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Regular measurements allow predicting the future and retrodicting the past of quantum systems. Time-
nonlocal measurements can leave the future and the past uncertain, yet establish a relation between them.
We show that continuous time-nonlocal measurements can be used to transfer a quantum state via
teleportation or direct transmission. Considering two oscillators probed by traveling fields, we analytically
identify strategies for performing the state transfer perfectly across a wide range of linear oscillator-field
interactions beyond the pure beam-splitter and two-mode-squeezing types.
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Classically, specifying the parameters of a closed system
at one time allows inferring their values in the past and the
future. No information can be added by making new
measurements at later times or revealing the outcomes of
measurements made before. In quantum mechanics, suc-
cessive observations of a system completely specified at
one time can nevertheless add new information [1]. Such
situations were first considered in the context of relativistic
quantum theory [1,2], where it was argued that the notion
of a quantum state has to be extended in order to logically
describe systems between measurements, and, to this end,
multitime states were introduced [3,4]. Later, these ideas
were extended to open systems and became instrumental in
deriving the general statistical theory of past observations
[5–8]. Recently, these theories were applied to optical
homodyne records for improving the signal-to-noise ratio
in sensing [9,10] and verifying quantum trajectories [11].
To date, the analysis of prediction and retrodiction,

whether involving multitime [3] or past quantum states
[7], concentrated on the statistics of outcomes during the
measurement interval ½0; T�. Here, we consider their prep-
arative aspects, i.e., effects on monitored systems that
measurements leave beyond the measurement interval.
As illustrated in Figs. 1(a) and 1(b), prediction prepares
usual forward-evolving quantum states jψit¼T , for which
the future is determined and the past is unknown, whereas
retrodiction prepares backward-evolving states hϕjt¼0, for
which the past is known but the future is not [3].When states
of both types are prepared by a single sequence of measure-
ments, they form a product two-time state jψit¼Thϕjt¼0 [4].
Yet another possibility, shown in Fig. 1(c), is the preparation
of superpositions of initial and final states—superposition
two-time states

R jψαit¼Thϕαjt¼0dα [4]. We will refer to
measurements that accomplish this as pretrodiction.
The concept of pretrodiction measurements enables new

analytical insights into the problem of conditional state
transfer between quantum systems. We demonstrate this for
localized harmonic oscillators continuously probed by

traveling electromagnetic fields, deriving results that go
beyond and complement those of previous analyses based
on temporal modes [12–16], Kalman filtering [17,18], and
path integrals [19]. We consider general linear interactions
between the oscillators and fields, thereby encompassing
optical cavities, optomechanical devices, macroscopic spin
ensembles, and microwave resonances in superconducting
circuits. In the first configuration, shown in Fig. 1(d), one
field interacts sequentially with two oscillators over the
time t ∈ ½0; T� and is measured by a homodyne detector.
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FIG. 1. (a)–(c) Preparations based on measurement records
mðtÞ of (a) a forward-evolving quantum state by prediction
measurement, (b) a backward-evolving state by retrodiction
measurement, and (c) a two-time state by pretrodiction meas-
urement. (d),(e) The interaction configurations considered in this
work: (d) sequential and (e) parallel. Traveling electromagnetic
fields (red lines) interact with localized oscillators 1 and 2 (red
dots) via Hamiltonians (5), and result in homodyne measurement
currents mðtÞ and m1;2ðtÞ. LO, local oscillator. All beam splitters
are 50∶50. (f) The localized oscillators in the schemes can be
realized by mechanical resonators, optical cavities, collective
spins, etc.
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In the second configuration, shown in Fig. 1(e), two
independent fields interact with two oscillators in parallel,
are combined on a 50∶50 beam splitter, and then measured
by two homodyne detectors. The measurements are much
slower than the oscillation period in both cases, and the
homodyne local oscillators have the same carrier frequency
as the driving field, meaning that the signals on the
photodetectors are concentrated around the common res-
onance frequency Ω.
The state transfer from oscillator 2 to 1 can in both setups

be accomplished via teleportation, i.e., in spite of noquantum
field traveling from 2 to 1. In the sequential scheme in
Fig. 1(d), it is also possible to transfer a state from 1 to 2 via
direct transmission, which can be conditional on the homo-
dyne measurements. We find that all these types of transfer
can be realized perfectly for a wide range of field-oscillator
interactions, even when the input traveling fields have
nonzero thermal population. The latter fact generalizes a
known result for electromagnetic cavities [20–24].
Teleportation via time-nonlocal measurements.—The

teleportation of a quantum state [25–27] is traditionally
seen as a stepwise protocol of first creating entanglement
between Alice and Bob (corresponding to the interaction
between the traveling field and oscillator 1 in our schemes),
then measuring the states of Alice and Charlie in the EPR
basis (the interaction of the field with oscillator 2 followed
by homodyne detection in our schemes), and finally
applying feedback to the system of Bob. Vaidman was
the first to notice the relation of teleportation to time-
nonlocal measurements [26]. We formulate the task of
teleportation of an oscillator state from Charlie to Bob
using a procedure that spans the time from 0 to T as the
measurement of the time-nonlocal observables,

x̄ ¼ xBðTÞ − xCð0Þ; ð1aÞ

p̄ ¼ pBðTÞ − pCð0Þ; ð1bÞ

and then performing feedback on Bob’s oscillator at t ¼ T.
Alice (the traveling field) is merely the meter in this
process. A measurement of x̄ and p̄ does not condition a
well-defined usual quantum state belonging to H ¼
HC;t¼0 ⊗ HB;t¼T , the direct product of spaces of ket
vectors of Charlie at t ¼ 0 and Bob at t ¼ T, because
the operators corresponding to x̄ and p̄ on H do not
commute. Instead, it conditions a two-time state Ψ belong-
ing to H0 ¼ H†

C;t¼0 ⊗ HB;t¼T [3,4], where H†
C;t¼0 is the

space of Charlie’s bra vectors (our two-time states are
conjugate compared to the original definition [1,3]). The
operators corresponding to x̄ and p̄ on H0 do commute.
To find an explicit expression for Ψ, we calculate the

product of two time-nonlocal projectorsΠ enforcingEqs. (1),

ΠxBðTÞ−xCð0Þ¼x̄ΠpBðTÞ−pCð0Þ¼p̄ ∝ ΨΨ†; ð2Þ

where

ΠxBðTÞ−xCð0Þ¼x̄ ¼
Z

ðjxþ x̄ihxþ x̄jÞB;TðjxihxjÞC;0dx; ð3Þ

and the expression for ΠpBðTÞ−pCð0Þ¼p̄ is analogous. This
calculation yields the two-time state,

Ψ ¼
Z

eip̄xjxþ x̄iB;t¼ThxjC;t¼0dx; ð4Þ

which acts as a quantum channel mapping the initial state of
Charlie on the final state of Bob (see Ref. [28], Sec. A).
Between two harmonic oscillators, it can be created using
only linear interactions, homodynemeasurements, and input
fields in Gaussian states, while it is able to transfer arbitrary
(including non-Gaussian) input states.
Continuous measurements.—The time-nonlocal mea-

surements of x̄ and p̄ required to perform teleportation
(and, more generally, conditional state transfer) can be
implemented via continuous measurements. From this
point on, to make the description more symmetric, we
label the oscillators 1 and 2 instead of Bob and Charlie, and
consider measurements of the sums rather than differences
of their x and p quadratures, since their common relative
sign is only a matter of convention. We neglect the
detection losses and the intrinsic decoherence of the
oscillators during the interaction.
The oscillators are described by annihilation operators,

b̂1 and b̂2, and have identical frequencies Ω. Each of them
linearly interacts with the field, described by annihilation
operator ŝ, via the Hamiltonian

Ĥint ¼ μðŝ†b̂þ b̂†ŝÞ þ νðŝ†b̂† þ ŝ b̂Þ; ð5Þ

where μ and ν are real, non-negative, and, in general,
time dependent. The field satisfies the commutator
½ŝðtÞ; ŝ†ðt0Þ� ¼ δðt − t0Þ and the input-output relation ŝout ¼
ŝin − iðμb̂þ νb̂†Þ; its input state is vacuum or thermal. The
interaction is additionally characterized by the measure-
ment rate Γ, the type ζ ∈ ½−1; 1�, interpolating between
beam-splitter (ζ ¼ 1), position-measurement (ζ ¼ 0), and
entanglement (ζ ¼ −1) interactions, and the optical damp-
ing rate γ,

Γ ¼ ðμþ νÞ2
2

; ζ ¼ μ − ν

μþ ν
; γ ¼ 2ζΓ: ð6Þ

The Hamiltonian (5) describes a range of physical systems
including optomechanical cavities [31], gravitational wave
detectors, and atomic ensembles [32]. In cavity optome-
chanics, ζ ¼ 0 corresponds to the probe laser tuned to the
cavity resonance, and ζ ¼ 1 (ζ ¼ −1) to the laser red (blue)
detuned from the resonance by one mechanical frequency
in the sideband-resolved regime. In all cases mentioned, the
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measurement rate Γ and the damping γ are parametrically
controlled by the input optical power. We therefore limit
our consideration to time-dependent ΓðtÞ [and γðtÞ] and
time-independent ζ. The time dependence of the measure-
ment rates is a crucial part of our analysis and can be seen
as a means of matching the temporal field modes that
interact with the two oscillators.
Measurements on the oscillators are made via homo-

dyne detection of the output fields. In the sequential
configuration [Fig. 1(d)], the demodulated photocurrent
constitutes the complex measurement record mðtÞ ¼
p̂outðtÞeiΩt, given by

mðtÞ ¼ p̂inðtÞeiΩt −
ffiffiffiffiffiffiffiffiffiffi
Γ1ðtÞ

p
b̂I;1ðtÞ −

ffiffiffiffiffiffiffiffiffiffi
Γ2ðtÞ

p
b̂I;2ðtÞ; ð7Þ

where p̂inðoutÞðtÞ ¼ ½−iŝinðoutÞðtÞ þ iŝ†inðoutÞðtÞ�=
ffiffiffi
2

p
are the

phase quadratures of the input and the output fields, and
b̂I;j ¼ b̂jeiΩt, j ∈ f1; 2g, are the slowly varying annihila-
tion operators in the interaction picture. The continuous
record mðtÞ contains information that can be irrelevant to a
given task, and the relevant measurement outcome M is
obtained after applying a filter fðtÞ asM ¼ R

T
0 fðtÞmðtÞdt.

Finding the appropriate fðtÞ is part of the task. In the
parallel configuration [Fig. 1(e)], measurement records
similar to Eq. (7) are obtained and processed analogously
(see Ref. [28], Sec. E).
The value M can correspond to the outcome of a time-

nonlocal measurement. To see this, we need to express one
of the b̂I;jðtÞ in Eq. (7) via its initial and the other via its
final condition by integrating their evolution equations
derived from the Hamiltonian (5). Although we are free to
choose either boundary condition when expressing the
evolution of each oscillator, for given Γ1;2ðtÞ and ζ1;2 at
most one choice will allow perfect time-nonlocal measure-
ments (i.e., with the contribution from the field degrees of
freedom vanishing as the measurement strength increases).
Optimal state transfer by pretrodiction.—We can deter-

mine to what extent a certain time-nonlocal observable can
be measured with the help of variational analysis.
Considering the teleportation of a state from oscillator 2
to 1, we express M in terms of b̂I;1ðTÞ and b̂I;2ð0Þ,

M ¼ ε̂ −M1b̂I;1ðTÞ −M2b̂I;2ð0Þ; ð8Þ

whereM1;2 are the transfer coefficients, and ε̂ is an operator
that absorbs all degrees of freedom of the input field, whose
variance determines the measurement error. Both oscilla-
tors can have arbitrary initial states (not chosen from a
restricted family), and therefore we impose the constraint
M1 ¼ M2 ¼ 1. Under this constraint, M is related to the
pretrodiction observables equivalent to those in Eqs. (1) via
M ¼ ε̂ − ðx̄þ ip̄Þ ffiffiffi

2
p

, where the relevant positions
and momenta are the rotating-frame quadratures of each
oscillator:

x̂ ¼ ðb̂I þ b̂†I Þ=
ffiffiffi
2

p
; p̂ ¼ ðb̂I − b̂†I Þ=ði

ffiffiffi
2

p
Þ: ð9Þ

The measurement error for either of x̄ and p̄ is given by
hjε̂j2i≡ hðε̂ε̂† þ ε̂†ε̂Þ=2i, where the averaging is over the
input state of the field. The state-transfer fidelity [32] is
found from this error as F ≡ 1=ð1þ hjε̂j2iÞ. To find the
maximum fidelity, we analytically perform the nonlinear,
constrained variational minimization,

hjε̂j2i → min; M1 ¼ M2 ¼ 1; ð10Þ

over fðtÞ andΓ2ðtÞ (see Ref. [28], Sec. C). Themeasurement
rate of only one of the oscillators needs to change in time: we
choose Γ2 to be time dependent and Γ1 to be constant.
In the sequential configuration [Fig. 1(d)] with vacuum

input fields, the minimum error for teleportation is

hjε̂j2iseq;2→1 ¼
ζ1

1 − expð−γ1TÞ
: ð11Þ

The error depends on the interaction type of the first
oscillator ζ1, but not on that of the second ζ2. When-
ever ζ1 < 0, i.e., the interaction of first oscillator is
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FIG. 2. (a) The state-transfer fidelities for teleportation
[Eqs. (11) and (12)] and direct transmission [Eq. (15)] for infinite
measurement strength Γ1T → ∞. (b) The minimum error for
teleportation in the sequential configuration [Eq. (11)] as a
function of the measurement strength assuming a vacuum input
field. The solid lines represent the idealized case with divergent
Γ2, while the values indicated by triangles and squares are
obtained with Γ2 truncated at a finite value rmax ¼ Γ2;max=Γ1 ¼
10 and 102, respectively (see Ref. [28], Sec. I).
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entanglement dominated, the teleportation fidelity appro-
aches one as the measurement strength is increased,
Γ1T → ∞. In the parallel configuration [Fig. 1(e)], the
additional condition ζ2 ¼ −ζ1 must be satisfied for the
fidelity to approach one as Γ1T → ∞, in which case
the minimum error is

hjε̂j2ipar;2→1 ¼
2ζ1=ð1þ ζ21Þ
1 − expð−γ1TÞ

: ð12Þ

The optimum filter function fðtÞ is in both cases

fðtÞ ¼
ffiffiffiffiffi
Γ1

p ðζ1 þ ζ2Þeγ1t=2 þ ðζ1 − ζ2Þe−γ1t=2
2 sinhðγ1T=2Þ

; ð13Þ

and the required time-dependent Γ2 is

Γ2ðtÞ
Γ1

¼ sinh2ðγ1t=2Þ
sinh2ðγ1T=2Þ − sinh2ðγ1t=2Þ

: ð14Þ

While Γ2ðtÞ diverges as t → T, it can be truncated at some
finite value. The effect of this is a fidelity reduction that
depends on the truncation point and can be made negligible
[see Fig. 2(b) and Ref. [28], Sec. I].
The conditional direct transmission of the state from

oscillator 1 to 2 in the sequential configuration [Fig. 1(d)] is
treated similarly to the teleportation; it does not have a
counterpart in the parallel configuration. The minimum
error,

hjε̂j2iseq;1→2 ¼
ζ1

expðγ1TÞ − 1
; ð15Þ

is independent of ζ2 and realized by the filter function fðtÞ
and the measurement rate Γ2ðtÞ that are obtained from
Eqs. (13) and (14) by the replacement t → t − T (see
Ref. [28], Sec. D).
When the input field is in a thermal state with a nonzero

population nin, as in the case of microwave transmission
lines [23,24], the errors in Eqs. (11), (12), and (15) are
multiplied by (2nin þ 1). For concreteness, we will keep
assuming nin ¼ 0, as is typical of optical fields, when
presenting the results.
The performance of our state-transfer protocols is

summarized in Fig. 2. Figure 2(a) shows the teleportation
and direct transfer fidelities for Γ1T → ∞. The parameter
regions where unit fidelity can be reached for teleportation,
ζ1 ≤ 0, and direct transfer, ζ1 ≥ 0, intersect at ζ1 ¼ 0.
However, this does not permit perfect exchange of the
initial states between the oscillators, because different
directions of the state transfer require different time
dependencies of the measurement rate. For example, if
an arbitrary initial state of oscillator 2 is perfectly teleported
to oscillator 1 by measuring b̂I;1ðTÞ þ b̂I;2ð0Þ, the error for
the measurement of b̂I;1ð0Þ þ b̂I;2ðTÞ is infinite. Figure 2(b)

shows the error for finite Γ1T for teleportation in the
sequential configuration. In the regime dominated by
optical antidamping of oscillator 1, ζ1 ≳ −1, the telepor-
tation error decreases exponentially hjε̂j2i ≈ e−Γ1T, whereas
in the position-measurement regime, ζ1 ≈ 0, the error
decreases inversely proportional to the measurement
strength hjε̂j2i ≈ 1=ð2Γ1TÞ.
How conditional is the state transfer?—The variances of

the outcomes x̄ and p̄ of perfect pretrodiction measure-
ments with hjε̂j2i → 0 determine the state-transfer error if
these outcomes were to be discarded. In this case, the
unconditional state-transfer fidelity [32] is given by
F uc ¼ 1=ð1þ hjMj2iÞ. This fidelity depends on the inter-
action setting and the input state of the traveling field. In the
teleportation settings, hjMj2i → ∞ and F uc ¼ 0, consis-
tent with the causality principle. In the direct transfer
setting [1 → 2, Fig. 1(d)], F uc is generally nonzero and
even reaches one, meaning that the unconditional state
transfer can be perfect. To see this, in Fig. 3(a) we compare
the unconditional state-transfer fidelities in the sequential
configuration for different interaction types ζ1;2, infinite
measurement strength, and optimum rates Γ1;2 minimizing
the pretrodiction measurement error (this choice generally
does not optimize the unconditional performance). We
let the measurement rate of the second oscillator Γ2 be
constant, and allow Γ1ðtÞ to change in time (see Ref. [28],
Sec. F); in this case the measurement strength is given by
Γ2T. We find thatF uc can be above zero when ζ1;2 > 0, and
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that F uc ¼ 1 when ζ1 ¼ ζ2 > 0. In the specific case
ζ1 ¼ ζ2 ¼ 1, which describes, e.g., catching a state leaking
from one electromagnetic cavity with another, our expres-
sion for the time-dependent Γ1ðtÞ converges as Γ2T → ∞
to the solution obtained in Ref. [20] using a different
fidelity measure (see Ref. [28], Sec. G).
Even though a perfect state transfer may be uncondi-

tional as Γ2T → ∞, at finite measurement strengths
discarding the outcomes x̄ and p̄ introduces extra error.
This is illustrated in Fig. 3(b), where we compare the
conditional and unconditional state-transfer errors for
ζ1 ¼ ζ2 > 0, the case in which both go to zero as
Γ2T → ∞. The figure shows that, as expected, the uncon-
ditional errors are always higher than the conditional
errors at large measurement strengths. At small measure-
ment strengths, our method of comparison breaks down.
While the unconditional errors cannot be evaluated for
arbitrary initial states, the fact that the initial-state con-
tribution to the error decays over time allows us to lower
bound it by assuming that the initial states of both
oscillators are vacuum. Such prior knowledge is absent
in the evaluation of the conditional error, whence it can
exceed the unconditional value at small measurement
strengths (see Ref. [28], Sec. F).
Conclusions and outlook.—We introduced prediction-

retrodiction measurements as a new primitive in quantum
measurement theory and showed its application to the
problem of state transfer between localized oscillators. A
similar analysis may yield new insights into discrete-
variable protocols. Elements of such an approach can be
found in Ref. [33], where retrodiction was applied in the
Bell-measurement step of teleportation between two qubits
coupled to the same cavity. To extend this to a pretro-
diction analysis would require incorporating the prediction
component constituted by the entanglement step.
In the settings considered, the state transfer is only

possible one way, from oscillator 1 to 2, or 2 to 1. However,
Vaidman has proposed a two-way teleportation scheme
based on “crossed” time-nonlocal measurements that
accomplishes exchange of initial states [26]. The pretro-
diction framework may help to find a realization of this
scheme via continuous measurements.
The result that perfect conditional and unconditional

state transfer between oscillators can be realized with a
wide range of linear couplings between oscillators and
fields, i.e., not only with pure beam-splitter or two-mode-
squeezing interaction, can find applications in emergent
optical and microwave quantum information processing. In
particular, the resilience of our protocols to thermal noise in
the input field is a useful trait for microwave quantum
links [23,24].
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