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Coherent-Error Threshold for Surface Codes from Majorana Delocalization
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Statistical mechanics mappings provide key insights on quantum error correction. However, existing
mappings assume incoherent noise, thus ignoring coherent errors due to, e.g., spurious gate rotations. We

map the surface code with coherent errors, taken as X or Z rotations (replacing bit or phase flips), to a two-
dimensional (2D) Ising model with complex couplings, and further to a 2D Majorana scattering network.
Our mappings reveal both commonalities and qualitative differences in correcting coherent and incoherent

errors. For both, the error-correcting phase maps, as we explicitly show by linking 2D networks to 1D
fermions, to a Z,-nontrivial 2D insulator. However, beyond a rotation angle ¢y,, instead of a Z,-trivial
insulator as for incoherent errors, coherent errors map to a Majorana metal. This ¢y, is the theoretically
achievable storage threshold. We numerically find ¢y, ~0.14z. The corresponding bit-flip rate

sin?(¢by,) =~ 0.18 exceeds the known incoherent threshold py, ~0.11.

DOI: 10.1103/PhysRevLett.131.060603

A major milestone toward building scalable quantum
computers is quantum error correction (QEC) [1-3].
Surface codes are among the most promising candidates
for this [4-8]. Their layout informs the design of state-
of-the-art many-qubit devices [9], where most recent
developments include proof-of-principle demonstrations of
surface-code QEC on small systems [10,11].

Key insights on the phenomenology and fundamental
performance limits of QEC codes come from mappings to
statistical mechanics models [7,12—-16]. For the surface
code, assuming ideal measurements and either bit-flip X or
phase-flip Z errors occurring with probability p, this is the
two-dimensional (2D) random-bond Ising model (RBIM)
[7,12]. The ordered and disordered RBIM phases map,
respectively, to regimes where QEC succeeds and fails for
large system size L, while the phase transition marks the
theoretical maximum rate py, ~ 0.11 [17-19] of errors that
can be corrected. (Tailoring the code for such biased noise
may achieve higher thresholds [20].)

The RBIM mapping assumes incoherent errors. Coherent
errors can, however, also arise, e.g., from unintended or
imperfect gate rotations [21-32]. While results are favorable
on their mitigation [23-25] or correction at fixed L [27,28], a
key question for surface codes is how coherent errors’
interference [30,31] impacts the scaling with L. Numerical
results for either exp(i¢X) or exp(i¢pZ) acting on each
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qubit suggest that surface code QEC may succeed for
¢ <¢p.~0.1r [29]. While ¢, is decoder specific,
sin?(¢.) < py suggests that assuming bit flips with
p =sin*(¢p) (“Pauli twirling”) may work in practice.
However, fundamental questions remain: What is the theory,
replacing the RBIM, for the QEC phases? How does the
phenomenology of these phases differ from the incoherent
case? What is the maximum achievable threshold ¢y,?

Here we introduce an RBIM that provides such a
theory. Unlike probabilities of incoherent errors, quantum
amplitudes now yield complex Boltzmann weights. Yet, the
problem has two useful and interrelated [18,33-35] for-
mulations, each encompassing both incoherent and coher-
ent errors (cf. Fig. 1): a 2D Majorana network, and a 1D
fermion Hamiltonian, both arising from the transfer
matrix—a nonunitary quantum circuit akin to those of
current interest in quantum dynamics [36].

We find that, upon increasing ¢, the network undergoes
an insulator-metal transition. This is qualitatively distinct
from the incoherent case whose network, upon increasing
p, has an insulator-insulator transition [18,37-42]. A key
shared feature we find is that both the coherent and the
small-p incoherent insulators are Z, nontrivial: they
correspond to topological 1D fermion phases [43]. We
use this to show that correcting coherent errors can succeed
for ¢ < ¢y, with ¢y, the value at the insulator-metal
transition. We numerically find ¢, ~ 0.14x for the geom-
etry in Fig. 1. Remarkably, the Pauli-twirled probability
sin?(¢y) ~ 0.18 exceeds py, ~0.11 by 64%.

QEC ingredients.—Surface codes are stabilizer codes
[3-8,44-46]. They encode logical qubits in the common
+1 eigenspace of stabilizers SX =[] jen Xj at vertices v

and % =[] jew Z; at plaquettes w of the lattice, where we
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FIG. 1. Left panel: bulk patch of a surface code. Black dots are
qubits, and white and gray disks, respectively, show stabilizers S¥
and S%. The red line marks the logical X’s path (for suitable
boundary conditions). In the RBIM, the S¥ become spins
interacting with their nearest neighbors through couplings set
by the errors. Right panel: in the network model, the Ising bonds
become junctions scattering incoming into outgoing Majorana
modes. Solid and dashed lines show, respectively, the modes’
propagation direction for coherent and incoherent errors. In the
transfer matrix, the junctions are quantum gates acting on pairs of
Majorana operators.

multiply Pauli X and Z operators on qubits around v or w
(cf. Fig. 1). The logical Pauli X, =[] ;c, X;and Z, =[] ¢, Z;
run along noncontractible paths y) such that they commute
with all the stabilizers. The logical operators are not unique;
their path can be deformed via multiplying by stabilizers.
We focus on codes with a single logical qubit. We denote the
logical operators along their shortest possible paths by X and
Z, and take L to be X’s path length.

During the operation of the code, the constituent qubits can
suffer errors. Here we focus on X errors, namely on the
coherent U = []; e/#Xs, which we shall compare with inco-
herent bit flips X; occurring with probability p = sin*(¢).
(Z errors work similarly, upon SX, X <> S%, Z below.)
Expanding U we find a superposition of X strings applied
to the initial logical state |y). For a given string, the endpoints
are where SZ have eigenvalue s,, = —1. Starting from a string
C, consistent with the syndrome s = {s,,}, we can get all
other such strings from multiplying by the S¥ and/or X. The
former leaves C,|ly) unchanged; the latter takes it to
(CyX)|w). To correct errors, one measures s via the SZ,
and then applies either C, or C,X to return to the logical
subspace [3]. In practice, this choice is made by a decoder. But
if aiming for the theoretical optimum, one maximizes [32]
P, = [{(w|C,X1U|y)|* over ¢ = 0, 1. Henceforth, we take
|w) to be a Z eigenstate; then, from X4|y) being orthogonal,
P, , are probabilities. The considerations in the incoherent
case are similar, but instead of a superposition, we define P
for a probabilistic ensemble of strings [3,7]. In both cases, the
probability of syndrome s is P, = > ¢ Pa.

The feasibility of QEC hinges on P, and P, being
sufficiently distinct. We measure this via

A= ZP m1n meP (1)

Besides its meaning for Z eigenstates |y), due to
P,y = %Psé(‘f*“') with 6(¢%) the Bloch-sphere-averaged infi-
delity between pre- and post-QEC states [32], A also sets
the minimal average infidelity. For incoherent errors, A is
the logical error probability for maximum likelihood
decoding [19]. The error correcting phase is defined by
A decreasing to zero exponentially with L. A decaying to
zero also marks the decoherence of logical noise [32,47].

From surface codes to Ising models.—To map our
problem to an Ising model, we adapt the derivation
of Ref. [7] to the coherent case [47]. In terms of the
expansion of U = [];(Tcos¢ +iX;sing) in X strings,
(w|CXU|y) is the sum of the coefficients of
C, X[, (S¥)" for various configurations of r, € {0, 1}.
(Other terms contribute to Uly) with states orthogonal
to C,X4)y).) In an N-qubit system, C,X¢ (i.e., all r, = 0)
has coefficient

(isin )" (cos ) NH s (2)

with n the Pauli weight of C,X9, ¢/ = ./itan¢, and

N =TI, Visingcos ¢; the signs are n;‘”) = —1if C, X4

and ;15-’1"")

spins as ¢, = —(—1)"*. Since 6,0, =1 for this term,
and since each qubit is uniquely specified by nearest
neighbor (NN) SX (cf. Fig. 1; we use boundary conditions

that also respect this [47]), Eq. (2) equals

(a.5)
N Tlonn e % (We  relabeled ;7( s ples) )y
This holds also for other r,

includes X;, =1 otherwise. We define Ising

U

configurations because,

by X;=1, a factor X; comes from [, (S}¥)"
only when r, =1 precisely for one v adjacent to j
(thus 6,6, = —1), and this introduces X; to C,X9 when
nlg-q’s) =1 and removes X; when 7];‘1‘5) = —1. Hence,
(w|C,XUy) = N2, with the Ising partition function

Zq,s = ZEZ—JZv.v’NN”(;f)a”g”/, €J = 4/itan ¢ (3)

{0}

In the incoherent case, instead of terms in U we
enumerate the probabilities of C; X7, (S¥)™ X strings;
hence ising+— p, cos¢pr—>1—p above and P, = NZ,”.
When sampling P, by sampling Cj, this is the RBIM
on the Nishimori line [7,48]. Equation (3) is our first
key result.

2D networks and 1D Hamiltonians.—While Z, ;, being
complex, might elude a direct statistical physics interpre-
tation, valuable insights arise upon expressing it via the
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transfer matrix J\;lq‘s. It will be useful to construct
/\;lw along X’s path, ie., the x axis in Fig. 1. The
steps being standard [47,49,50], we just state the result:
Zs= <aL|./\;lq,_y|a0>, with |a,) encoding boundary con-

ditions at x = r, where M, ; is a quantum circuit

For system size M along y, Aqs —® v) and
qs —® qs)hg{’sk) in terms of gates Ué{g and hff’sk>
arising from the (j, k)™ vertical and horizontal bond of the

Ising model, respectively [here AV = /2 sinh(ZJnlE.Z’s))].

Upon a Jordan-Wigner transformation using 2M
Majorana fermions 7; = 7/’ {7:.7;} = 26;;, we have
f;‘q’ B = emixisiain (j < M) and vqﬁ/sl b = eiPr i with
P = (=i)™9,75...72y the conserved fermion parity, and
hﬁ, B = e=iRiniai | (We take y =y + M, i.e., a cylinder;

this can be argued to capture all key features [47].) Here

K{;]; = J”Iﬁq’S) and ’?ZIJ; = —lln tanh(‘]nﬁqu))‘

The (nonunitary) gates vqY (j < M) and h TR act
on NN fermions (cf. Fig. 1): they are quadratlc in 7;.

The same holds for @%»k), and hence also for /\;lqﬁs,

of P = +1. This has two key consequences. Firstly, we can

for each

write Mq,s/\%;s = ¢ L4 as a thermal density matrix, at
inverse temperature L, with 1D Hamiltonian ’Hq,s that is
free fermionic for each of P = £1 [51]. Taking Le(ql,_z > 1
(with eél,z the smallest excitation energy) yields the ground
state |¢) which, by the singular value decomposition of
./\/lq s» 18 the steady state of the circuit Eq. (4) [47]. We shall

link the topology of |¢,) to error correction.

Secondly, the 2M x 2M matrix M, implementing
Mq,sf’j/\;lq_,ls =
2 x 2 matrices vg{ K g2l (j < M), v%‘k)
with P = £1, and A = e2Y%5 (here ¥ = iXZ). In the
incoherent case, as J is real, these are pseudounitary [18]:
17t =27, with t= vg{;k) or t= hg,{;k). One can thus
interpret them as acting on a pair ¢ = (CCH) of counter-

q.5°
(My)i71, arises from a network of
o 2PYKy

propagating modes, conserving their current ¢Zc. The
RBIM thus maps to quantum transport [18,37-42,52]:
we get a Chalker-Coddington network model [53], with
hﬁ,{’sk) and vf,{gk) as junction transfer matrices (cf. Fig. 1).
The junction scattering matrices, mapping incoming

to outgoing amplitudes (i;“il) and (oﬁi"i,)’ in suitable

phase conventions, are S, = (¢ °) and S, = (77¢) with
a = sech(2c)%), b = tanh(2x)%) [18,40,42].

We find a different network in the coherent case. From
qu =i — 1 In[—p ( )] the hg,s) are unitary. This con-

serves c¢'c; this is the current if ¢ has copropagating modes.

Furthermore, now X vé{ ’Sk)

counterpropagate, US/ o

1)5”) has a pair of vertically copropagating modes. In the

coherent case, thus, both hﬁ,,ﬁ and vg,s) have copropagat-

ing modes, moving horizontally and vertically, respectively
(cf. Fig. 1). In a suitable phase convention, the scattering

is pseudounitary: If ¢’s modes
swaps their direction. Equivalently,

matrices are S_, = —nE-Z’S)(_C‘S’iSIS(Zﬂ) sg;(é‘g))) S_ =8, =S5,
and Sy =-S5, with arrows for the transmission direction,

and (Oﬁt‘:il) = Sa(iri::il) with n increasing along y for
a =<, — and along x for a = 1, |.

Their scattering matrices being real, both networks
belong to Altland and Zirnbauer’s symmetry class D [54],
with links interpretable as Majorana modes. We will also
consider the networks together with their time-reversed
copies. This gives time-reversal invariant networks in
class DIII. Viewed as such, the incoherent and coherent
cases correspond to, respectively, the spin-conserving and
spin-flip limits of the class DIII networks of Ref. [55],

(q.5)

albeit with 7, "~ creating a different form of disorder.

This dlsorder has the same net effect in the incoherent
and coherent cases: ’7(1( *) = 1 adds a “vortex” at each of

the adjacent SZ (cf. Flg 1): a mode encircling either of

these picks up an extra z phase. With several 115.,( ) = -1,

vortices appear where s, = —1. Vortices are thus the
network form of the syndrome s.

Network model phases.—In the incoherent case, the
network is known to have two insulating (i.e., localized)
phases with a transition at py, = 0.11 [18,38-40,42]. Being
insulators, the average conductivity g = (L/M){(Tr(7"T))
satisfies g o« e72L/¢ for L > &; here (...) denotes disorder
average, 7 is the transmission matrix in the transmission-

reflection grading of the total scattering matrix S = (? ;g)
[56], and ¢ is the localization length. The two insulators
are topologically distinct: for Q = sgndet(RppcRsppc)s
equal to the Z, invariant of the doubled class DIII system
[34,47,55], and where (A)PBC denotes (anti)periodic
boundary conditions in the transverse direction, we have
Q = sgn(p — py) [18.55].

In the coherent case, we focus on 0 < ¢ < n/4; this

includes all inequivalent ¢ values [57]. In the clean case

(i.e., all ;75.2’&) = 1), any ¢ < r/4 gives a Q@ = —1 insulator

[55]. With disorder, we now argue that the system remains
insulating for 0 < ¢ < 1. We first note that if vortices
typically appear in dilute configurations of nearby pairs,
then, by the splitting of vortex-induced zero modes, a
nearly decoupled network (i.e., with ¢, p < 1 nodes) is an
insulator [40]. The typical vortex configurations for ¢ < 1
are similar to the p < 1 incoherent case: there, for a
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FIG. 2. Conductivity g for the coherent-error network on a
cylinder of length L and circumference M = 5L, averaged over
500 to 10° syndrome realizations. Error bars (2 x standard error)
are imperceptible. The data following scaling curves g[L/¢(¢)]
shows that ¢ enters via a length scale #(¢) [47]. For the insulator,
g[L/¢(¢)] decays with L and g o e~2L/%(®) for L > £(¢). For the
metal, g increases; the g o In(L)/z class D asymptote [37,42] is
not yet reached for the accessible range of L. The insulator-metal
transition is at ¢y = (0.14 £0.005)z. We observe Q = —1
throughout the insulating phase.

configuration s with @ <« LM adjacent vortex pairs
(AVP), hence low AVP density n, = w/LM, we have
Py « p”(1 — p)tM=_There are ~(“¥) such s with similar
P;. Thus @ has roughly binomial distribution. Hence,
(n,) « p with variance o7 o p/LM suppressed for
large LM. Among the s at n, = p, those with a nonzero
density of farther separated vortex pairs (from AVP
chains) give just a & e=?M (¢ > 0) fraction of configu-
rations. In the coherent case, | ;a;| < |a;| gives
|Z45] £ Z,(ising = sin¢); the latter is the incoherent
Z,s with p = sing, 1 — p > cos ¢ (not the Pauli twirl).
Hence P, < (sin?$)?(cos?¢)EM=®) for ¢p < 1. From here,
the previous logic applies: Vortices typically appear in
nearby pairs. Hence, the system insulates for 0 < ¢ < 1.
Since Q cannot change without delocalization [47], and
since Q = —1 for ¢p =0 (a clean system), this small-¢
insulator has Q@ = —1. As we shall show, this implies that
QEC succeeds up to a nonzero ¢y,.

As ¢ increases, vortices proliferate. Generically, this
gives a metal [40], the phase we expect beyond ¢y,. (For the
RBIM, J being real precludes a metal [38].) To test this
and find ¢y,, we study g for vortices drawn from P,
sampling using Ref. [29]’s algorithm [47]. Our results
are in Fig. 2. The Q = —1 insulator persists up to
¢q = (0.14 + 0.005)7, followed by a metal for ¢ > ¢y,
Both phases show single-parameter scaling: ¢ enters only
via a length scale #(¢). [For an insulator, £(¢) = &(¢).]
While this qualitatively agrees with class D results [58,59],
for the metal g[L/#(¢p)] increases slower toward
7z~ 'In[L/#(¢)] than predicted by the nonlinear ¢ model
(the standard theory for the metallic phase [37,38,42]).
Establishing the insulator-metal phase diagram and
¢, are among our key results. Conceptually, the network

10—1 _-" ...... @ @ - @ @ @
~O. T~ ®-——_
ro. O---o___
10704 N .- .__
-~
4 < o__
~o -
I EEEEE Au \\ ZN\N
1077 1@ ¢ =0.007 ?\ oATox
@ o=01r @ =015l S X155 |5
®¢=01r® ¢=0.16r S
o, |@¢=0lr 6=017n <
107¢ T T . |
o0 100 150 200 250
L
FIG. 3. Figure of merit A for the L x L planar geometry of

recent experiments [10,11] (cf. inset for L =3, 5). We ave-
raged over 250 to 2 x 10° syndrome realizations; error bars
(2 x standard error) are imperceptible. A decays exponentially
(dashed) with L for ¢p < ¢bg,. Above ¢y, the data are consistent
with A decaying as a power law to Ay (¢) < A, = (z —2)/2x.

model phases offer coherent-error QEC phenomeno-
logy akin to how RBIM phases do in the incoherent
case. Practically, since dg/dL, unlike dA/dL below,
changes sign at ¢,, the network model greatly facilitates
identifying ¢,.

From insulators to QEC.—We now establish ¢y,
as the coherent-error threshold. For this, we consider
(s =(215/20y). In the Ising language, {; is a disorder
correlator [47,60] since Z; ; differs from Z ; by a row of

(0) _ (0)
[El .5 _EO.S]

sign-flipped bonds. We have {; « e L for large L,

with Eﬁ,(,)z the lowest energy of 7:[(],5 [47]. To evaluate £, we
consider the 1D free-fermion Hamiltonians that ﬂq_s gives
for each P. These Hamiltonians have gap o &7! if the
corresponding network is an insulator and their ground
state has fermion parity vsgn[det(R’)] (with v = +1 set by
R’ conventions) [18,47]. The latter fact not only allows one
to view Q as their 1D topological invariant [34,43,47], but,
crucially, also implies that their number n of excitations
satisfies (—1)" = vsgn[det(R')]P.

Since each flips a row of vertical bonds, P and ¢
effectively swap PBC and APBC for fermions. This is
crucial when the network is a @ = —1 insulator: from the
det(R’) swapping sign, vsgn[det(R')] = yc(—1)?P, with
xc = =£1 set by C, [47]. Thus (—1)" = yc(—1)%, and
Egos) - E(?g Ryc/E up to O(e™M/¢) corrections from
APBC vs PBC energy differences. Hence, { o e #cl/%,
and A « e /26 with z = 2 in the coherent and z = 1 in
the incoherent case (from P, o« [Z,[?). The Q = —1
insulator thus marks the error correcting phase. [For a
Q = 1 insulator, E\”) — E{) = O(e™/%): here QEC fails.]
This establishes ¢, as the coherent QEC threshold.

Figure 3 shows numerical results on A for the planar
geometry of recent L =3, 5 experiments [10,11]. Our
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theory describing this system shows that our predictions
hold beyond the cylinder [47]: ¢, reflects bulk physics.

QEC in the metallic phase.—The metal for ¢ > ¢y,
instead of the Q =1 insulator, is a qualitatively new
feature. While the Q = 1 insulator maps to a disordered
phase [7,18], the metal, if we generalize metallic disorder
correlator results [38], suggests a new QEC analog of
quasi-long-range order where A decays nonexponentially
with L. This is indeed what is seen in Fig. 3. The data are
consistent with A=AL"9 +A_, where 1,d,A, >0 depend
on ¢. Furthermore, we find A, < A, = (z —2)/2x, the
value for uniform ¢, in the logical U = exp(i¢h,X) arising
from QEC in this geometry [29,32].

Conclusion—We have mapped surface codes with
exp(i¢pX) [or exp(i¢Z)] coherent errors to a complex
RBIM, and via its transfer matrix qu to quantum
transport in a 2D Majorana network. The network yielded
an insulator-metal phase diagram. Linking the insulator’s
Z, invariant to the topology of 1D fermions, we explicitly
mapped the insulator to the error-correcting phase and
established the insulator-metal transition, at ¢y, ~ 0.147z, as
the achievable storage threshold. Such a high achievable
threshold, with sin?(¢y,) ~ 0.18 > py, ~0.11, explains
why standard decoders, even if not optimal, can reach
thresholds ¢, with sin?(¢.) < py as in Refs. [29,32].

The metal we found highlights fundamentally distinct
coherent-error physics. It maps to a new phase in QEC
where, albeit as a power law and to a nonzero A, value, A
decays with L (Fig. 3). This is markedly different from the
incoherent case where, above threshold, A increases and
saturates exponentially with L [19].
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