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The spatial photonic Ising machine (SPIM) [D. Pierangeli et al., Large-Scale Photonic Ising Machine by
Spatial Light Modulation, Phys. Rev. Lett. 122, 213902 (2019).] is a promising optical architecture
utilizing spatial light modulation for solving large-scale combinatorial optimization problems efficiently.
The primitive version of the SPIM, however, can accommodate Ising problems with only rank-one
interaction matrices. In this Letter, we propose a new computing model for the SPIM that can accommodate
any Ising problem without changing its optical implementation. The proposed model is particularly
efficient for Ising problems with low-rank interaction matrices, such as knapsack problems. Moreover, it
acquires the learning ability of Boltzmann machines. We demonstrate that learning, classification, and
sampling of the MNIST handwritten digit images are achieved efficiently using the model with low-rank
interactions. Thus, the proposed model exhibits higher practical applicability to various problems of
combinatorial optimization and statistical learning, without losing the scalability inherent in the SPIM
architecture.

DOI: 10.1103/PhysRevLett.131.063801

Introduction.—As the recent development of machine
intelligence technologies relies largely on massive compu-
tational power for optimization and learning, there is a
growing demand for high-speed, large-scale, and energy-
efficient computation to deal with increasingly complex
real-world problems. A possible approach to meet this
demand is to adopt unconventional, problem-specific
computing technologies, without relying on the conven-
tional von Neumann architecture.
Ising machines are dedicated hardware solvers for

combinatorial optimization problems formulated as Ising
problems, designed to find the (approximate) ground states
of the corresponding Ising models [1,2]. Many important
combinatorial optimization problems can be formulated
as Ising problems [2,3], thus leading to numerous studies
[4–15] on implementing Ising machines using various
physical devices and dynamics.
The spatial photonic Ising machine (SPIM) [13,14] is a

promising optical architecture utilizing spatial light modu-
lation for solving large-scale Ising problems efficiently. The
SPIM accelerates annealing computation by optically
computing the Ising Hamiltonian with all-to-all interactions
in constant time, independent of the number of variables.
Its outstanding performance has been demonstrated for
problems with more than ten thousand variables [16].

Despite its superior scalability, the primitive version of
the SPIM can accommodate only a limited class of Ising
problems with rank-one interaction matrices. Although
subsequent studies [17,18] multiplexed the SPIM to handle
broader classes of Ising problems, the scalability becomes
degraded instead. Thus, a breakthrough is still required for
the SPIM to attain the applicability to various real-world
problems without losing its scalability.
In this Letter, we propose a multicomponent computing

model for the SPIM to circumvent the limitation and
accommodate higher-rank interaction matrices without
changing its optical implementation. The proposed model
is capable of handling any Ising problem, and is particularly
efficient for problems with low-rank interactions. We
demonstrate its efficient applicability to knapsack problems
by formulating them as Ising problems with rank two.
Moreover, we show that the proposed model acquires the

learning ability of Boltzmann machines [1]. With full-rank
interactions, it has the expressive power equivalent to the
ordinary Boltzmann machine; however, the model with
low-rank interactions is efficient and can be sufficient for
inferences from real-world data, as typically assumed in
low-rank modeling. We demonstrate that learning, classi-
fication, and sampling of the MNIST handwritten digit
images [19] are achieved efficiently with low-rank inter-
actions. Notably, we observe that the newly derived
learning rule naturally performs low-rank learning of the
digit images, whereas low-rank constraints are not explic-
itly imposed.
Thus, we report here that the proposed model exhi-

bits higher practical applicability to various problems of
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combinatorial optimization and statistical learning, without
losing the scalability inherent in the SPIM architecture.
Although our contribution in this Letter is the computing
model that theoretically works with any existing SPIM
implementation, we also present the results of proof-of-
concept optical experiments.
Optical computation of Ising Hamiltonian.—The SPIM

[13,14] computes the Ising Hamiltonian optically from the
phase-modulated image of an amplitude-modulated laser
beam (Fig. 1). Light incident on the ith site of the spatial
light modulator (SLM) with an amplitude ξi is phase
modulated by σi ¼ expðiϕiÞ ¼ �1, which represents the
ith Ising spin, and detected by an image sensor. In the
primitive version of the SPIM, the detected image I is
compared with the pointlike target image IT to obtain the
Ising Hamiltonian in the following form:

HðσÞ ∝
X

i;j

ξiξjσiσj ¼ σ⊤ξξ⊤σ; ð1Þ

where ξ ¼ ðξ1;…; ξNÞ⊤ and σ ¼ ðσ1;…; σNÞ⊤. Notably,
the computation is performed in constant time, independent
of the number of spins N, involving all-to-all interactions
among the spins. However, compared with the ordinary
(quadratic) Ising Hamiltonian HðσÞ ¼ − 1

2
σ⊤Jσ, the inter-

action matrix J is limited to the form J ∝ ξξ⊤. Thus, the
primitive SPIM can accommodate only real symmetric
matrices with rank one as the interaction matrix. The Ising
spin system with this type of Hamiltonian is known as the
Mattis model [20].
Here we propose a multicomponent computing model

for the SPIM architecture to improve the expressive power
of the interaction matrix. We formulate the Hamiltonian as
a linear combination of Eq. (1) as follows:

HðσÞ ¼ −
1

2

XK

k¼1

λk
X

i;j

ξi;kξj;kσiσj ¼ −
1

2
σ⊤

�XK

k¼1

λkξkξ⊤k
�
σ;

ð2Þ

where K denotes the number of components, and λk and
ξk ¼ ðξ1;k;…; ξN;kÞ⊤ are the weight and amplitude param-
eters of the kth component, respectively. The energy value
of the Hamiltonian can be obtained by calculating the
weighted sum from images acquired K times with different
amplitudes ξk. Now the interaction matrix J ¼ P

k λkξkξ
⊤
k

can represent any real symmetric matrix with rank not
greater than K. Therefore, if K is increased to N, any Ising
Hamiltonian can be computed. Although the computation
time increases linearly to K, it does not depend directly
on N, inheriting the scalability of the underlying SPIM
architecture.
Combinatorial optimization with the multicomponent

model.—To solve a combinatorial optimization problem
using an Ising machine, we formulate it as an Ising
problem, which is to find σ ∈ fþ1;−1gN that minimizes
the Ising HamiltonianHðσÞ ¼ − 1

2
σ⊤Jσ. For simplicity, the

linear (bias) term is omitted here because introducing an
additional spin fixed to þ1 suffices.
The Hamiltonian of the primitive SPIM, with rank

K ¼ 1, is HðσÞ ¼ −ðλ=2Þðξ⊤σÞ2. When λ > 0, it has
trivial, two symmetric global minima σ ¼ �sgn ξ. When
λ < 0, minimizing HðσÞ reduces to a number partitioning
problem [16,21–25], which is to find the partition of
numbers ξ1;…; ξN into two subsets that minimizes the
difference of the sums in the two subsets jPi ξiσij ¼ jξ⊤σj.
Thus, the primitive SPIM can essentially handle only the
class of number partitioning problems. Although this class
is theoretically NP hard [26], it is practically insufficient to
be used for solving Ising formulations of various combi-
natorial optimization problems.
However, we can circumvent the limitation without

changing the optical implementation by introducing the
proposed multicomponent model, which is capable of
handling any Ising problem. Particularly, it is efficient
for Ising problems with low-rank interactions because the
computation time depends linearly on rank K.
The spin configuration σ is updated according to energy

values HðσÞ. To solve an Ising problem, typically we
employ simulated annealing [27]; a sample sequence of
σ, generated by a Markov-chain Monte Carlo (MCMC)
method from theGibbs distributionPðσÞ ∝ exp ½−HðσÞ=T�,
is expected to converge to an approximate ground state as the
system temperature T gradually decreases.
Application to knapsack problems.—To demonstrate the

applicability of the multicomponent model to a broader
class of combinatorial optimization problems, we apply it
to the 0-1 knapsack problem with integer weights, which
can be formulated as Ising problems with rank K ¼ 2 and
hence cannot be handled by the primitive SPIM.
The knapsack problem is a well-known problem to find

the subset of given items that maximizes the total value
satisfying a predefined total weight limit. More specifically,
given the value vi and the weight wi of the ith item for
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FIG. 1. Schematic of the SPIM architecture. The laser beam is
amplitude modulated and phase modulated by spatial light
modulators SLM1 and SLM2, which encode ξ and σ, respec-
tively, and detected by an image sensor. The Ising Hamiltonian is
obtained from the detected image I.
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i ¼ 1; 2;…; n and the weight limit W, the 0-1 knapsack
problem is expressed as follows:

maximize
Xn

i¼1

vixi; ð3Þ

subject to
Xn

i¼1

wixi ≤W; x¼ðx1;…;xnÞ∈ f0;1gn: ð4Þ

Under the assumption of integer weights, the knapsack
problem reduces to minimizing

Hðx;yÞ¼A

�Xn

i¼1

wixiþ
Xm

i¼1

2i−1yi−W

�
2

−B

�Xn

i¼1

vixi

�
2

;

ð5Þ

where auxiliary variables y ¼ ðy1;…; ymÞ ∈ f0; 1gm are
introduced using a log trick [3]. This can be rewritten in the
multicomponent form (2) with size N ¼ nþmþ 1 and
rank K ¼ 2 as follows:

λ1 ¼ −
A
2
; λ2 ¼ þB

2
; ð6Þ

ξ1 ¼
�
w1;…; wn; 20;…; 2m−1;

X

i

wi þ 2m − 1 − 2W

�⊤
;

ð7Þ

ξ2 ¼
�
v1;…; vn; 0;…; 0;

X

i

vi

�⊤
; ð8Þ

σ ¼ ð2x1 − 1;…; 2xn − 1; 2y1 − 1;…; 2ym − 1; 1Þ⊤: ð9Þ

We conducted a proof-of-concept experiment [28] for a
knapsack problem with n ¼ 13 items [29]. The spin
sequences were sampled both optically and numerically
at a moderately low, constant temperature. Figure 2 shows
that the multicomponent SPIM generates samples essen-
tially according to the Gibbs distribution. The typical time
evolution of the energy values HðσÞ of spins observed in
the optical experiment [Fig. 2(a)] resembles that of the
numerical experiment [Fig. 2(b)]. The histogram of energy
values sampled from the optical experiment [Fig. 2(c)]
shows that it generates many low-energy samples around
HðσÞ ≈ 0, constituting the distribution with peaks at the
same values as those in the numerical experiment.
A closer look at these results indicates that the temper-

ature of the Gibbs distribution was slightly higher in the
optical experiment due to the noise in the optical system.
Although the physical noise can be utilized as a source of
randomness [30], we simply executed the Metropolis
algorithm adhering to the obtained Hamiltonian values
for clarity of results. To facilitate the MCMC process to

jump over energy barriers, multiple-spin flips were per-
formed, taking the advantage of direct energy computation
of the SPIM.
The optimal solution to the knapsack problem was

obtained 304 times out of the 150 000 samples observed
in the optical experiment, with a ratio considerably higher
than the probability 2−13 of random sampling. This result
confirms that the spin states with lower energy values were
sampled frequently according to the Gibbs distribution
PðσÞ ∝ exp ½−HðσÞ=T�.
Overall, we demonstrated that the multicomponent

model with rank K ¼ 2 works as expected with the
Ising Hamiltonian for the knapsack problem in both the
numerical and optical experiments. These results indicate
that the proposed model can efficiently handle Ising
problems with low-rank interactions.
Statistical learning with the multicomponent model.—In

the field of machine learning, the Ising model is commonly
referred to as the Boltzmann machine, which can be viewed
as a generative neural network model composed of sto-
chastic elements [31]. It has been applied not only for
solving combinatorial optimization problems [2] but also,
more importantly, for statistical machine learning. The
restricted Boltzmann machine (RBM) [32–34] and deep
Boltzmann machine (DBM) [35,36] are well-known sub-
classes that have contributed to the recent development of
deep learning.

FIG. 2. Sampling behavior of the multicomponent model for a
knapsack problem. Typical time evolutions of energy values of
the spin configurations sampled from (a) optical and (b) numerical
experiments. Several samples with higher energy values are not
shown. (c) Histograms of the energy values of 3000 × 50 samples
observed from each experiment with bin width 1000.
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With the increased expressive power, the multi-
component model acquires the learning ability applicable
to real-world data. If rank K is increased to N, it becomes
equivalent to the ordinary Boltzmann machine; however, it
is efficient with low-rank interactions both in terms of the
computation time and the number of parameters.
To train the model PðσÞ ∝ exp ½−HðσÞ�, we perform the

gradient ascent on the log-likelihood logL given the data
distribution, according to the gradients [28]

∂

∂λk
logL ¼ 1

2
ξk⊤ðhσσ⊤idata − hσσ⊤imodelÞξk; ð10Þ

∂

∂ξk
logL ¼ λkðhσσ⊤idata − hσσ⊤imodelÞξk; ð11Þ

where h·idata and h·imodel denote the expectations over the
data and model distributions, respectively.
Learning MNIST digit images.—To demonstrate the

learning ability as a Boltzmann machine with the low-rank
efficiency, we trained the multicomponent model [28] using
the MNIST digit image data [19].
First, we applied it for the classification of handwritten

digits to evaluate its low-rank efficiency. We trained the
fully visible model with size N ¼ 794. Figure 3 shows the
dependency of the classification accuracy on rank K.
Although the accuracy drops to the chance level for K ≤
30 owing to training failure, the graph is almost flat for
K ≥ 100; that is, the model with rank as low as K ¼ 100
exhibits a performance comparable to that of the full rank.
This numerical result clearly shows the low-rank efficiency
of the multicomponent model in learning the MNIST
images. Note that the accuracy was not as high as that
of the ordinary RBM due to the lack of hidden units.
Next, we sampled digit images from the fully visible

multicomponent models with size N ¼ 196 and rank K ¼
50 trained using theMNIST images of each digit [Fig. 4(a)].
Random samples from the trained models [Fig. 4(b)] show
that the digit images were successfully sampled. Note that
inverse images are sampled due to the symmetry HðσÞ ¼
Hð−σÞ of the model without bias. The images did not de-
grade in random samples from the reducedmodel [Fig. 4(c)]
composed only of principal components with magnitudes

jλkjkξkk2 > 0.1. These numerical results indicate that
the reduced, low-rank model is sufficient for sampling.
Figure 4(d) shows random samples obtained optically from
the reduced model for the digit “0.” Some samples maintain
the digit shape,while some appear to degrade, in comparison
with the numerical results, possibly due to the noise in the
optical system. Again, we did not utilize the physical noise
for clarity of results.
The learning behavior for the digit 0 is depicted in

Fig. 5(a). The magnitude jλkjkξkk2 for each kth component
increases one by one as the learning process progresses.
The final number of principal components is 11 out of
K ¼ 50. The multicomponent model appears to gradually
increase its (effective) rank as required for accuracy. This
result suggests that the gradient-ascent learning rule nat-
urally achieves low-rank learning. Figure 5(b) shows the
gray-scale images of the top five principal components ξk,
for which λk is positive. The digit shapes are vaguely
embedded in ξk, because intuitively, σ ¼ �sgn ξk mini-
mizes the kth component if λk > 0.

FIG. 3. Classification of MNIST digit images. The classifica-
tion accuracy of the trained multicomponent models with rank K
taking on integer multiples of 10 is shown.

FIG. 4. Sampling from the multicomponent models trained
with the MNIST digit images. (a) Random samples from the
training dataset. Random samples generated from (b) the trained
models with rank K ¼ 50, (c) the reduced models with only
principal components, and (d) the optical experiment of the
reduced model, after 1960 time steps from random initial spin
configurations. Each pixel in the gray-scale images represents the
conditional probability P½σi ¼ 1jσni� of each spin σi given the
states of other spins σni.
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Overall, both the classification and sampling results
demonstrate the low-rank efficiency of the multicomponent
model in learning MNIST digit images with the gradient-
ascent learning rule.
Discussion.—Since the multicomponent model handles

lower-rank Ising problems more efficiently, the matrix
ranks can be an index that characterizes a new aspect, to
the best of our knowledge, for combinatorial optimization
problems. The number partitioning problem and the 0-1
knapsack problem with integer weights are lowest-rank
examples of combinatorial optimization problems. It is an
interesting future direction to characterize the types of low-
rank real-world problems.
The efficiency for low-rank Ising Hamiltonians as well

as inherent scalability with all-to-all interactions is a unique
feature that cannot be seen in other Ising machines. For
rank one, its outstanding performance has already been
demonstrated in solving large-scale number partitioning
problems [16]. Thus, the multicomponent SPIM is also
expected to exhibit unique performance for large-scale
Ising problems with low-rank all-to-all interactions.
A necessity for solving low-rank Ising problems arises

when the learning is involved [37–39]. For example, a
study on the automated design of metamaterials [37] trains
a factorization machine [40], similar to the multicomponent
model, to find low-energy candidates for metamaterials
using a D-Wave quantum annealer. Here, the low-rank
constraint contributes to the generalization ability, which is
essential for inferring the energy landscape only from a
small dataset. Thus, the multicomponent SPIM should
serve as an efficient sampling machine to find low-energy
candidates using a trained low-rank Ising Hamiltonian.

Despite the importance of low-rank modeling in data
science, there has been no study on low-rank learning of
Boltzmann machines, to the best of our knowledge. Our
results suggest the capabilities of the low-rank Boltzmann
machine as a statistical model with high parameter effi-
ciency. The low-rank learning may be further enhanced by
introducing sparsity regularization. Elucidating the mecha-
nism behind the gradient-ascent rule is also intriguing.
Another unique feature of the multicomponent SPIM is

that we can choose candidate states arbitrarily in MCMC
algorithms without any loss of the computation speed, as
demonstrated in multiple-spin flips for the knapsack
problem. Designing new MCMC algorithms specialized
for the multicomponent SPIM is considered important,
possibly by exploiting the low-rank property [41] and
physical noise [30].
The high practical applicability of the multicomponent

SPIM highlights the need for hardware improvements in the
SPIM, such as enhanced computation speed and scalability,
for further development. It can exploit the low-rank
property in multiplexed architectures such as [18]. If the
SPIM hardware allows σ to take nonbinary, intermediate
continuous values, we can implement continuous-
valued spin systems with rich nonlinear dynamics as in
Refs. [7–9,42–48].
In conclusion, we proposed the multicomponent com-

puting model for the SPIM that exhibits higher practical
applicability to various problems of combinatorial optimi-
zation and statistical learning without losing the inherent
scalability. Notably, the proposed model has a unique
affinity to low-rank combinatorial optimization and low-
rank learning of Boltzmann machines. These unexpected
benefits of the SPIM architecture are expected to contribute
to the future development of non-von Neumann, neuro-
inspired computing.
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