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Statistical mechanics mappings provide key insights on quantum error correction. However, existing
mappings assume incoherent noise, thus ignoring coherent errors due to, e.g., spurious gate rotations. We
map the surface code with coherent errors, taken as X or Z rotations (replacing bit or phase flips), to a two-
dimensional (2D) Ising model with complex couplings, and further to a 2D Majorana scattering network.
Our mappings reveal both commonalities and qualitative differences in correcting coherent and incoherent
errors. For both, the error-correcting phase maps, as we explicitly show by linking 2D networks to 1D
fermions, to a Z2-nontrivial 2D insulator. However, beyond a rotation angle ϕth, instead of a Z2-trivial
insulator as for incoherent errors, coherent errors map to a Majorana metal. This ϕth is the theoretically
achievable storage threshold. We numerically find ϕth ≈ 0.14π. The corresponding bit-flip rate
sin2ðϕthÞ ≈ 0.18 exceeds the known incoherent threshold pth ≈ 0.11.
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A major milestone toward building scalable quantum
computers is quantum error correction (QEC) [1–3].
Surface codes are among the most promising candidates
for this [4–8]. Their layout informs the design of state-
of-the-art many-qubit devices [9], where most recent
developments include proof-of-principle demonstrations of
surface-code QEC on small systems [10,11].
Key insights on the phenomenology and fundamental

performance limits of QEC codes come from mappings to
statistical mechanics models [7,12–16]. For the surface
code, assuming ideal measurements and either bit-flip X or
phase-flip Z errors occurring with probability p, this is the
two-dimensional (2D) random-bond Ising model (RBIM)
[7,12]. The ordered and disordered RBIM phases map,
respectively, to regimes where QEC succeeds and fails for
large system size L, while the phase transition marks the
theoretical maximum rate pth ≈ 0.11 [17–19] of errors that
can be corrected. (Tailoring the code for such biased noise
may achieve higher thresholds [20].)
The RBIMmapping assumes incoherent errors. Coherent

errors can, however, also arise, e.g., from unintended or
imperfect gate rotations [21–32].While results are favorable
on theirmitigation [23–25] or correction at fixedL [27,28], a
key question for surface codes is how coherent errors’
interference [30,31] impacts the scaling with L. Numerical
results for either expðiϕXÞ or expðiϕZÞ acting on each

qubit suggest that surface code QEC may succeed for
ϕ < ϕc ≈ 0.1π [29]. While ϕc is decoder specific,
sin2ðϕcÞ≲ pth suggests that assuming bit flips with
p ¼ sin2ðϕÞ (“Pauli twirling”) may work in practice.
However, fundamental questions remain:What is the theory,
replacing the RBIM, for the QEC phases? How does the
phenomenology of these phases differ from the incoherent
case? What is the maximum achievable threshold ϕth?
Here we introduce an RBIM that provides such a

theory. Unlike probabilities of incoherent errors, quantum
amplitudes now yield complex Boltzmann weights. Yet, the
problem has two useful and interrelated [18,33–35] for-
mulations, each encompassing both incoherent and coher-
ent errors (cf. Fig. 1): a 2D Majorana network, and a 1D
fermion Hamiltonian, both arising from the transfer
matrix—a nonunitary quantum circuit akin to those of
current interest in quantum dynamics [36].
We find that, upon increasing ϕ, the network undergoes

an insulator-metal transition. This is qualitatively distinct
from the incoherent case whose network, upon increasing
p, has an insulator-insulator transition [18,37–42]. A key
shared feature we find is that both the coherent and the
small-p incoherent insulators are Z2 nontrivial: they
correspond to topological 1D fermion phases [43]. We
use this to show that correcting coherent errors can succeed
for ϕ < ϕth, with ϕth the value at the insulator-metal
transition. We numerically find ϕth ≈ 0.14π for the geom-
etry in Fig. 1. Remarkably, the Pauli-twirled probability
sin2ðϕthÞ ≈ 0.18 exceeds pth ≈ 0.11 by 64%.
QEC ingredients.—Surface codes are stabilizer codes

[3–8,44–46]. They encode logical qubits in the common
þ1 eigenspace of stabilizers SXv ¼ Q

j∈v Xj at vertices v
and SZw ¼ Q

j∈w Zj at plaquettes w of the lattice, where we
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multiply Pauli X and Z operators on qubits around v or w
(cf. Fig. 1). The logical PauliXγ¼

Q
j∈γXj andZγ0 ¼

Q
j∈γ0Zj

run along noncontractible paths γð0Þ such that they commute
with all the stabilizers. The logical operators are not unique;
their path can be deformed via multiplying by stabilizers.
We focus on codes with a single logical qubit.We denote the
logical operators along their shortest possible paths byX and
Z, and take L to be X’s path length.
During the operation of the code, the constituent qubits can

suffer errors. Here we focus on X errors, namely on the
coherent U ¼ Q

j e
iϕXj , which we shall compare with inco-

herent bit flips Xj occurring with probability p ¼ sin2ðϕÞ.
(Z errors work similarly, upon SXv , X ↔ SZw, Z below.)
Expanding U we find a superposition of X strings applied
to the initial logical state jψi. For a given string, the endpoints
arewhereSZw have eigenvalue sw ¼ −1. Starting from a string
Cs consistent with the syndrome s ¼ fswg, we can get all
other such strings from multiplying by the SXv and/or X. The
former leaves Csjψi unchanged; the latter takes it to
ðCsXÞjψi. To correct errors, one measures s via the SZw,
and then applies either Cs or CsX to return to the logical
subspace [3]. In practice, this choice ismadebya decoder.But
if aiming for the theoretical optimum, one maximizes [32]
Pq;s ¼ jhψ jCsXqUjψij2 over q ¼ 0, 1. Henceforth, we take
jψi to be a Z eigenstate; then, from Xqjψi being orthogonal,
Pq;s are probabilities. The considerations in the incoherent
case are similar, but instead of a superposition, we definePq;s

for a probabilistic ensemble of strings [3,7]. In both cases, the
probability of syndrome s is Ps ¼

P
q Pq;s.

The feasibility of QEC hinges on P0;s and P1;s being
sufficiently distinct. We measure this via

Δ ¼
X
s

Psmin
q

Pq;s

Ps
¼

X
s

min
q

Pq;s: ð1Þ

Besides its meaning for Z eigenstates jψi, due to
Pq;s ¼ 3

2
Psδ

ðq;sÞ with δðq;sÞ the Bloch-sphere-averaged infi-
delity between pre- and post-QEC states [32], Δ also sets
the minimal average infidelity. For incoherent errors, Δ is
the logical error probability for maximum likelihood
decoding [19]. The error correcting phase is defined by
Δ decreasing to zero exponentially with L. Δ decaying to
zero also marks the decoherence of logical noise [32,47].
From surface codes to Ising models.—To map our

problem to an Ising model, we adapt the derivation
of Ref. [7] to the coherent case [47]. In terms of the
expansion of U ¼ Q

jð1 cosϕþ iXj sinϕÞ in X strings,
hψ jCsXqUjψi is the sum of the coefficients of
CsXq

Q
vðSXv Þrv for various configurations of rv ∈ f0; 1g.

(Other terms contribute to Ujψi with states orthogonal
to CsXqjψi.) In an N-qubit system, CsXq (i.e., all rv ¼ 0)
has coefficient

ði sinϕÞnðcosϕÞN−n ¼ N
Y
j

e−η
ðq;sÞ
j J ð2Þ

with n the Pauli weight of CsXq, eJ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
i tanϕ

p
, and

N ¼ Q
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i sinϕ cosϕ

p
; the signs are ηðq;sÞj ¼ −1 if CsXq

includes Xj, and ηðq;sÞj ¼ 1 otherwise. We define Ising
spins as σv ¼ −ð−1Þrv . Since σvσv0 ¼ 1 for this term,
and since each qubit is uniquely specified by nearest
neighbor (NN) SXv (cf. Fig. 1; we use boundary conditions
that also respect this [47]), Eq. (2) equals

N
Q

v;v0NN e−Jη
ðq;sÞ
vv0 σvσv0 . (We relabeled ηðq;sÞj ↦ ηðq;sÞvv0 .)

This holds also for other rv configurations because,
by X2

j ¼ 1, a factor Xj comes from
Q

vðSXv Þrv
only when rv ¼ 1 precisely for one v adjacent to j
(thus σvσv0 ¼ −1), and this introduces Xj to CsXq when

ηðq;sÞj ¼ 1 and removes Xj when ηðq;sÞj ¼ −1. Hence,

hψ jCsXqUjψi ¼ NZq;s with the Ising partition function

Zq;s ¼
X
fσvg

e−J
P

v;v0NN ηðq;sÞ
vv0 σvσv0 ; eJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
i tanϕ

p
: ð3Þ

In the incoherent case, instead of terms in U we
enumerate the probabilities of CsXq

Q
vðSXv Þrv X strings;

hence isinϕ↦p, cosϕ↦1−p above and Pq;s ¼ NZq;s.
When sampling Ps by sampling Cs, this is the RBIM
on the Nishimori line [7,48]. Equation (3) is our first
key result.
2D networks and 1D Hamiltonians.—While Zq;s, being

complex, might elude a direct statistical physics interpre-
tation, valuable insights arise upon expressing it via the

FIG. 1. Left panel: bulk patch of a surface code. Black dots are
qubits, and white and gray disks, respectively, show stabilizers SXv
and SZw. The red line marks the logical X’s path (for suitable
boundary conditions). In the RBIM, the SXv become spins
interacting with their nearest neighbors through couplings set
by the errors. Right panel: in the network model, the Ising bonds
become junctions scattering incoming into outgoing Majorana
modes. Solid and dashed lines show, respectively, the modes’
propagation direction for coherent and incoherent errors. In the
transfer matrix, the junctions are quantum gates acting on pairs of
Majorana operators.
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transfer matrix M̂q;s. It will be useful to construct

M̂q;s along X’s path, i.e., the x axis in Fig. 1. The
steps being standard [47,49,50], we just state the result:
Zq;s ¼ hαLjM̂q;sjα0i, with jαri encoding boundary con-

ditions at x ¼ r, where M̂q;s is a quantum circuit

M̂q;s ¼ V̂ðLÞ
q;s Ĥ

ðLÞ
q;s…V̂ð2Þ

q;sĤ
ð2Þ
q;sV̂

ð1Þ
q;s: ð4Þ

For system size M along y, V̂ðkÞ
q;s ¼⊗M

j¼1 v̂
ðj;kÞ
q;s and

ĤðkÞ
q;s ¼⊗M

j¼1 A
ðj;kÞ
q;s ĥðj;kÞq;s in terms of gates v̂ðj;kÞq;s and ĥðj;kÞq;s

arising from the ðj; kÞth vertical and horizontal bond of the

Ising model, respectively [here Aðj;kÞ
q;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhð2Jηðq;sÞjk Þ

q
].

Upon a Jordan-Wigner transformation using 2M
Majorana fermions γ̂j ¼ γ̂†j , fγ̂i; γ̂jg ¼ 2δij, we have

v̂ðj;kÞq;s ¼ e−iκ
j;k
q;s γ̂2j γ̂2jþ1 (j < M) and v̂ðM;kÞ

q;s ¼ eiP̂κ
M;k;
q;s γ̂2M γ̂1 with

P̂ ¼ ð−iÞM γ̂1γ̂2…γ̂2M the conserved fermion parity, and

ĥðj;kÞq;s ¼ e−iκ̃
j;k
q;s γ̂2j−1 γ̂2j . (We take y≡ yþM, i.e., a cylinder;

this can be argued to capture all key features [47].) Here

κj;kq;s ¼ Jηðq;sÞjk , and κ̃j;kq;s ¼ − 1
2
ln tanhðJηðq;sÞjk Þ.

The (nonunitary) gates v̂ðj;kÞq;s (j < M) and ĥðj;kÞq;s act
on NN fermions (cf. Fig. 1): they are quadratic in γ̂j.

The same holds for v̂ðM;kÞ
q;s , and hence also for M̂q;s, for each

of P ¼ �1. This has two key consequences. Firstly, we can

write M̂q;sM̂
†
q;s ¼ e−LĤq;s as a thermal density matrix, at

inverse temperature L, with 1D Hamiltonian Ĥq;s that is

free fermionic for each of P ¼ �1 [51]. Taking Lεð1Þq;s ≫ 1

(with εð1Þq;s the smallest excitation energy) yields the ground
state jφ0i which, by the singular value decomposition of
M̂q;s, is the steady state of the circuit Eq. (4) [47]. We shall
link the topology of jφ0i to error correction.
Secondly, the 2M × 2M matrix Mq;s, implementing

M̂q;sγ̂jM̂
−1
q;s ¼ ðMq;sÞljγ̂l, arises from a network of

2 × 2 matrices vðj;kÞq;s ¼ e2Yκ
j;k
q;s (j < M), vðM;kÞ

q;s ¼ e−2PYκ
M;k
q;s

with P ¼ �1, and hðj;kÞq;s ¼ e2Y κ̃
j;k
q;s (here Y ¼ iXZ). In the

incoherent case, as J is real, these are pseudounitary [18]:

t†Zt ¼ Z, with t ¼ vðj;kÞq;s or t ¼ hðj;kÞq;s . One can thus
interpret them as acting on a pair c ¼ ð cn

cnþ1
Þ of counter-

propagating modes, conserving their current c†Zc. The
RBIM thus maps to quantum transport [18,37–42,52]:
we get a Chalker-Coddington network model [53], with

hðj;kÞq;s and vðj;kÞq;s as junction transfer matrices (cf. Fig. 1).
The junction scattering matrices, mapping incoming
to outgoing amplitudes ð inn

innþ1
Þ and ð outn

outnþ1
Þ, in suitable

phase conventions, are Sh ¼ ðab b
−aÞ and Sv ¼ ð−ba a

bÞ with

a ¼ sechð2κj;kq;sÞ, b ¼ tanhð2κj;kq;sÞ [18,40,42].

We find a different network in the coherent case. From

κ̃ðj;kÞq;s ¼ iϕ − 1
2
ln½−ηðq;sÞjk �, the hðj;kÞq;s are unitary. This con-

serves c†c; this is the current if c has copropagating modes.

Furthermore, now Xvðj;kÞq;s is pseudounitary: If c’s modes

counterpropagate, vðj;kÞq;s swaps their direction. Equivalently,

vðj;kÞq;s has a pair of vertically copropagating modes. In the

coherent case, thus, both hðj;kÞq;s and vðj;kÞq;s have copropagat-
ing modes, moving horizontally and vertically, respectively
(cf. Fig. 1). In a suitable phase convention, the scattering

matrices are S→ ¼ −ηðq;sÞjk ð cosð2ϕÞ
− sinð2ϕÞ

sinð2ϕÞ
cosð2ϕÞÞ, S← ¼ S↓ ¼ S†→,

and S↑ ¼ −S↓, with arrows for the transmission direction,
and ð outn

outnþ1
Þ ¼ Sαð inn

innþ1
Þ with n increasing along y for

α ¼←;→ and along x for α ¼ ↑;↓.
Their scattering matrices being real, both networks

belong to Altland and Zirnbauer’s symmetry class D [54],
with links interpretable as Majorana modes. We will also
consider the networks together with their time-reversed
copies. This gives time-reversal invariant networks in
class DIII. Viewed as such, the incoherent and coherent
cases correspond to, respectively, the spin-conserving and
spin-flip limits of the class DIII networks of Ref. [55],

albeit with ηðq;sÞjk creating a different form of disorder.
This disorder has the same net effect in the incoherent

and coherent cases: ηðq;sÞjk ¼ −1 adds a “vortex” at each of
the adjacent SZw (cf. Fig. 1): a mode encircling either of

these picks up an extra π phase. With several ηðq;sÞjk ¼ −1,
vortices appear where sw ¼ −1. Vortices are thus the
network form of the syndrome s.
Network model phases.—In the incoherent case, the

network is known to have two insulating (i.e., localized)
phases with a transition at pth ≈ 0.11 [18,38–40,42]. Being
insulators, the average conductivity g ¼ ðL=MÞhTrðT †T Þi
satisfies g ∝ e−2L=ξ for L ≫ ξ; here h…i denotes disorder
average, T is the transmission matrix in the transmission-
reflection grading of the total scattering matrix S ¼ ðRT T 0

R0Þ
[56], and ξ is the localization length. The two insulators
are topologically distinct: for Q ¼ sgn detðR0

PBCR
0
APBCÞ,

equal to the Z2 invariant of the doubled class DIII system
[34,47,55], and where (A)PBC denotes (anti)periodic
boundary conditions in the transverse direction, we have
Q ¼ sgnðp − pthÞ [18,55].
In the coherent case, we focus on 0 ≤ ϕ ≤ π=4; this

includes all inequivalent ϕ values [57]. In the clean case

(i.e., all ηðq;sÞjk ¼ 1), any ϕ < π=4 gives a Q ¼ −1 insulator
[55]. With disorder, we now argue that the system remains
insulating for 0 < ϕ ≪ 1. We first note that if vortices
typically appear in dilute configurations of nearby pairs,
then, by the splitting of vortex-induced zero modes, a
nearly decoupled network (i.e., with ϕ; p ≪ 1 nodes) is an
insulator [40]. The typical vortex configurations for ϕ ≪ 1
are similar to the p ≪ 1 incoherent case: there, for a
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configuration s with ω ≪ LM adjacent vortex pairs
(AVP), hence low AVP density nω ¼ ω=LM, we have
Ps ∝ pωð1 − pÞLM−ω. There are ∼ðLMω Þ such s with similar
Ps. Thus ω has roughly binomial distribution. Hence,
hnωi ∝ p with variance σ2nω ∝ p=LM suppressed for
large LM. Among the s at nω ≈ p, those with a nonzero
density of farther separated vortex pairs (from AVP
chains) give just a ∝ e−cpLM (c > 0) fraction of configu-
rations. In the coherent case, jPj ajj ≤

P
j jajj gives

jZq;sj ≤ Zq;sði sinϕ ↦ sinϕÞ; the latter is the incoherent
Zq;s with p ↦ sinϕ, 1 − p ↦ cosϕ (not the Pauli twirl).
Hence Ps ≲ ðsin2ϕÞωðcos2ϕÞðLM−ωÞ for ϕ ≪ 1. From here,
the previous logic applies: Vortices typically appear in
nearby pairs. Hence, the system insulates for 0 < ϕ ≪ 1.
Since Q cannot change without delocalization [47], and
since Q ¼ −1 for ϕ ¼ 0 (a clean system), this small-ϕ
insulator has Q ¼ −1. As we shall show, this implies that
QEC succeeds up to a nonzero ϕth.
As ϕ increases, vortices proliferate. Generically, this

gives a metal [40], the phase we expect beyond ϕth. (For the
RBIM, J being real precludes a metal [38].) To test this
and find ϕth, we study g for vortices drawn from Ps,
sampling using Ref. [29]’s algorithm [47]. Our results
are in Fig. 2. The Q ¼ −1 insulator persists up to
ϕth ¼ ð0.14� 0.005Þπ, followed by a metal for ϕ > ϕth.
Both phases show single-parameter scaling: ϕ enters only
via a length scale lðϕÞ. [For an insulator, lðϕÞ ¼ ξðϕÞ.]
While this qualitatively agrees with class D results [58,59],
for the metal g½L=lðϕÞ� increases slower toward
π−1 ln½L=lðϕÞ� than predicted by the nonlinear σ model
(the standard theory for the metallic phase [37,38,42]).
Establishing the insulator-metal phase diagram and
ϕth are among our key results. Conceptually, the network

model phases offer coherent-error QEC phenomeno-
logy akin to how RBIM phases do in the incoherent
case. Practically, since dg=dL, unlike dΔ=dL below,
changes sign at ϕth, the network model greatly facilitates
identifying ϕth.
From insulators to QEC.—We now establish ϕth

as the coherent-error threshold. For this, we consider
ζs ¼ ðZ1;s=Z0;sÞ. In the Ising language, ζs is a disorder
correlator [47,60] since Z1;s differs from Z0;s by a row of

sign-flipped bonds. We have ζs ∝ e−
1
2
½Eð0Þ

1;s−E
ð0Þ
0;s �L for large L,

with Eð0Þ
q;s the lowest energy of Ĥq;s [47]. To evaluate ζs, we

consider the 1D free-fermion Hamiltonians that Ĥq;s gives
for each P. These Hamiltonians have gap ∝ ξ−1 if the
corresponding network is an insulator and their ground
state has fermion parity νsgn½detðR0Þ� (with ν ¼ �1 set by
R0 conventions) [18,47]. The latter fact not only allows one
to viewQ as their 1D topological invariant [34,43,47], but,
crucially, also implies that their number n of excitations
satisfies ð−1Þn ¼ νsgn½detðR0Þ�P.
Since each flips a row of vertical bonds, P and q

effectively swap PBC and APBC for fermions. This is
crucial when the network is a Q ¼ −1 insulator: from the
detðR0Þ swapping sign, νsgn½detðR0Þ� ¼ χCð−1ÞqP, with
χC ¼ �1 set by Cs [47]. Thus ð−1Þn ¼ χCð−1Þq, and

Eð0Þ
1;s − Eð0Þ

0;s ≈ χC=ξ up to Oðe−M=ξÞ corrections from
APBC vs PBC energy differences. Hence, ζs ∝ e−χCL=2ξ,
and Δ ∝ e−zL=2ξ, with z ¼ 2 in the coherent and z ¼ 1 in
the incoherent case (from Pq;s ∝ jZq;sjz). The Q ¼ −1
insulator thus marks the error correcting phase. [For a

Q ¼ 1 insulator, Eð0Þ
1;s − Eð0Þ

0;s ¼ Oðe−M=ξÞ: here QEC fails.]
This establishes ϕth as the coherent QEC threshold.
Figure 3 shows numerical results on Δ for the planar

geometry of recent L ¼ 3, 5 experiments [10,11]. Our

FIG. 2. Conductivity g for the coherent-error network on a
cylinder of length L and circumference M ¼ 5L, averaged over
500 to 105 syndrome realizations. Error bars (2 × standard error)
are imperceptible. The data following scaling curves g½L=lðϕÞ�
shows that ϕ enters via a length scale lðϕÞ [47]. For the insulator,
g½L=lðϕÞ� decays with L and g ∝ e−2L=lðϕÞ for L ≫ lðϕÞ. For the
metal, g increases; the g ∝ lnðLÞ=π class D asymptote [37,42] is
not yet reached for the accessible range of L. The insulator-metal
transition is at ϕth ¼ ð0.14� 0.005Þπ. We observe Q ¼ −1
throughout the insulating phase.

FIG. 3. Figure of merit Δ for the L × L planar geometry of
recent experiments [10,11] (cf. inset for L ¼ 3, 5). We ave-
raged over 250 to 2 × 105 syndrome realizations; error bars
(2 × standard error) are imperceptible. Δ decays exponentially
(dashed) with L for ϕ < ϕth. Above ϕth, the data are consistent
with Δ decaying as a power law to Δ∞ðϕÞ < Δu ¼ ðπ − 2Þ=2π.
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theory describing this system shows that our predictions
hold beyond the cylinder [47]: ϕth reflects bulk physics.
QEC in the metallic phase.—The metal for ϕ > ϕth,

instead of the Q ¼ 1 insulator, is a qualitatively new
feature. While the Q ¼ 1 insulator maps to a disordered
phase [7,18], the metal, if we generalize metallic disorder
correlator results [38], suggests a new QEC analog of
quasi-long-range order where Δ decays nonexponentially
with L. This is indeed what is seen in Fig. 3. The data are
consistent withΔ¼λL−dΔþΔ∞, where λ;dΔ;Δ∞>0 depend
on ϕ. Furthermore, we find Δ∞ < Δu ¼ ðπ − 2Þ=2π, the
value for uniform ϕs in the logical Us ¼ expðiϕsXÞ arising
from QEC in this geometry [29,32].
Conclusion.—We have mapped surface codes with

expðiϕXÞ [or expðiϕZÞ] coherent errors to a complex
RBIM, and via its transfer matrix M̂q;s, to quantum
transport in a 2D Majorana network. The network yielded
an insulator-metal phase diagram. Linking the insulator’s
Z2 invariant to the topology of 1D fermions, we explicitly
mapped the insulator to the error-correcting phase and
established the insulator-metal transition, at ϕth ≈ 0.14π, as
the achievable storage threshold. Such a high achievable
threshold, with sin2ðϕthÞ ≈ 0.18 > pth ≈ 0.11, explains
why standard decoders, even if not optimal, can reach
thresholds ϕc with sin2ðϕcÞ ≲ pth as in Refs. [29,32].
The metal we found highlights fundamentally distinct

coherent-error physics. It maps to a new phase in QEC
where, albeit as a power law and to a nonzero Δ∞ value, Δ
decays with L (Fig. 3). This is markedly different from the
incoherent case where, above threshold, Δ increases and
saturates exponentially with L [19].
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