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We report calculations of Delbrück scattering that include all-order Coulomb corrections for photon
energies above the threshold of electron-positron pair creation. Our approach is based on the application of
the Dirac-Coulomb Green’s function and accounts for the interaction between the virtual electron-positron
pair and the nucleus to all orders in the nuclear binding strength parameter αZ. Practical calculations are
performed for the scattering of 2.754 MeV photons off plutonium atoms. We find that including the
Coulomb corrections enhances the scattering cross section by up to 50% in this case. The obtained results
resolve the long-standing discrepancy between experimental data and theoretical predictions and
demonstrate that an accurate treatment of the Coulomb corrections is crucial for the interpretation of
existing and guidance of future Delbrück scattering experiments on heavy atoms.
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Introduction.—Classical electrodynamics is known to be
linear in vacuum, which implies the absence of light-light
interactions. In quantum electrodynamics (QED), however,
photons can interact with each other by means of creation
and annihilation of virtual electron-positron pairs. This
interaction enables a class of nonlinear QED processes,
including photon splitting and coalescence, as well as light-
by-light and Delbrück scattering. The Delbrück scattering
occupies a special place among them since it is the non-
linear QED process that can be studied most accurately in
experiment [1–3].
Delbrück scattering is the elastic scattering of photons by

the Coulomb field of atomic nuclei. Precise knowledge
of this fundamental process can provide unique tests of
the nonlinear aspects of QED theory. It is also required to
analyze nuclear photon scattering experiments and to
improve our quantitative knowledge of the nuclear struc-
ture. In particular, accurate predictions of the Delbrück
amplitudes are needed to extract information on the static
electric nuclear polarizability, the giant dipole, and iso-
vector giant quadrupole resonances [4–6]. So far, these
possibilities have not been fully explored because a
sufficiently accurate theoretical description of Delbrück
scattering is not available.
The most widely used approach in the region of moderate

energies of 1–10 MeV is the lowest-order Born approxi-
mation as developed by Papatzacos and Mork [7]. This
approximation is based upon expanding the Delbrück
amplitude in the Coulomb-field strength parameter αZ,
where Z is the nuclear charge and α≈ 1=137 is the

fine-structure constant, and neglecting all terms beyond
the lowest order that are usually referred to as Coulomb
corrections. The Born approximation usually works well for
light atoms [2,3]. However, for heavy nuclei the expansion
parameter αZ is not small and the Coulomb corrections
drastically change the cross section as compared to the Born
approximation [2]. Moreover, the Delbrück cross section
scales as Z4 to leading order [7], making this scattering
channel increasingly important for high-Z targets and
allowing experiments to achieve a higher accuracy.
In order to better understand Delbrück scattering

in the high-Z regime, new experiments are planned that
use nuclear γ sources, Compton scattering techniques,
and novel accelerator facilities that will employ gamma
rays with energies above the electron-positron pair
production threshold [8–13]. The necessary prerequisite
for the success of these experiments is a breakthrough in
the theory of Delbrück scattering, since previous calcula-
tional approaches were not adequate in the high-Z regime,
as was repeatedly stressed in the literature [2,14–17]. In
particular, the measured angle differential cross section
for the scattering of 2.754 MeV photons off neutral
plutonium atoms was found to differ from the lowest-
order Born predictions by almost a factor of 2 [15]. This
long-standing discrepancy has not been resolved up to now
and is commonly attributed to the unknown Coulomb
corrections.
Despite the considerable interest, all-order calculations

of Delbrück scattering above the pair production threshold
have remained an unsolved problem in theoretical physics

PHYSICAL REVIEW LETTERS 131, 061601 (2023)
Editors' Suggestion Featured in Physics

0031-9007=23=131(6)=061601(6) 061601-1 © 2023 American Physical Society

https://orcid.org/0000-0002-3471-7494
https://orcid.org/0000-0002-2328-8444
https://orcid.org/0000-0003-0461-3560
https://orcid.org/0000-0002-6441-0864
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.061601&domain=pdf&date_stamp=2023-08-08
https://doi.org/10.1103/PhysRevLett.131.061601
https://doi.org/10.1103/PhysRevLett.131.061601
https://doi.org/10.1103/PhysRevLett.131.061601
https://doi.org/10.1103/PhysRevLett.131.061601


for at least half a century. The first steps to set up an
ab initio theory that accounts for all orders in the Coulomb-
field strength parameter for Delbrück scattering were
performed by Scherdin and co-workers three decades
ago [18,19]. However, due to overwhelming technical
difficulties, no actual calculations for energies above the
pair-creation threshold were carried out. In this Letter, we
develop a novel approach to evaluate and compute
Delbrück scattering amplitudes for a wide range of scatter-
ing energies including those beyond the threshold. This
approach is based on the use of the Dirac-Coulomb Green’s
function, whose exact closed analytical form accounts for
the Coulomb interaction between electrons (positrons) and
a nucleus to all orders in αZ. The use of the Green’s
function eliminates the need for an αZ expansion but
requires an accurate treatment of its poles. The latter has
been done by using a modified Wick rotated integration
contour. Our approach allows for accurate Delbrück cal-
culations in the high-Z and high photon energy regime. To
illustrate the application of the developed method, we
present calculations for the scattering of 2.754 MeV
photons by plutonium atoms. We demonstrate that by
accounting for the higher-order Coulomb corrections,
one can resolve the long-standing discrepancy and
reproduce the experimental results by Rullhusen and
co-workers [15]. In the future, such calculations can be
extended to other systems and higher energies, which
opens a way for testing the nonlinear aspects of QED
and determining nuclear properties from x-ray scattering
experiments. Relativistic units (r.u.) ℏ ¼ me ¼ c ¼ 1 are
used throughout this Letter, if not stated otherwise.
Theoretical background.—The Feynman diagram for

Delbrück scattering is depicted in Fig. 1. Here, we follow
the standard convention where the wavy lines represent the
incoming and outgoing photon with wave vector k1 and k2

and polarization vector ε1 and ε2, and the double lines
correspond to the virtual electron-positron pair in the
Coulomb field of the nucleus. Each vertex r1 and r2
contributes a factor of

ffiffiffi
α

p
to the scattering amplitude

while the Dirac-Coulomb solutions for the electron and
positron account for all orders in αZ.
According to the well-known Feynman correspondence

rules, the amplitude for the diagram in Fig. 1 can be
written as

MD
ϵ1;ϵ2 ¼

iα
2π

Z
∞

−∞
dz

Z
∞

−∞
dz0

Z
d3r1

Z
d3r2

× Tr½R̂ðr1; k1; ϵ1ÞGðr1; r2; zÞR̂†ðr2; k2; ϵ2Þ
×Gðr2; r1; z0Þ�δðωþ z − z0Þ: ð1Þ

Here, Gðr2; r1; zÞ is the Dirac-Coulomb Green’s function
with the three-dimensional coordinate vectors r1 and r2 as
well as the energy argument z. Moreover, R̂ðr; k; ϵÞ is
the photon-lepton interaction operator with k and ϵ being
the wave and polarization vectors and ω being the energy of
the incoming and outgoing photon [3].
Further evaluation of the amplitude (1) for the case when

the photon energy is below the threshold for electron-
positron pair production was discussed by us in Ref. [20].
However, the previous approach has to be extended for the
more troublesome case of above threshold photon scatter-
ing. In what follows, therefore, we will discuss the
challenges of this high energy analysis, ω ≥ 2 r:u:, and
refer for all other details to Ref. [20]. First, to get sensible
results from the Feynman diagram in Fig. 1, one needs to
eliminate the divergent free-loop contribution from the
amplitude. As usual in bound-state QED calculations, the
free diagram can be obtained by setting the nuclear charge
to zero in the amplitude, see, e.g., [21]. Now, we are ready
to perform the energy integration in Eq. (1) over z and z0.
While the integral over z is trivial due to the Dirac delta
function δðωþ z − z0Þ, the substitution z0 → z0 þ 1

2
simpli-

fies the numerical z0-integration. Indeed, as seen from
Fig. 2, the starting points of the branch cuts of the Green’s
functions are located after this substitution at z0 ¼ �1þ
ðω=2Þ and z0 ¼ �1 − ðω=2Þ, i.e., symmetrically with
respect to the coordinate origin. Such symmetry makes
calculations more stable as shown in Ref. [20]. Along with
the cuts, one can also see two sets of bound-state poles
localized at z0 ¼ ðλ0 þmÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαZÞ2þðλ0 þmÞ2

p
þðω=2Þ and

z0 ¼ ðλþmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαZÞ2 þ ðλþmÞ2

p
− ðω=2Þ, m¼0;1;2;….

Both, the branch cuts and the two sets of poles, moreover,
are shifted by δ → �i0 off the real axis.
The infinitely close location of the poles of the Green’s

function to the naive integration path on the interval
z0 ∈ ð−∞;þ∞Þ, displayed in the upper panel of Fig. 2,
makes the numerical evaluation of the amplitude (1) very
troublesome. It is more convenient to perform the well-
known Wick rotation of the contour and integrate along the
imaginary axis instead. However, in contrast to the previous
below-threshold calculations, the branch cuts cross the
imaginary axis for photon energies ω ≥ 2 r:u. In order to
overcome this difficulty, we follow Ref. [19] and modify
the Wick-rotated contour to incorporate additional paths
that go around the branch cuts (C2) and add the residue of
the integrand for the enclosed poles (C3), see lower panel of
Fig. 2. By employing this modified contour, we finally
obtain

FIG. 1. Feynman diagram for Delbrück scattering to leading
order in α and all orders in αZ.
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Z
∞

−∞
dz0 fðz0Þ ¼

Z
C1;C2

dz0 fðz0Þ − 2πi
X
n

Res½f; z0n�; ð2Þ

where for the sake of brevity, we used the notation fðz0Þ for
the integrand in Eq. (1) with Res½f; z0n� being the residue of
fðz0Þ at its nth enclosed pole z0n.
The evaluation of Eq. (2) requires the calculation of the

integral along the paths C1 andC2 as well as the summation
over the residue of the poles of the integrand C3. The
methods used to evaluate the path along the imaginary axis
C1 are identical to the case of below-threshold energies and
are discussed in detail in Ref. [20]. In contrast, the
integration along C2 and the summation over the residue
C3 requires some important modifications that need to be
discussed. For example, when integrating along C2, we
find that the integrand is strongly peaked at the beginning
of the branch cuts at z0 ¼ �1 ∓ ðω=2Þ. To perform the
integration, we use Gauss-Legendre quadrature with
an enhanced density of integration points close to the
peaked regions which can be achieved by the substitution
z0 → �u2 þ ½�1 ∓ ðω=2Þ�. To calculate the residue C3, we
note that the poles originate from a prefactor Γðλ0 − ν0Þ
arising in the radial components of the Green’s function
[21], where λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ02 − ðαZÞ2

p
, ν0 ¼ αZ½z0 þ ðω=2Þ�=c0,

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½z0 þ ðω=2Þ�2

p
, and κ0 is the Dirac quantum

number of one of the propagators. Therefore, to obtain

the contribution from the bound states, we simply replace
this prefactor by its residue

Res
�
Γðλ0 − ν0Þ; z0n ¼

λ0 þ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαZÞ2 þ ðλ0 þ nÞ2

p −
ω

2

�

¼ −
ð−1Þn
n!

�
1 − ðλ0þnÞ2

ðαZÞ2þðλ0þnÞ2
�
3=2

αZ
: ð3Þ

Together with the integration over the energy z0,
the evaluation of the radial integrals in Eq. (1) is
also a highly demanding task. This is due to the fact
that after some algebra presented in Ref. [20], the inte-
grand in Eq. (1) can be written in terms of products
of Whittaker functions Mα;βð2c̃r2Þ and Wα;βð2c̃r1Þ, where
c̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½z0 � ðω=2Þ�2

p
, which are fast oscillating and

slowly decreasing at large radial arguments. To compute
the integrals over r1 and r2, we split the integrals into two
parts. For small radial distances, we perform the radial
integrations numerically, whereas for large distances we
employ the asymptotic expansion of theWhittaker functions
to calculate the integrals analytically. In contrast to thebelow-
threshold case of Ref. [20], however, the analysis of the
asymptotic representation of the Whittaker functions
requires some special attention if ω ≥ 2 r:u. The reason
for this is the second term of the asymptotic expansion of
Mα;βð2c̃r2Þ ∝ M1ec̃r2 þM2e−c̃r2 which is always exponen-
tially smaller than the first term for ω < 2 r:u: but can be of
comparable magnitude for higher energies. The radial
integral including this term was also derived analytically
in terms of incomplete Gamma functions. In general, the
radial integration is a very time consuming task which was
accomplished by utilizing a hybrid parallelization scheme at
the PTB high performance cluster. This allowed us to
perform a full calculation for one charge number and photon
energy in approximately oneweek using around 200 threads.
So far, we have discussed the theory used to calculate

Delbrück scattering amplitudes. With the help of these
amplitudes, one can calculate the angle-differential as well
as total cross sections of the Delbrück process. However, in
order to compare the results of our calculations with
experimental data, we have to account also for competing
scattering processes. These are the Rayleigh scattering off
bound atomic electrons and nuclear Thomson scattering.
The Rayleigh and Delbrück scattering processes are closely
related as can be readily seen in the redefined vacuum
approach [22–24]. In this approach, the vacuum Fermi level
in the Delbrück amplitude is shifted to include the Dirac
energies of the occupied atomic shells. In practice, it
implies changing the sign of the infinitesimal imaginary
additions for the poles of the electron propagator corre-
sponding to the occupied shells. The expressions for the
Rayleigh amplitude are then obtained as the difference of
the Delbrück amplitudes with the modified and the standard
vacuum, as illustrated in Fig. 3. We have checked that

FIG. 2. Original (upper panel) and Wick rotated (lower panel)
contour for the z0 integration in the Delbrück amplitude (1). The
modified contour consists of paths along the imaginary axis (C1)
and around the branch cuts (C2) as well as contributions from the
residue (C3). Moreover, the branch cuts (black zigzag lines) and a
finite subset of the countably infinite singularities (black crosses)
of the Green’s functions in Eq. (1) are shown for the case of above
threshold photon energies.
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formulas obtained in this way agree with the known
expressions for Rayleigh scattering [25]. We, therefore,
employ our numerical procedure developed for Delbrück
amplitudes to include Rayleigh scattering.
In contrast to the Rayleigh and Delbrück processes that

are closely related in the framework of QED, a simple
approach can be used to describe the nuclear Thomson
scattering. Namely, the amplitude for a rigid spin-zero
nucleus with charge radius R is given by

MT⊥ ¼ −
αZ2

M

�
1 −

1

3
ω2hR2i

�
; ð4Þ

MT
k ¼ MT⊥ cos θ; ð5Þ

where Z and M are the charge number and mass of the
nucleus, see Refs. [26,27]. The two amplitudes (4) and (5)
correspond to the scattering of photons that are linearly
polarized within or perpendicular to the scattering plane
spanned by the wave vectors k1 and k2.
Estimate of the theoretical uncertainty.—To compare our

theoretical results to experiment in a meaningful way,
we need to estimate their uncertainty due to omitted
higher-order effects. These effects are of several kinds:
electron-electron interactions, QED contributions that are
of higher-order in α, Rayleigh scattering from higher-l
shells and nuclear structure effects. Since the electron-
electron interaction corrections to the Delbrück process are
difficult to estimate, we assume that they are of the same
relative size as the ones for Rayleigh scattering. In the work
by Volotka and co-workers [28], it was shown that the
interelectronic interactions modify the differential cross
section for Rayleigh scattering by about 2% at 150 keVand
become even smaller for higher energies. Although no
estimate of QED corrections was made in Ref. [28],
they are suppressed by the small parameter α. We thus

conservatively estimate the combined uncertainty due to
the electron-electron interaction and higher-order QED
effects to be about 3%.
For the calculation of the Rayleigh scattering amplitudes,

we account only for the K and L shells of the atom and
neglect outer shell contributions. This approximation is
justified by results presented in Ref. [29], where it was
shown that outer shells contribute significantly only for
small scattering angles and their role is reduced
with increase of the energy. For the scattering angle of
45° and incident photon energy of 175 keV, a 5%
contribution of outer shells was predicted in Ref. [29]
and is taken as our error estimate. Yet another source of
uncertainty is the contribution of the nuclear giant dipole
resonance (GDR) scattering. In the present Letter we
estimate this contribution from the existing data on the
photonuclear absorption, as given by Eqs. (3) and (4) of
Ref. [15]. We estimate the corresponding uncertainty as
100% of the resulting GDR contribution.
Results and discussion.—We have discussed above the

details of calculating elastic photon scattering amplitudes
above the pair production threshold. Before employing
these amplitudes to obtain cross sections relevant for
γð2.754 MeVÞ þ Pu scattering experiments [15], let us
first examine the Delbrück case separately. In Fig. 4,
we display the Delbrück amplitudes for collisions of
2.754 MeV photons with bare neon and plutonium nuclei.
For each scenario, we present amplitudes for the scattering
of photons that are linearly polarized either within or
perpendicular to the plane spanned by k1 and k2. As it
was shown in Ref. [30] based on symmetry considerations,
all observables of the scattering process can be obtained
from these two linearly independent amplitudes.
Apart of all-order in αZ calculations, the lowest-order

Born predictions are also displayed in Fig. 4. The well
established Born approximation [7] is obtained by neglect-
ing terms of order ðαZÞ4 and higher in the analysis of the
Feynman diagram in Fig. 1. As seen from the left panels of
Fig. 4, the Born approximation and the all-order results
agree very well for the case of bare neon. This is well
expected for the low-Z regime where beyond-ðαZÞ2 terms
are small. The higher-order corrections are enhanced,
however, in the high-Z domain where they lead to remark-
able modifications of the scattering amplitude. Indeed, as
seen from the right panels of Fig. 4, the imaginary parts of
Mk and M⊥ are enhanced by about a factor of 1.6 and 2.8,
respectively, for θ ¼ 45° if higher-order terms are taken
into account. Such a paramount difference between Born
approximation and all-order results is observed only for the
energies above the threshold of pair production. For
energies below the threshold, our calculations have shown
that the Coulomb corrections do not exceed 15% [20].
We are ready now to calculate the angle differential cross

section of the elastic photon scattering by plutonium atoms.
As shown in Ref. [30], this cross section can be obtained as

FIG. 3. Analytic structure of the integrand and the integration
contour after the redefinition of the vacuum to include the lowest-
lying bound state. The corresponding pole in the lower left
quadrant moves up and is not encircled anymore, whereas the
pole in the lower right quadrant is also moving up and gets
encircled by the integration contour.
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dσ
dΩ

¼ 1

2
ðjMkj2 þ jM⊥j2Þ; ð6Þ

where Mk=⊥ is the sum of the amplitudes for Delbrück,
Rayleigh as well as nuclear Thomson scattering and where
the incoming radiation is assumed to be unpolarized. In
Fig. 5, we display this cross section together with its

theoretical uncertainty and the experimental findings from
Ref. [15]. Moreover, we present the theoretical predictions
based on the lowest-order Born approximation for the
Delbrück amplitude. As seen from the figure, the higher-
order Coulomb corrections to the Delbrück process lead to a
strong enhancement of the cross section for scattering angles
θ < 90°. All-order in αZ predictions agree well with
experimental data from Ref. [15], thus, solving the long
standing discrepancy between experiment and lowest-
order Born theory. This agreement together with the com-
putational stability of our analysis justifies the use of the
proposed method for all-order calculations of Delbrück
scattering for photon energies above the pair production
threshold. In the future, such calculations will be performed
to plan and to analyse Delbrück scattering experiments.
These experiments are planned to be focussed not only on
the total and differential cross sections but also on the
polarization of the scattered photons which might be even
more sensitive to higher-order Coulomb corrections.
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FIG. 4. Real (upper panels) and imaginary (lower panels) parts of the amplitude for Delbrück scattering (1) of 2.754 MeV photons by
bare neon (left panels) and plutonium (right panels) nuclei. Calculations have been performed for linear polarization of the incoming and
outgoing photons parallel (black solid line) as well as perpendicular (red dashed line) to the scattering plane. Moreover, the lowest-order
Born predictions from Ref. [31] are shown (diamonds). The amplitudes are given in units ðαZÞ2r0, where r0 ¼ 2.818 fm is the classical
electron radius.

FIG. 5. Differential cross section for elastic scattering of
2.754 MeV unpolarized photons by plutonium atoms. The black
dots display the experimental data from Ref. [15], the black solid
line indicates the theoretical results based on all order in αZ
Delbrück calculations while the shaded region shows the theo-
retical error. Theoretical predictions using the lowest-order Born
approximation for Delbrück scattering are displayed with the red
dashed line.

PHYSICAL REVIEW LETTERS 131, 061601 (2023)

061601-5



*j.sommerfeldt@tu-braunschweig.de
[1] L. Meitner and H. Kösters, Über die Streuung kurzwelliger

γ-Strahlen, Z. Phys. 84, 137 (1933).
[2] M. Schumacher, Delbrück scattering, Radiat. Phys. Chem.

56, 101 (1999).
[3] A. I. Milstein and M. Schumacher, Present status of

Delbrück scattering, Phys. Rep. 243, 183 (1994).
[4] P. Rullhusen, U. Zurmühl, F. Smend, M. Schumacher, H. G.

Börner, and S. A. Kerr, Giant dipole resonance and Cou-
lomb correction effect in Delbrück scattering studied by
elastic and Raman scattering of 8.5 to 11.4 MeV photons,
Phys. Rev. C 27, 559 (1983).

[5] A. Baumann, P. Rullhusen, K. W. Rose, M. Schumacher,
J. M. Henneberg, N. Wieloch-Laufenberg, and B. Ziegler,
Feasibility of measurement of the electromagnetic polar-
izability of the bound nucleon, Phys. Rev. C 38, 1940
(1988).

[6] K. P. Schelhaas, J. M. Henneberg, M. Sanzone-Arenhövel,
N. Wieloch-Laufenberg, U. Zurmühl, B. Ziegler, M.
Schumacher, and F. Wolf, Nuclear photon scattering by
208Pb, Nucl. Phys. A489, 189 (1988).

[7] P. Papatzacos and K. Mork, Delbrück scattering calcula-
tions, Phys. Rev. D 12, 206 (1975).

[8] F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G.
Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton,
E. P. Hartouni, and C. P. J. Barty, High-energy scaling of
Compton scattering light sources, Phys. Rev. ST Accel.
Beams 8, 100702 (2005).

[9] K. Dupraz et al., Design and optimization of a highly
efficient optical multipass system for γ-ray beam production
from electron laser beam Compton scattering, Phys. Rev. ST
Accel. Beams 17, 033501 (2014).

[10] V. N. Litvinenko et al., Gamma-Ray Production in a Storage
Ring Free-Electron Laser, Phys. Rev. Lett. 78, 4569 (1997).

[11] F. Albert, S. G. Anderson, D. J. Gibson, R. A. Marsh, S. S.
Wu, C. W. Siders, C. P. J. Barty, and F. V. Hartemann,
Design of narrow-band Compton scattering sources for
nuclear resonance fluorescence, Phys. Rev. ST Accel.
Beams 14, 050703 (2011).

[12] Mieczyslaw Witold Krasny, The gamma factory proposal
for CERN, arXiv:1511.07794.
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