
APT symmetric phase, complete band degeneracy in
momentum space takes place in the form of entirely flat
dispersion. Here, we need to stress that the flat regimes
beyond the uneven exceptional lines are challenging to
observe experimentally due their zero group velocity.
Non-Hermitian topological defect states.—By introduc-

ing an extra site into the middle of a Hermitian SSH chain, a
topological interface is formed between two regions of
different topological invariant, which gives rise to a
topological in-gap defect state [34–36]. Taking non-
Hermiticity into consideration, the topology can be char-
acterized by the global Berry phase (see Supplemental
Material Sec. V [25]). Then, we study its influence on the
state confinement across all phases. As seen in Fig. 4(a), we

insert a defect site (index 0) at the center of a 14-units
NHSC. In the Supplemental Material Sec. VI [25], we
carefully deduce the eigenvalue problem of this non-
Hermitian SSH lattice and we infer that PT =APT
symmetry is crucial to the appearance of the topological
defect state, which ceases to exist in the PT symmetry
broken phase. To prove this, the simulated complex
eigenfrequency spectra are illustrated in Figs. 4(b)–4(d)
for β ¼ 0, β ¼ 0.06, and β ¼ 0.12, respectively, with the
identical geometrical parameters as Fig. 3. In simulations,
viscothermal losses have been accounted for, which pro-
duce an asymmetry along the imaginary frequency axis. We
make two remarks: (1) Although bulk states exist in all
three phases, the topological defect state ceases to exist in
the PT symmetry broken phase, but remains observable in
the remaining symmetry intact regimes. (2) The pressure

FIG. 4. Non-Hermitian topological in-gap defect state. (a) Photograph of the experimental setup with the introduced defect site, which
is composed of a passive cavity as highlighted by the pink box. The inset shows the position of the introduced defect site in the finite
NHSC. (b)–(d) Calculated eigenfrequencies of the NHSC in the PT symmetric [β ¼ 0, (b)], PT symmetry broken [β ¼ 0.06, (c)], and
APT symmetric phases [β ¼ 0.12, (d)]. The insets show the pressure field distributions of the eigenstates marked in subfigures.
(e)–(g) Frequency-dependent spatial profiles of the pressure amplitude fields measured in each cavity. Insets: magnifications of the
defect and bulk states at the frequencies marked by the dashed lines.
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fields distributions of the topological defect states inPT and
APT symmetric regimes are distinct. In the former phase,
the state amplitude displays an oscillating decline away from
the defect site as illustrated in the top panel of Fig. 4(b).
On the contrary, in theAPT symmetric phase, the pressure
undergoes evanescent decay as shown in the top panel of
Fig. 4(d). In the experiments, two acoustic sources are placed
at sites 1 and−1 (see SupplementalMaterial Sec. I [25]), and
the pressure amplitude in each cavity of the lattice is scanned
in a frequency window from 3.22 to 3.58 kHz as shown in
Figs. 4(e)–4(g). Within the gap, between the bulk pressure
hot spots of Fig. 4(e), a defect localized state is clearly
observed at the frequency fd ¼ 3356 Hz, which is the PT
symmetric phase. However, at higher values of the gain-loss
contrast (β ¼ 0.06), in thePT symmetry broken phase, only
extended bulk signatures appear in the spectrum of Fig. 4(f).
Last, when symmetry is restored, albeit in the APT
symmetric phase, the strongly confined topological defect
state reappears at fd ¼ 3344 Hz as shown in Fig. 4(g).
Furthermore, the magnifications of the spatial pressure
distributions are displayed in the respective insets, which
experimentally accentuates the difference of localization
nature. We also demonstrate that theAPT symmetric sonic
lattice exhibits stronger sound localization, which is inter-
esting for energy selective waveguiding (see Supplemental
Material Sec. VII [25]).
Conclusively, we have predicted and experimentally

realized the phase transition among different PT sym-
metric phases by utilizing the active CNT films as the non-
Hermitian component in a topological acoustic SSH chain.
Purely real and complex conjugated two-band dispersions
have clearly been observed in the PT symmetric and
APT symmetric phases, respectively, whose transition
across the broken regime is marked by an uneven excep-
tional line. We have also experimentally characterized the
behaviour of symmetry-dependent topological defect
states that vanish in the PT symmetry broken phase,
but exhibit damped localization in the PT and evanescent
localization in APT symmetric regime. Our results
provide a feasible platform to study the interaction
between non-Hermiticity and topology with special
emphasis on this yet unfamiliar APT symmetric phase,
whose fascinating sonic topological signatures have only
just been unveiled.
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