
Self-Healing of Trotter Error in Digital Adiabatic State Preparation

Lucas K. Kovalsky ,1,* Fernando A. Calderon-Vargas ,1 Matthew D. Grace ,1 Alicia B. Magann ,2

James B. Larsen ,2,3 Andrew D. Baczewski ,2,† and Mohan Sarovar 1,‡
1Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Livermore, California 94550, USA

2Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
3Department of Mathematics, Brigham Young University, Provo, Utah 84602, USA

(Received 2 October 2022; revised 18 April 2023; accepted 29 June 2023; published 7 August 2023)

Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is
easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex
interplay between nonadiabaticity and digitization influences the infidelity of this process. We prove that
the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as
OðT−2δt2Þ instead ofOðT2δt2Þ expected from general Trotter error bounds, where δt is the time step and T
is the total time. This result suggests a self-healing mechanism and explains why, despite increasing T,
infidelities for fixed-δt digitized evolutions still decrease for a wide variety of Hamiltonians. It also
establishes a correspondence between the quantum approximate optimization algorithm and digitized
quantum annealing.
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Preparing the ground state of a quantum many-body
Hamiltonian is generically difficult [1–3]. Nevertheless,
because we frequently observe systems near their ground
state in nature, we expect to be able to efficiently prepare
these states in laboratories or on quantum computers for a
wide range of physical Hamiltonians [4–8]. One approach
to ground state preparation is through an adiabatic evolu-
tion that interpolates between a Hamiltonian with an easy-
to-prepare ground state (H1) and a Hamiltonian with the
target ground state (H2). This has applications in quantum
computation [9,10], linear algebra [11–13], optimization
[14], and simulation [15–17]. Realizing these applications
requires an understanding of the sources of error in
adiabatic state preparation (ASP).
The total error is often quantified as the infidelity I of

the prepared state relative to the ideal target state. An ever-
present contribution to I is due to the fact that such an
evolution cannot proceed infinitely slowly in practice
[18,19]. Digitizing the evolution into r time steps via
Trotterization [20,21], as would be necessary on a gate-
based quantum computer [22,23], introduces a second
influence on I due to the fact that we cannot exactly
represent the ideal continuous-time dynamics. This Letter
explores the interplay between these effects.
We show that certain errors cancel out over the course of

a complete adiabatic evolution from H1 to H2 requiring
time T. One should expect digitization to degrade I for
larger T with a fixed time step δt ¼ T=r, i.e., more time
steps lead to more accumulation of errors. Indeed, a generic
upper bound on I for first-order Trotterization suggests that
its error scales as OðT2δt2Þ. This would mean that δt needs
to decrease to realize a fixed I as T increases. However,

numerical results suggest that I decreases with increasing
T, even for fixed δt.
We present a less generic upper bound on I in

Theorem 1, similar to one recently proved for time-
independent Hamiltonians by Layden [24]. This bound
relies on adiabaticity, but not on the evolution being

FIG. 1. Consider a Hamiltonian with two terms,
H½uðtÞ� ¼ ½1 − uðtÞ�H1 þ uðtÞH2. A time evolution from t ¼ 0
to t ¼ T can be broken into steps of size δt through first-order
Trotterization (left). For a general evolution of this sort, pre-
viously established bounds suggest that cumulative infidelity
should grow with total time T for fixed δt. Then, scaling T by m
should require dividing δt by m to preserve a fixed infidelity (top
right). However, for an adiabatic evolution from uð0Þ ¼ 0 to
uðTÞ ¼ 1, we show that cumulative infidelity actually scales as
OðT−2δt2Þ þOðT−2Þ (Theorem 2). This allows us to keep δt
fixed if we scale T by m, to achieve a fixed or decreasing
infidelity, consistent with the continuous-time limit (bottom
right). Thus, the total number of time steps will be at least
quadratically lower than expected (center).
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complete. While it improves the scaling with T, it does not
explain reductions in I with increasing T for fixed δt.
However, Theorem 2 gives conditions under which I

instead improves with the duration of the evolution,
consistent with numerics. This bound relies on both
adiabaticity and the evolution being complete. Critically,
it allows for further Trotterization of H1 and H2, as might
be required in applications like quantum simulation. It also
does not rely on the ordering of the Trotterization. Figure 1
summarizes the primary consequence of Theorem 2.
The crossover between the bounds in Theorems 1 and 2

suggest a self-healing mechanism for complete adiabatic
evolutions. There is a sense in which I gets worse before it
gets better, and this is supported by numerical results. We
will also show that this explains a relationship between
Trotterized quantum annealing and the quantum approxi-
mate optimization algorithm (QAOA) [25–27].
We begin by considering an adiabatic evolution gen-

erated by a time-dependent Hamiltonian, H½uðtÞ� ¼ ½1−
uðtÞ�H1 þ uðtÞH2, for uðtÞ ∈ ½0; 1�, where uðtÞ is 0 at t ¼ 0
and 1 at t ¼ T. The unitary associated with the continuous-
time dynamics is UðtÞ ¼ T expf−i R t

0 H½uðt0Þ�dt0g, where
T is the time-ordering operator. UðtÞ is approximated by
digitizing the time evolution with first-order Trotterization
[20–22,28,29]. We will be particularly interested in the
Trotterization of the complete adiabatic evolution,

UðTÞ ≈Uð1ÞðTÞ ¼
Yr

k¼1

Y2

i¼1

Uiððk − 1Þδt; kδtÞ; ð1Þ

where U1ððk − 1Þδt; kδtÞ ¼ e
−iH1

R
kδt

ðk−1Þδt dt
0½1−uðt0Þ�

and

U2ððk − 1Þδt; kδtÞ ¼ e
−iH2

R
kδt

ðk−1Þδt dt
0uðt0Þ

[30].
The error incurred by splitting the exponential this

way is typically called the Trotter error and scales as
kUðTÞ −Uð1ÞðTÞk ¼ OðTδtk½H1; H2�kÞ, where k · k is the
operator norm. Note that Tδt ¼ rδt2 ¼ T2=r, and this
scaling represents the leading-order contribution to the
error in δt. It can be derived by bounding the error in a
single time step and applying the triangle inequality to
aggregate the error over all r steps [20,31]. When I is
defined as IðTÞ≡ 1 − jhψ jU†ð∞ÞUð1ÞðTÞjψij [32], then it
accounts for infidelity from both digitization and non-
adiabaticity. Specifically, I is upper bounded by the
squared sum of the Trotter error kUðTÞ −Uð1ÞðTÞk and
an energy gap-dependent OðT−1Þ term accounting for
nonadiabaticity (see Lemma 4 in the Supplemental
Material [33]). Theorems 1 and 2 improve on this bound
for less generic adiabatic evolutions.
That this is possible is motivated by numerical inves-

tigations. Figure 2 shows I as a function of δt for a simple
two-level system described in terms of Pauli matrices. For
this example, H1 ¼ X, H2 ¼ Z, and the schedule uðtÞ ¼
t=T is a linear ramp. While this is the simplest possible

example, the phenomenology that it captures generalizes to
more complicated choices for H1 and H2, some of which
are considered in the Supplemental Material [33]. In the
red-shaded region of Fig. 2, δtkHðtÞk ∈ Ωð1Þ and the
Trotter product formula is nonconvergent in this region. We
do not expect predictable scaling of error with δt in this
region and focus on the behavior in the white and green-
shaded regions.
We draw attention to two interesting features in Fig. 2.

First, the observed scaling of I is much more favorable
than the scaling suggested by the generic OðT2δt2Þ upper
bound given above. We instead see a OðT−2δt2Þ scaling,
which is completely inconsistent with the expectation that
error should increase with T. This inconsistency is due to
the use of the triangle inequality in deriving the generic
Trotter error bound, which neglects error cancellation
effects evident in Fig. 2(c). The second feature is that I
asymptotes to a δt independent quantity as δt → 0 in
Fig. 2(a). In this green-shaded region, the digitization error

FIG. 2. Infidelity of digitized ASP for a two-level system.
(a) Scaling of IðTÞ with Trotter time step size δt, for fixed
evolution time T ¼ 100. The dashed and dotted lines show
scalings that dominate the upper bound on IðTÞ for different
values of δt. (b) Scaling of IðTÞ with T for different values of
δt ≤ 1. The dashed line shows T−2 scaling, rather than a generic
∼T2 scaling that might be expected due to digitization error.
(c) Intermediate infidelities as a function of u, with increasing δt
corresponding to increasing opacity. The larger the value of δt,
the higher the peak of intermediate infidelity at u ¼ 1=2. A self-
healing mechanism for complete adiabatic evolutions is evident,
as the infidelity comes back down for u ¼ 1.
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is smaller than the finite-T nonadiabaticity error, and thus I
is independent of δt and consistent withOðT−2Þ bounds on
the continuous-time adiabatic evolution [49,50].
Our first result is an improved upper bound on the Trotter

error associated with the approximation in Eq. (1).
Theorem 1 (informal).—Given a gapped Hamiltonian

H½uðtÞ� ¼ ½1 − uðtÞ�H1 þ uðtÞH2 and a unitary UðTÞ ¼
T e−i

R
T

0
H½uðt0Þ�dt0 , where uðtÞ ¼ sðt=TÞ and s: ½0; 1� →

½0; 1�, if this unitary is first-order Trotterized into H1 and
H2 terms with r time steps of size δt, as in Eq. (1), then as
T → ∞, IðTÞ is upper bounded by minf1; C2T2δt2;
ðC1δtþ C3Tδt2Þ2g þOðδtÞ þOðT−2Þ.
The formal version of Theorem 1 defines the coefficients

Ci that determine the relative magnitudes of the contribu-
tions to the error [33]. The coefficients of the nonadiabatic
OðδtÞ andOðT−2Þ terms depend on the energy gap [49,50].
We note that Theorem 1 only applies to two-term first-order
Trotterization, which means that U1 and U2 cannot be
further Trotterized.
Theorem 1 tightens the genericOðT2δt2Þ scaling of IðTÞ

to OðT2δt4Þ and Oðδt2Þ in some regimes dependent on the
Ci coefficients. The proof involves combining the first-
order Trotter error from subsequent time steps into cumu-
lative second-order Trotter error, similar to a recent bound
for evolution under a time-independent Hamiltonian [24].
The main ingredients are bounds on the time-dependent
first- and second-order Trotter expansion errors that do not
require treating discretization error explicitly, in contrast
to prior approaches, and they sidestep explicit Magnus
expansion [51–53]. As in the time-independent case, the
two contributions C1δtþ C3Tδt2 dominate in different
parameter regimes. OðTδt2Þ scaling occurs when the
evolution is long enough that the end points are insignifi-
cant, while T-independent OðδtÞ scaling occurs when the
evolution is short enough that the end points dominate [24].
While Theorem 1 introduces a scaling independent of T

in the short-time regime unlike generic bounds, it does not
capture the decrease in I with increasing T for fixed-δt
evolutions, evident in Fig. 2(b). This is because the proof
technique relies on adiabaticity (i.e., that u0 and u00 go to 0
and the Hamiltonian is gapped), but it does not rely on the
fact that the adiabatic evolution is complete (i.e., that u goes
from 0 to 1). Our second result shows that accounting for
this leads to a bound with the anticipated behavior.
Theorem 2.—Given a gapped Hamiltonian

H½uðtÞ� ¼ ½1 − uðtÞ�H1 þ uðtÞH2 and a unitary UðTÞ ¼
T e−i

R
T

0
H½uðt0Þ�dt0 , where uðtÞ ¼ sðt=TÞ is smooth and s:

½0; 1� → ½0; 1�, if UðTÞ is first-order Trotterized with fixed
time steps δt ∈ OðmintkH½uðtÞ�k−1Þ, then as T → ∞ with
uð0Þ → 0 and uðTÞ → 1 the final state infidelity is bounded
by OðT−2δt2Þ þOðT−2Þ. Moreover, initially at a given
fixed t=T ≪ 1, state infidelity increases as Oðt2δt2Þ.
The OðT−2Þ term is again due to energy gap-dependent

nonadiabaticity error associated with finite-T evolution.

Note that the short-time Oðt2δt2Þ bound matches the
generic OðT2δt2Þ Trotter error bound.
The proof technique [33] involves analyzing the coef-

ficients of the discretized time evolution of the ground state
in the adiabatic basis using first-order time-dependent
perturbation theory. This approach reveals that the lead-
ing-order error from Trotterization is due to an off-diagonal
harmonic perturbation with amplitude OðδtÞ. While its
amplitude is independent of T, its frequency scales as T−1.
Thus, as T increases, this low-frequency perturbation
becomes increasingly off resonant and it induces transitions
out of the ground state with a probability OðT−2δt2Þ, i.e.,
similar to the Lorentzian tail that appears in the solution of
the Rabi problem [54].
Theorem 2’s scaling holds for all gapped Hamiltonians,

even with simple linear control ramps uðtÞ, as corroborated
by numerical results [33]. We believe this generality
explains the widespread inverse-in-T scaling reported else-
where [27,55].
Figure 3 illustrates the error bounds in Theorems 1 and 2

for the same simple two-level system studied in Fig. 2. To
illustrate the bounds in Theorem 1, it is necessary to
consider incomplete adiabatic evolutions, as to avoid the
superior scaling that complete evolutions achieve according
to Theorem 2. Thus, we examine IðtÞ for t ≤ T, in which
the states relative to which infidelities are evaluated are the
instantaneous ground states of H½uðtÞ�.
For the t ≪ T evolution, I initially scales as the generic

bound OðT2δt2Þ (dashed line) in Theorem 1 and then
crosses over to OðδtÞ scaling (solid line). The constant
coefficients in Theorem 1 dictate the size of the OðδtÞ-
scaling region, which is due to a cross-term involving
both Trotter error and nonadiabatic error, and we see that
this region dominates the t ¼ 0.95T scaling for most of
the relevant δt values [33]. The t ¼ T curve achieves
OðT−2δt2Þ scaling because it is a complete evolution. As
in Fig. 2, all three curves plateau at small δt (large r) once
the digitization error is dominated by the finite-T non-
adiabaticity error. We briefly note that the size of the
OðT2δt2Þ-scaling region compared to OðδtÞ can be
changed if variable time steps are used [33].
Figure 3 also reveals an interesting crossover in the

dependence of IðtÞ on δt as t → T. This is evident in the
white region, in which the error bounds given by
Theorems 1 and 2 are OðT2δt2Þ and OðT−2δt2Þ, respec-
tively. The T-dependent part of the error can be written as
OðTγδt2Þ, where γ transitions from 2 to −2 as t → T. As
this limit is approached, the upper bound in Theorem 1
becomes looser and looser as the scaling transitions to the
tighter upper bound in Theorem 2. It appears that the
prefactor of the OðTγδt2Þ term remains relatively constant
during this transition, and so the different T behavior is
apparent by the shifted dashed curves in Fig. 3 as its power
changes. For t ¼ T, Theorem 2’s bound becomes valid and
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Iðt ¼ TÞ decreases with T as OðT−2δt2Þ for all relevant
values of δt, as seen in Fig. 2(b).
Moreover, the transition from the initialOðt2δt2Þ scaling

to the OðT−2δt2Þ cumulative scaling implies a cancellation
of errors incurred at intermediate times, evident in Fig. 2(c).
We find this Oðt2δt2Þ upper bound to be tight and that
increasing ground state infidelity at intermediate times is
reversed as t → T after traversing the system’s avoided
crossing [33]. We do not prove the mechanism of the
reversal, but the same phenomenon can be observed in
more complex systems, where transitions to many excited
states at intermediate times are reversed as t → T [33]. This
remarkable property of self-healing digitized adiabatic
evolutions has been empirically observed, but had other-
wise defied explanation [56,57].
This begs the question of how self-healing impacts

higher-order Trotterization for adiabatic evolutions and
resource requirements for ASP [33]. A pth-order gener-
alization of Theorem 2 will still include a δt-independent
OðT−2Þ term, and the interplay of this diabatic error with
improved OðδtpÞ digitization error requires further study.
Our analysis also implies reductions in circuit depths for
Trotterized ASP relative to generic bounds, with potentially
significant consequences for resource estimates of ASP.
However, the optimal approach to ground state preparation
is likely to be problem dependent and a comparison of
Trotterized ASP to alternatives [58–62] is a topic for
future work.
In the context of optimization algorithms, our results

establish a bijective correspondence between QAOA and

digitized quantum annealing [27,55]. As in Fig. 4, it is often
possible to find an injective correspondence between a set
of optimal angles for QAOA and a Trotterization of an
optimized quasiadiabatic (or annealing) evolution between
the driver (Hd) and problem (Hp) Hamiltonians. But
justification for the surjective correspondence (QAOA
angles from Trotterizing a given quasiadiabatic evolution)
has remained elusive.
This is because, for a given set of P pairs of optimal

QAOA angles [Fig. 4(a)], the corresponding continuous
anneal control curve often has a similar total integrated time
T [Fig. 4(b)]. This forces the time step of the QAOA to
scale as δt ∝ T=P when viewed as a Trotterization. Since P
is generally found to be proportional to T in unrestricted
QAOA, this becomes a fixed-δt Trotterization. Such a
Trotterization has been phenomenologically found to
be the best discretization to match the oscillating curves
of the adiabatic anneal, whose period scales as the
(T-independent) energy gap [55]. Prior efforts were unable
to prove the surjective correspondence between Figs. 4(a)
and 4(c) because generic bounds suggest that error
increases with T for fixed δt.
Here we have shown that, for the broad class of

Hamiltonians that satisfy Theorem 2, I is constant or

FIG. 3. Infidelity of digitized ASP for the same two-level
system as in Fig. 2, but including intermediate evolutionsUðtÞ for
t ≤ T. T ¼ 100 is fixed for all curves. Here I considers the target
state as the instantaneous ground state ofH½uðtÞ� for the indicated
values of t. The dashed and dotted lines show various scalings
with δt and illustrate how the infidelity transitions from being
dependent (∼δt2T2) to inversely dependent (∼T−2δt2) on total
time T as the evolution is completed.

FIG. 4. Correspondence between QAOA and digitized quantum
annealing. We consider a three-regular Ising model (MAXCUT)
on N ¼ 8 qubits with periodic boundary conditions. sm ¼
γm=ðγm þ βmÞ, where m ∈ ½1;…; P� and γm (βm) are the mth
QAOA angle corresponding to Hp (Hd). (a) QAOA curves found
for P ¼ f10;…; 32g layers by bootstrapped seeding [63–65]
from smaller P solutions (darker curves correspond to larger P).
(b) Optimal anneal curves found by seeding from the corre-
sponding QAOA curves in (a). (c) Constant time step Trotteriza-
tion of these anneal curves. (d) The infidelity with the ground
state ofHp after evolution under the digitized annealing schedule.
The decrease in infidelity demonstrates an instance when QAOA
optimal angles can be considered to be proximal to a constant
nonvanishing δt Trotterization of a universal family of anneal
curves. This correspondence becomes exact as P → ∞ [33].
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decreasing with fixed δt and increasing T. This facilitates
proving the final relationship between Figs. 4(c) and 4(a),
producing a fully bijective relationship between optimal
QAOA angles and continuous anneal curves. Trotterization
of these curves with δt ¼ T=P produces angles [Fig. 4(c)]
that, as P → ∞, approach the original QAOA angles and
evolve the initial state to the ground state with increasing
fidelity [Fig. 4(d)].
Thus, at sufficiently large depth, QAOA can become a

fixed-δt digitization of an underlying set of quantum
annealing curves, a limit that differs from the δt → 0
digitization of the adiabatic limit traditionally considered
[66]. These annealing curves approach a single asymptotic
curve as the total integrated time goes to infinity. This
correspondence allows for high-depth QAOA instances to
be seeded by interpolating low-depth instances [27,55,63–
65] that converge quickly to the high-depth instance’s
minimum. Theorem 2 justifies this widely used “bootstrap”
procedure.
Based on prior Trotter bounds, it might have been

expected that digitization error would dominate the cumu-
lative infidelity of digitized ASP with increasing T. For a
fixed δt, more time steps should lead tomore error. However,
thanks to a self-healing property of complete adiabatic
evolutions, this is not the case. We have applied this to
establish a correspondence between QAOA and digitized
quantumannealing, but futurework remains in exploring the
mechanism of the self-healing property and consequences
for other quantum algorithms that rely on ASP.

We acknowledge useful conversations with Jonathan
Wurtz and Tameem Albash about portions of this work. We
are also grateful to the anonymous referees whose thorough
comments greatly improved its presentation. This material
is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific
Computing Research, under the Quantum Computing
Application Teams (QCAT) and Accelerated Research in
Quantum Computing (ARQC) programs, the National
Nuclear Security Administration’s Advanced Simulation
and Computing program, and the National Science
Foundation under Grant No. NSF PHY-1748958.
A. D. B., A. B. M., and J. B. L. acknowledge support from
the Sandia National Laboratories Truman Fellowship
Program, which is funded by the Laboratory Directed
Research and Development (LDRD) program. Sandia
National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
Award No. DE-NA0003525. This Letter describes objec-
tive technical results and analysis. Any subjective views or
opinions that might be expressed in the Letter do not
necessarily represent the views of the U.S. Department of
Energy or the U.S. Government.

*lkocia@sandia.gov
†adbacze@sandia.gov
‡mnsarov@sandia.gov

[1] A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum
Computation (American Mathematical Society, Providence,
2002), Vol. 47.

[2] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35,
1070 (2006).

[3] D. Poulin and P. Wocjan, Phys. Rev. Lett. 102, 130503
(2009).

[4] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[5] D. Deutsch, Proc. R. Soc. A 400, 97 (1985).
[6] J. Brooke, D. Bitko, Rosenbaum, and G. Aeppli, Science

284, 779 (1999).
[7] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, Phys.

Rev. Lett. 104, 030502 (2010).
[8] J. Preskill, arXiv:1811.10085.
[9] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd,

and O. Regev, SIAM Rev. 50, 755 (2008).
[10] T. Albash and D. A. Lidar, Rev. Mod. Phys. 90, 015002

(2018).
[11] Y. Subaşı, R. D. Somma, and D. Orsucci, Phys. Rev. Lett.

122, 060504 (2019).
[12] P. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, and

D.W. Berry, PRX Quantum 3, 040303 (2022).
[13] D. An and L. Lin, ACM Trans. Quantum Comput. 3, 1

(2022).
[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv:

quant-ph/0001106.
[15] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M.

Head-Gordon, Science 309, 1704 (2005).
[16] S. P. Jordan, K. S. Lee, and J. Preskill, Science 336, 1130

(2012).
[17] S. Lee, J. Lee, H. Zhai, Y. Tong, A. M. Dalzell, A. Kumar, P.

Helms, J. Gray, Z.-H. Cui, W. Liu et al., Nat. Commun. 14,
1952 (2023).

[18] L. D. Landau, Z. Sowjetunion 2, 46 (1932).
[19] C. Zener, Proc. R. Soc. A 137, 696 (1932).
[20] H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
[21] M. Suzuki, Commun. Math. Phys. 51, 183 (1976).
[22] S. Lloyd, Science 273, 1073 (1996).
[23] W. Van Dam, M. Mosca, and U. Vazirani, in Proceedings

42nd IEEE Symposium on Foundations of Computer
Science (IEEE, New York, 2001), pp. 279–287.

[24] D. Layden, Phys. Rev. Lett. 128, 210501 (2022).
[25] M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang,

Phys. Rev. Lett. 90, 067903 (2003).
[26] E. Farhi and A.W. Harrow, arXiv:1602.07674.
[27] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin,

Phys. Rev. X 10, 021067 (2020).
[28] A. M. Childs and Y. Su, Phys. Rev. Lett. 123, 050503 (2019).
[29] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu,

Phys. Rev. X 11, 011020 (2021).
[30] Note that this definition is not unique. The ordering could be

reversed in Uð1Þ, i.e., U2U1. While the precise value of the
Trotter error will depend on the order, the scaling with δt
and T is independent of this choice.

[31] M. Suzuki, J. Math. Phys. (N.Y.) 26, 601 (1985).
[32] Notice that our definition of infidelity differs a bit from the

more common 1 − jhψ jU†ð∞ÞUð1ÞðTÞjψij2.

PHYSICAL REVIEW LETTERS 131, 060602 (2023)

060602-5

https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1103/PhysRevLett.102.130503
https://doi.org/10.1103/PhysRevLett.102.130503
https://doi.org/10.1007/BF02650179
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1103/PhysRevLett.104.030502
https://doi.org/10.1103/PhysRevLett.104.030502
https://arXiv.org/abs/1811.10085
https://doi.org/10.1137/080734479
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/PhysRevLett.122.060504
https://doi.org/10.1103/PhysRevLett.122.060504
https://doi.org/10.1103/PRXQuantum.3.040303
https://doi.org/10.1145/3498331
https://doi.org/10.1145/3498331
https://arXiv.org/abs/quant-ph/0001106
https://arXiv.org/abs/quant-ph/0001106
https://doi.org/10.1126/science.1113479
https://doi.org/10.1126/science.1217069
https://doi.org/10.1126/science.1217069
https://doi.org/10.1038/s41467-023-37587-6
https://doi.org/10.1038/s41467-023-37587-6
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1007/BF01609348
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.128.210501
https://doi.org/10.1103/PhysRevLett.90.067903
https://arXiv.org/abs/1602.07674
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevLett.123.050503
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1063/1.526596


[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.060602 for proofs
of the main theorems, as well as additional technical details
and numerical results, which includes Refs. [34–48].

[34] J. Huyghebaert and H. De Raedt, J. Phys. A 23, 5777
(1990).

[35] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[36] J. Wurtz and P. J. Love, Quantum 6, 635 (2022).
[37] M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov,

Phys. Rep. 697, 1 (2017).
[38] R. F. Stengel, Optimal Control and Estimation (Springer,

New York, NY, 1994).
[39] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 37,

4950 (1988).
[40] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and

S. J. Glaser, J. Magn. Reson. 172, 296 (2005).
[41] D. M. Reich, M. Ndong, and C. P. Koch, J. Chem. Phys.

136, 104103 (2012).
[42] T.-S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010).
[43] L. T. Brady, C. L. Baldwin, A. Bapat, Y. Kharkov, and A. V.

Gorshkov, Phys. Rev. Lett. 126, 070505 (2021).
[44] J. R. McClean et al., Quantum Sci. Technol. 5, 034014

(2020).
[45] M. Steudtner and S. Wehner, New J. Phys. 20, 063010

(2018).
[46] A. Tranter, P. J. Love, F. Mintert, and P. V. Coveney,

J. Chem. Theory Comput. 14, 5617 (2018).
[47] O. G. Maupin, A. D. Baczewski, P. J. Love, and A. J.

Landahl, Entropy 23, 657 (2021).
[48] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik,

Mol. Phys. 109, 735 (2011).

[49] R. MacKenzie, E. Marcotte, and H. Paquette, Phys. Rev. A
73, 042104 (2006).

[50] D. Cheung, P. Høyer, and N. Wiebe, J. Phys. A 44, 415302
(2011).

[51] C. Yi and E. Crosson, arXiv:2102.12655.
[52] C. Yi, Phys. Rev. A 104, 052603 (2021).
[53] B. Şahinoğlu and R. D. Somma, npj Quantum Inf. 7, 119

(2021).
[54] L. Allen and J. H. Eberly,Optical Resonance and Two-Level

Atoms (Dover Publications Inc., Mineola, NY, 1987),
Vol. 28.

[55] L. T. Brady, L. Kocia, P. Bienias, A. Bapat, Y. Kharkov, and
A. V. Gorshkov, arXiv:2107.01218.

[56] M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda,
Phys. Rev. D 105, 014504 (2022).

[57] T. Albash, Presented at the Quantum Scientific Computing
Open User Testbed (QSCOUT) Users Meeting (2022).

[58] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M.
Troyer, Proc. Natl. Acad. Sci. U.S.A. 114, 7555 (2017).

[59] Y. Ge, J. Tura, and J. I. Cirac, J. Math. Phys. (N.Y.) 60,
022202 (2019).

[60] L. Lin and Y. Tong, Quantum 4, 372 (2020).
[61] K. Wan and I. Kim, arXiv:2004.04164.
[62] J. Lemieux, G. Duclos-Cianci, D. Sénéchal, and D. Poulin,
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