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Spontaneous stochasticity is a modern paradigm for turbulent transport at infinite Reynolds numbers. It
suggests that tracer particles advected by rough turbulent flows and subject to additional thermal noise,
remain nondeterministic in the limit where the random input, namely, the thermal noise, vanishes. Here, we
investigate the fate of spontaneous stochasticity in the presence of spatial intermittency, with multifractal
scaling of the lognormal type, as usually encountered in turbulence studies. In principle, multifractality
enhances the underlying roughness, and should also favor the spontaneous stochasticity. This letter exhibits
a case with a less intuitive interplay between spontaneous stochasticity and spatial intermittency. We
specifically address Lagrangian transport in unidimensional multifractal random flows, obtained by
decorating rough Markovian monofractal Gaussian fields with frozen-in-time Gaussian multiplicative
chaos. Combining systematic Monte Carlo simulations and formal stochastic calculations, we evidence a
transition between spontaneously stochastic and deterministic behaviors when increasing the level of
intermittency. While its key ingredient in the Gaussian setting, roughness here surprisingly conspires
against the spontaneous stochasticity of trajectories.
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Introduction.—When transported by a sufficiently tur-
bulent flow, puffs of fluid particles are known to undergo a
phase of algebraic inflation R ∼ t3=2, independent from
their initial size and now known as Richardson diffusion
[1–10]. Beyond the specific exponent, Richardson’s law
suggests that turbulent transport requires some probabilistic
modeling: The modern interpretation uses the phenomenon
of spontaneous stochasticity [11–16], which involves
tracers as fluid particles advected by the fluid and subject
to additional thermal noise of amplitude κ [17]: In the
vanishing viscosity limit, the multiscale nature of turbulent
flows amplifies thermal noise in such a drastic fashion that
initially coinciding particles may separate in finite time
although their dynamics formally solve the same initial
value problem [18–20], hereby suggesting intrinsic nature
for the underlying randomness.
To date, the scenario of spontaneous stochasticity for

Lagrangian separation is fully substantiated within the
theory of Kraichnan flows. Kraichnan flows are minimal
random ersatzes of homogeneous isotropic turbulent fields
[17,19,21–24]; they are defined as white-in-time Gaussian
random fields, whose spatial statistics are centered and
prescribed by two-point correlation functions with alge-
braic decay satisfying

CðξÞ
η ðrÞ ¼ 1 − jrjξ for η ≤ jrj ≪ 1; ð1Þ

and vanishing at large scales ≫ 1. η is a scale under which
the flow is smooth, analogous to so-called Kolmogorov

scale: The scales η ≤ jrj ≪ 1 define the so-called inertial
range in turbulence theory. The Hurst parameter ξ ∈�0; 2½
prescribes the roughness of the field, through inertial-range
scaling h½vðxþ rÞ − vðxÞ�2i ∼ rξ. In the limit η → 0, this
means that the lesser ξ, the rougher v. In this setting,
spontaneous stochasticity essentially means that some
random time accounting for the large-scaleOð1Þ dispersion
of a puff of tracers with initial sizeOðηÞ has probability 1 to
be finite in limits where η, κ jointly vanish. The limit
describes puffs initially coalescing to a point in prescribed
(quenched) space-time velocity realizations [4,20]. For
instance, explicitly considering the relative separation
Rðt; r0Þ ≔ X2ðt;x0 þ r0Þ −X1ðt;x0Þ between two tracers
initiated at x0;x0 þ r0, a natural separation time is

τ1ðη; κÞ ≔ inf
kr0k¼η

ftjkRðt; r0Þk ≥ 1g; ð2Þ

from which we interpret spontaneous stochasticity as the
property

P½τ1 < ∞� → 1 as η; κ → 0: ð3Þ

Even at this essential level, the presence or the absence of
spontaneous stochasticity in Kraichnan flows depends on a
subtle interplay between four parameters: roughness, com-
pressibility, space dimension, reflection rules for colliding
trajectories. To highlight the effect of roughness, we focus
on the unidimensional space, hence prescribing unit
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compressibility, with a thermal noise κ ¼ η ensuring that
colliding trajectories reflect upon collision in the limit
η → 0. The only relevant parameter is then the roughness
exponent ξ: Spontaneously stochastic property (3) holds if
and only if ξ < 1. For ξ ≥ 1, particles wind up sticking
together hence producing apparent deterministic behavior
[17,25,26]: In short, Kraichan flows suggest the mantra
“The rougher, the more spontaneously stochastic.” In this
Letter, we show that this mantra cannot be repeated in the
presence of multifractality, a feature which we later also
refer to as spatial intermittency.
1D multifractal Kraichnan flows.—We propose a multi-

fractal unidimensional generalization of the Kraichnan
model, which prescribes the motion of N tracers particles
ðXi; i ∈ ½j1;Nj�Þ in terms of the advection-diffusion

dXi ¼ uξ;γη ½XiðtÞ; dt� þ
ffiffiffiffiffi
2κ

p
BiðdtÞ; ð4Þ

where the Bi’s are independent Brownian motions and we
set κ ¼ η for the thermal noise amplitude: With this scaling,
tracers separated by at most η diffuse away from each other.
The smoothing scale η will ultimately be taken to 0. The
velocity uξ;γη models turbulent advection in a rough multi-
fractal field, prescribed by the Hurst exponent ξ ∈�0; 2½ and
the intermittency parameter γ. We use the 1D Markovian
version of the spatiotemporal fields constructed by
Chevillard and Reneuve [27]

uξ;γη ðx;dtÞ ¼ 1

Zη

Z
R
LðξÞ
η ðx− yÞeγYðyÞW1ðdy;dtÞ;

for YðyÞ≔
Z
R
Lð0Þ
η ðy− zÞW2ðdzÞ; Z≔ eγ

2EðY2Þ; ð5Þ

in terms of the mutually independent (1þ 1)-dimensional
Wiener process W1 and Brownian motion W2, also inde-

pendent from the Bi’s. The kernels L
ðξÞ
η prescribe the Hurst

exponent of the velocity field when γ ¼ 0; they are here
defined as convolution square roots of the correlation
function

CðξÞðrÞ ¼
8<
:

ð1 − rξÞ1r<1 for ξ > 0�
log 1

r

�
1r<1 for ξ ¼ 0

: ð6Þ

The subscript η denotes a regularization over the small-
scale η, in practice most easily defined using Fourier
transforms [26]. Please note that the expressions (6) indeed
represent correlation functions for 0 < ξ ≤ 1 [28], and we
therefore restrict our analysis to this range. With this
choice, Eq. (1) is then exactly and not just asymptotically
satisfied. Spatial intermittency is modeled by the term

MðγÞ
η ¼ eγYW1ðdy; ·Þ, namely the exponentiation of a regu-

larized fractional Gaussian field Y with vanishing Hurst
exponent. This nontrivial operation requires being suitably

normalized by the term Z ¼ eγ
2EðY2Þ ∼ η−γ

2

. The math-
ematical expectation E denotes an average over the random
environment Y. When γ <

ffiffiffi
2

p
=2 ≃ 0.707, the limit η → 0

then produces a well-defined and nontrivial multifractal
random distribution called Gaussian multiplicative chaos
[29–32] (later referred to as GMC). The multifractality
prescribes the power-law scaling SpðlÞ ≔ hjuðxþ rÞ−
uðxÞjpi ∼ CpjrjζðpÞ in the inertial range η ≤ r ≪ 1, with
quadratic variation of the structure function exponents as

ζðpÞ ¼ pðξ=2þ γ2Þ − γ2p2=2: ð7Þ

This is a signature of log-normal multifractality—see Fig. 1
for a numerical illustration using Monte Carlo averaging
with η ¼ 2−20, and the power law extending over almost
5 decades. Here, the originality of the field (5) comes from
its temporal dependence. The Gaussian component is
Markovian, and the random environment (5) is analogous
to a Kraichnan flow when we set the intermittency
parameter γ ¼ 0. The GMC component is random but
frozen in time: This feature will allow the spatial inter-
mittency to play out in (4) even at the level of two-particle
dynamics.
Two wrong intuitive assumptions on multiscaling

and spontaneous stochasticity.—Equation (7) prescribes
ζð2Þ ¼ ξ, meaning that for the multifractal fields (5), the
two-point correlation (1) is prescribed by the Hurst expo-
nent, independently from the intermittency parameter γ.

(a) (b)

(c) (d)

FIG. 1. (a) Multifractal prediction given by Eq. (7) for γ ¼ 0.2.
Inset shows the correlation function with the power-law
decay (1) for ξ ¼ ζð2Þ. (b) Compensated structure functions
r−ξhjδujpi2=p ∝ r2ζðpÞ=p−ξ for integer orders 1 ≤ p ≤ 6 (from
bottom to top). Points indicate Monte Carlo averaging over
512 samples using N ¼ 220 points and smoothing scale
η ¼ 4π=N. The black shaded lines indicate the multifractal
prediction. (c) Random realizations of the spatial part of (5)
for ξ ¼ 2=3 and various γ. (d) Effective roughess ξK as a function
of γ for various ξ. Inset illustrates Definition (8).
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Still, our multifractal fields are rougher than their mono-
fractal counterpart. This is seen qualitatively from the
numerical realizations of Fig. 1(c): Increasing γ also in-
creases the spikiness of the signal. More quantitatively, the
spatial roughness ξK of a single realization of the random
field uξ;γ is tied to its scaling exponents ζðpÞ through the
classical Kolmogorov continuity theorem [33,34] as

ξK ¼ 2sup
p

ζðpÞ − 1

p
≤ ξ: ð8Þ

For γ ¼ 0, the monofractal behavior ζðpÞ ¼ pξ=2 holds for
arbitrarily large p’s, and as such the exponent ξK identifies
to the Hurst exponent ξ. For γ ≠ 0, though, this value is
reached at pK ¼ ffiffiffi

2
p

=γ, which prescribes ξK < ξ—see
Fig. 1(d). On the one hand, because of this enhanced
roughness, one could, in principle, expect that tracers
advected in the intermittent fields (4) are more likely to
exhibit nondeterministic behavior than in Kraichnan flows,
following the mantra the rougher, the more spontaneously
stochastic. On the other hand, two-particle separations in
the monofractal Kraichnan flows depend only on ζð2Þ ¼ ξ
[26]: One may as well expect that at least at the level of
two-particle separation, one should see no effect of inter-
mittency. We now present some formal and numerical
results, to argue that none of the intuitive assumptions
formulated above are in fact correct.
From random fields to random potentials.—We focus on

the dynamics of pair separations, obtained by considering
N ¼ 2 in Eq. (4). Similar to the Gaussian case [35,36],
tracers advected by Eq. (4) can be interpreted in terms of
particles interacting through a random pairwise potential,
and whose dynamics are prescribed through the stochastic
differential equation (SDE)

dXi ¼
1

Zη

X
j¼1;2

LijðjX1 − X2jÞeγYðXjÞWjðdtÞ þ
ffiffiffiffiffi
2κ

p
BiðdtÞ;

with LðrÞ ≔
�

1 0

1 − rξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − rξÞ2

p
�
: ð9Þ

The matrix L is a discrete analog to the kernels LðξÞ
η

featured in Eq. (5), except for the regularizing scale η. It
corresponds to an explicit Choleski decomposition of the
correlation matrix C2 ≔ CðjXi − XjjÞi;j¼1;2 such that
LLT ¼ C2. As a SDE version of the original dynamics
(4), Eq. (9) comes with two advantages. (i) At a numerical
level, it allows for Monte Carlo sampling of trajectories
without the need to generate the fields of Eq. (5) at each
time-step, similar to the Gaussian setting [35,36]. (ii) At a
formal level, separation-time statistics can be obtained by
means of stochastic calculus and potential theory for
Markov processes, in other words Feynman-Kac-like for-
mulas. The word formal is advisory, as the frozen-in-time
GMC entering the dynamics could require cautious

mathematical handling [31,37,38], but this goes way
beyond the scope of the present letter.
The paradoxical interplay between intermittency and

spontaneous stochasticity.—Stochastic calculus suggests
that for a prescribed realization of the GMC, the pair-
separation time TY

1 ðrÞ from scale r to scale 1 formally
solves the boundary-value problem

LY
2T

Y
1 ¼ −1 with TY

1 ð1Þ ¼ 0 and ∂rTY
1 ðηÞ ¼ 0; ð10Þ

involving the GMC-dependent operator

LY
2 ðX1; rÞ ≔

e2γYðX1Þ

2Z2
η

½rξ þ e2γΔYð2 − rξÞ�rξ∂rr; ð11Þ

which features the increment ΔY ≔ YðX1 þ rÞ − YðX1Þ.
For γ ≠ 0, Eq. (10) features a nontrivial coupling between
the pair-separation time and the underlying GMC. Because
of this coupling, Eq. (10) is not closed and one cannot
a priori solve it explicitly for TY

1 . Setting γ ¼ 0 retrieves the
Gaussian setting and provides a statistical decoupling
[17,26], which makes Eqs. (10) and (11) solvable. For
γ ≠ 0, we define the annealed separation time

τ1 ≔ EðTY
1 Þ; ð12Þ

where we recall that the expectation Eð·Þ denotes an
average over the GMC random environment. A nontrivial
decoupling is then obtained under the mean-field Ansatz

EðeγΔYTY
1 Þ ¼ EðeγΔYÞτ1: ð13Þ

For η ≪ 1, Eq. (10) under Ansatz (13) formally becomes

L�
2τ1 ¼ −1 with τ1ð1Þ ¼ 0 and ∂rτ1ð0Þ ¼ 0;

for L�
2ðrÞ ≔

�
1 −

rξ

2

�
rξþ4γ2

∂rr: ð14Þ

We refer the reader to Supplemental Material [26] for
details on derivations of (11)–(14). As for now, we observe
that the term ð1 − rξ=2Þ is bounded and of order O(1).
Hence, the separation times behave as if the multifractal
random flows were Gaussian, yet with effective driving
Hurst parameter

ξγ ≔ ξþ 4γ2 > ξ > ξK: ð15Þ

This Gaussian flow is smoother than the flow at γ ¼ 0! This
calculation evidences a highly paradoxical interplay
between multifractality, roughness, and spontaneous sto-
chasticity: Increasing γ makes the flow rougher in terms of
the effective roughness ξK deduced from Kolmogorov
theorem, but makes the flow smoother in terms of the
spontaneous stochasticity of tracers, driven by ξγ given
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above. A practical consequence of Eq. (15) is the presence
of a phase transition driven by γ, and characterized by
ξγ ¼ 1. This prescribes the mean-field critical curve

γc ¼
1

2

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
∶ ð16Þ

For 0 < ξ < 1, tracers are spontaneously stochastic when
γ < γc and deterministic when γ ≥ γc. For ξ ¼ 1, the
Gaussian case is deterministic, and the critical γc is vanish-
ing, as should be. For ξ ¼ 0, this prescribes γc ¼ 1=2, less
than the maximum value

ffiffiffi
2

p
=2 allowed for the GMC. The

critical value γc can therefore, in principle, be achieved for
any Hurst exponent ξ ∈�0; 1�.
Numerics.—To illustrate the rationale of the prediction

(15) and mean-field Ansatz (13), we now report results of
Monte-Carlo sampling of pair trajectories, obtained from
two different methods, and where we vary the levels of
roughness ξ, intermittency γ and the regularization scale η.
The first method is field based. It uses direct integration of
the dynamics (4) with the standard Euler-Maruyama
method, and requires us to generate a new spatial realiza-
tion of the field (5) at each time step. Tracers are then
advected by smoothly interpolating the velocity field at
their current positions. The second method is SDE based. It
uses the representation (9) in terms of interacting particles
and only requires generating a single field, namely, the
frozen GMC, per a pair of trajectories. In the SDE setting,
in order to enhance numerical stability, we add a callback
function ensuring exact reflecting boundary conditions for
particles reaching η.
Beyond the physical parameters ξ, γ, η, both methods

require us to set values for the field resolutions N, the
number of trajectory realizations, the time steps dt; see
Table I. To ensure a finite-time completion of the numerical
algorithms, we use a maximal time Tmax over which the
numerics are stopped: Our Monte Carlo sampling there-
fore does not measure τ1ðηÞ but rather the estimate
τ̃1 ¼ hTY

1 ∧ Tmaxi.
Figures 2 and 3 summarize our numerical observations.

Figure 2 reveals two types of behaviors when prescribing
0 < ξ < 1. Setting, for instance, ξ ¼ 2=3 as in panels (a),
(b), we observe that for small γ, the estimates τ̃1 converge to
finite value, independent from Tmax. The limiting value is
compatible with the mean-field prediction τmf

1 ðξγÞ ¼
½2ð1 − ξγÞð1 − ξγ=2Þ�−1 [26], evidencing the spontaneous

TABLE I. Numerical parameters for Figs. 2 and 3 for both
methods. For SDE-based numerics, realizations are independent
while for the field-based numerics, we use minibatches of 100
trajectories to reach 105 samples.

ξ γ N η dt Tmax Realizations

2=9 to 1 0 to 0.6 27 to 214 4π=N 10−4 8 to 64 105

(a) (b)

(c)
(d)

FIG. 2. (a) Convergence with η of the separation time at
ξ ¼ 2=3 for field-based numerics, using maximal simulation
times Tmax ¼ 8ðtriangleÞ; 16ðsquareÞ; 32ðdiamondÞ; 64ðcircleÞ,
for γ ¼ 0 (orange) and γ ¼ 0.6 (green). Dashed line indicates
the Kraichnan flow value. (b) Same but for SDE-based numerics.
(c) τ1 against γ at ξ ¼ 1=3 (red) and 2=3 (blue) for field-based
(circle) and SDE-based (cross) numerics, using the smallest
η ¼ 10−3 and largest Tmax ¼ 64. (d) Color map for the average
separation time τ1 against the roughness and intermittency para-
meters ξ, γ from SDE-based numerics. Data are normalized by
Tmax ¼ 64, and interpolated from that measured at the white dots.
Red (blue) rendering indicate values close to 0 (1) suggestive of
spontaneously stochastic (deterministic) behavior.

(a)

(c)

(b)

(d)

FIG. 3. (a) Three random realizations of initially coalesced pair
trajectories until their separation times T1 for driving Hurst
parameter ξγ ¼ 2=3 with ξ ¼ 2=3, γ ¼ 0. (b) Same but with

ξ ¼ 1=3, γ ¼ ffiffiffi
3

p
=6. Color indicates the magnitude of the under-

lying GMC, whose profile is represented vertically in the negative
axis. (c) PDF of separation times obtained from SDE-based
numerics for ξ ¼ 2=3, γ ¼ 0. Inset uses log scale for the y axis.
(b) Same but for ξ ¼ 1=3, γ ¼ ffiffiffi

3
p

=6.
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stochastic nature of separations for small γ. For large γ, the
apparent convergence of τ̃1 when decreasing η is a
numerical artifact, as the limiting value grows with Tmax.
This signals deterministic behavior, with the particles not
separating in the limit η → 0. As such, for all the values of ξ
considered in this work, our numerics reflect the presence
of a phase transition at finite value of γ. This is in agreement
with our mean-field argument, and substantiates our claim
that intermittency here favors deterministic behavior. The
onset of deterministic behavior when increasing γ is found
to be similar when using either field-based or SDE-based
numerics. Focusing on the cases ξ ¼ 1=3 and ξ ¼ 2=3, we
find good compatibility with the mean-field prediction in
the latter case and observe deviations in the former case—
see panel (c). As seen from panel (d), the mean-field
prediction accurately captures the transition between deter-
ministic and nondeterministic behaviors for small values of
the effective roughness, corresponding to the larger values
of ξ. The agreement seems to deteriorate for smaller ξ. This
discrepancy suggests that the mean-field approach becomes
inaccurate in the latter regime, but one cannot rule out a
defect of the numerics: As ξ → 0þ, the paths become very
rough, and the Euler-Maruyama scheme may become unfit
even when combined with very fine time stepping.
Figure 3 shows the effect of non-Gaussianity playing out

at fixed value of the driving Hurst exponent ξγ ¼ 2=3 in the
spontaneous stochastic regime. As seen from panels (a) and
(b), the behaviors between Gaussian and non-Gaussian
settings are qualitatively different, although by construc-
tion, both share the same mean-field average separation
time. In the Gaussian case, the GMC ∝ eγY is unity, and the
behavior of pairs is statistically independent from their
absolute positions. In the non-Gaussian case, the GMC is
nontrivial and we observe a dependence on the local values
of the magnitude γY. This is compatible with the fact that
Eq. (11) ruling the pair separations is not closed, unless one
further averages over the GMC realizations. This behavior
reflects in the PDF of exit times. At large times, the
Gaussian setting exhibits the exponential decay ∝ e−t=τ1
predicted by the Kraichnan flow theory [26]. The non-
Gaussian case deviates from the exponential behavior; it
exhibits fat tails, likely reflecting particles trapped in quiet
“valleys” of the frozen-in-time GMC. Understanding the
details of this slow decay requires tools more refined than
the present mean-field approach and is left for future
studies.
Concluding remarks.—We have proposed a nontrivial

extension of the Kraichnan flow theory towards a multi-
fractal setting, that we obtained by decorating the original
Markovian Gaussian flows with a frozen-in-time Gaussian
multiplicative chaos. Multifractality makes the flow
rougher in terms of the Kolmogorov roughness ξK, but
the spontaneous stochasticity of two-particle separation
maps to that of a smoother Gaussian environment, with
Hurst exponent ξγ > ξ > ξK. This paradoxical effect is all

the less intuitive, as the second-order structure functions of
our parametric family of fields are characterized by con-
stant ζð2Þ ¼ ξ independent of the level of the intermittency.
This is an example of a smoother ride over a rougher sea at
play in scalar transport [21,39], and possibly connected to
the mathematical theory of regularization by noise [40].
Besides, the use of a frozen-in-time GMC as a random
environment is strongly reminiscent of the parabolic
Anderson model used in condensed matter physics [41]
and the Liouville Brownian motion entering the construc-
tion of field theories in the context of 2D quantum gravity
[37,38]. Those analogies could prove fruitful to build a
fundamental understanding of transport in multifractal
environments. This includes tackling higher dimensions,
revisiting scalar intermittency, and connections with
anomalous dissipation [42,43], or more generally address-
ing irreversibility [44,45] and universality of transport.
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