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We provide an efficient randomized measurement protocol to estimate two- and four-point fermionic
correlations in ultracold atom experiments. Our approach is based on combining random atomic beam
splitter operations, which can be realized with programmable optical landscapes, with high-resolution
imaging systems such as quantum gas microscopes. We illustrate our results in the context of the variational
quantum eigensolver algorithm for solving quantum chemistry problems.
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Traditionally, quantum algorithms are run with quantum
computers made of qubits. Another interesting possibility
consists of using fermionic quantum computers with fer-
mions as elementary constituents [1]. These devices are in
particular relevant for running fermionic quantum algo-
rithms without the technical overhead of representing
fermions with qubits, e.g., via a Jordan-Wigner transfor-
mation [2]. Fermionic quantum algorithms can be used to
solve numerous quantum problems. This includes quantum
chemistry [3–6], the quantum simulation of fermionic
quantum states relevant to high energy physics [7], and
condensedmatter [8]. These applications stimulate efforts to
engineer fermionic quantum systems, in particular with
ultracold atoms. Using programmable optical lattices or
tweezer arrays [9–13], quantum gas microscopes [14–17],
and time-of-flight imaging systems [18–20] one can indeed
create, manipulate, andmeasure fermionic quantum states at
high fidelity, with single-site control. However, in order to
employ setups with ultracold atoms as a fermionic quantum
processor for running fermionic quantum algorithms, there
is a significant challenge to tackle: the measurement of
multipoint correlations that represent the result of the
computation. Here, we provide a measurement protocol
based on randomized measurements [21] to access multi-
point correlations, which can be implemented in existing
experimental setups. For concreteness, wewill illustrate our
measurement protocol in the context of the variational
quantum eigensolver (VQE) algorithm, where the question
of high-accuracy measurements is crucial for assessing the
performances of the envisioned quantum hardwares
[22–25]. The protocol is, however, general and should also
find applications in the context of the quantum simulation of
Hubbard models with ultracold atoms [26].

VQE is a hybrid classical-quantum algorithm whose aim
is to access the ground state of a quantum chemistry
Hamiltonian. As we explain below, a crucial step in this
algorithm is the measurement of the expectation value of
the electronic Hamiltonian of a chosen molecule, which can
be expressed as a linear combination of the two- and four-
point fermionic correlation functions

Cð1Þ
ij ¼ hc†i cji and Cð2Þ

ijkl ¼ hc†i cjc†kcli; ð1Þ

where the c†i (ci) are fermionic creation (annihilation

respectively) operators. The measurement of the Cð1Þ
ij

matrix can be realized using noninteracting Hamiltonians
and using a numerical inversion procedure based on a
maximum likelihood algorithm [27]. Here, we will show

that we can access both tensors Cð1Þ
ij , C

ð2Þ
ijkl based on simple

analytical estimation formulas. Our protocol also applies to
mixed states, i.e., can be used to measure correlation
functions of thermal states.
Our measurement protocol takes advantage of existing

high-resolution imaging systems, such as quantum gas
microscopes, or single-atom-resolved detection methods
after a time of flight. These methods provide snapshots of
the fermionic populations in a given basis (position space
or momentum space), giving access to “diagonal” corre-
lations of the type Ni ¼ hc†i cii and Nij ¼ hc†i cic†jcji. The
system we have in mind is composed of a fermionic atomic
cloud, trapped in an optical lattice. In order to access off-
diagonal elements in Eq. (1), we propose to use atomic
beam splitters [9]. This well-established technique effec-
tively realizes a linear transformation of the L modes, with
L being the number of lattice sites or momentum modes, of
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the type cðUÞ ≡U · c ¼ ðPL
j¼1UijcjÞi¼1;…;L, where in our

case U is chosen as a random unitary matrix. In the
following we show that measurements performed in a
fixed basis, after application of U, can be mapped to the
desired correlations Eq. (1). This approach is adapted from
the concept of randomized measurement protocols, now
routinely used in qubit-type experiments [21] (see, in parti-
cular, Refs. [28,29] for accessing fermionic Hamiltonians
in qubit-based quantum computers). In contrast to previous
work for fermionic systems based on estimating the density
matrix [30] or entanglement entropies [31,32], our protocol
accesses fermionic correlations with noninteracting unitary
transformations. The use of randomized measurement
allows us to derive analytically efficient estimators for
the desired correlations and to study numerically the
required number of measurements to reach a given stat-
istical accuracy.
The variational quantum eigensolver (VQE) with fer-

mionic atoms.—In order to introduce our measurement
protocol, we find it instructive to recall the basic steps of
VQE, and to illustrate the algorithm with ultracold atoms.
The setup we have in mind is depicted in Fig. 1(a). The
VQE algorithm has been introduced in the context of
quantum chemistry to study the electronic ground state of a
molecule [22]. The electronic Hamiltonian is first cast in a
second quantization form (see Supplemental Material [33]).

HðRÞ ¼
XL
i;j¼1

hð1Þij ðRÞc†i cj þ
XL

i;j;k;l¼1

hð2ÞijklðRÞc†i cjc†kcl: ð2Þ

The operators cj (c
†
j ) are fermionic annihilation (creation)

operators that describe electrons in a set of electronic

orbitals. The coefficients hð1Þij ðRÞ and hð2ÞijklðRÞ, both expli-
citly depending of R, encode the geometrical structure of
the molecule, see Supplemental Material [33] for details.
Since HðRÞ is particle number conserving, we work in a
fixed sector with N spinless fermionic atoms. These N
particles, placed in a one-dimensional optical lattice made
of L sites, correspond to the N electrons in L electronic
orbitals of the original molecule. Spinful fermions or
different geometries can be also used [52–56]. The first
term in H accounts for the single-electron problem of the
molecule, i.e., the kinetic energy of the electrons and the
interactions with the nuclei. The second term represents
the Coulomb interactions between electrons. Because of
this second term, finding the ground state of H is a
challenging many-body problem in a Hilbert space growing
exponentially with number of orbitals L.
In the VQE, one first parametrizes a set of variational

wave functions jψðαÞi, where α is a vector of adjustable
parameters. Note that, in order to generate the optimal wave
function, it is not required to physically implement the
electronic HamiltonianH. However, one has to measure the
expectation value hHðRÞiα ¼ hψðαÞjHðRÞjψðαÞi, which

by linearity can be achieved by accessing all correlations

Cð1Þ
ij and Cð2Þ

ijkl, see Supplemental Material [33]. The
estimation hHðRÞiα, obtained on the quantum system, is
then used as input for a minimization routine executed on a
classical computer. This routine adjusts iteratively the para-
meters α in order to minimize the cost function hHðRÞiα.
We show in Fig. 1(b) a numerical illustration of the VQE

optimization with ultracold atoms. All calculations have
been performed considering the standard STO-3G basis set
[35]. We use standard numerical routines [37–39] to obtain
the parameters hð1Þij ðRÞ and hð2ÞijklðRÞ [57]. The code used to
generate the data can be found in [58]. We study the H4

molecule, a chain made of four hydrogen atoms, all
separated by the same bond distance. In order to have
significantly strong correlations between the atoms we
choose a bond distance of R ¼ 1.5 Å. Since we do not use
any frozen-core approximation, 8 spin orbitals are consid-
ered [59]. Moreover, as the H4 molecule has four electrons,

(a)

(b) (c)

FIG. 1. Randomized measurement protocol for a fermionic
variational quantum eigensolver (VQE). (a) VQE protocol with
ultracold fermions in an optical lattice. First, the initial guess state
jψ0i is prepared. It then enters a feedback loop composed of
(i) unitary evolution Uðα⃗Þ, (ii) measurement of energy cost
function through random unitary followed by projective mea-
surements, and (iii) classical optimization of α⃗. The loop stops
when the ground state of the desired Hamiltonian has been
realized in the optical lattice, within the desired error. (b) Numeri-
cal study of VQE for the H4 molecule using the Hamiltonian
Eq. (3) (V ¼ J ¼ 1=T, N ¼ 4 and L ¼ 8). We plot the accuracy
aE ¼ jEVQE − Ej, E being the exact ground state energy and EVQE

the one obtained from the VQE protocol. Larger circuit depths p,
colors from light to dark are shown. The black line denotes the
energy gap with the first excited state. (c) Reconstructed ground
state energy as a function of the bond distance for the H4

molecule. NU ¼ 100 random unitary transformations have been
considered (Nm ¼ ∞ projective measurements per unitary). Data
for system sizes of LB ¼ 112, 192 the extrapolated value for
LB → ∞ as well as a finite size scaling for R ¼ 1.5 Å are shown.
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we consider N ¼ 4 electrons in a lattice of L ¼ 8 sites. The
variational wave function jψðαÞi ¼ e−iHpT…e−iH1T jψ0i is
then generated by applying a sequence of s ¼ 1;…; p time
evolutions of duration T (ℏ ¼ 1) to the initial state jψ0i.
Each of these quenches is driven by the extended Fermi-
Hubbard model Hamiltonian

Hs ¼
XL
i¼1

½−Jðc†iþ1ci þ H:c:Þ þ αi;sni þ Vniðniþ1Þ�; ð3Þ

where the list α ¼ αi;s of Lp spatial and time-dependent
energy potentials represent the variational parameters to be
optimized. Here, V represents interactions between neigh-
boring sites that can be obtained, for instance, using dipolar
interactions with magnetic atoms [60–62]. Figure 1(b)
shows the convergence of the VQE algorithm: For depths
p > 20 and after a number of optimization cycles > 102,
the algorithm reaches a state that has lower energy than the
first excited state of the molecule. By increasing the
number of cycles in the optimization loop, the energy
keeps lowering approaching the ground state of the
electronic Hamiltonian H. The performance of the algo-
rithm can be increased by improving the ansatz in equation
Eq. (3), however, such a study is beyond the scope of
our work.
The success of the VQE optimizations relies on a precise

estimate of hHðRÞiα, and therefore of the full correlators

Cð1Þ
ij and Cð2Þ

ijkl. We now present our measurement protocol
giving access to such correlations. As a first illustration,
Fig. 1(c) shows a simulation of the measurement of the
bond dissociation curve of H4, representing the molecular
energy after the final iteration of the VQE optimization as a
function of the bond distance R.
Presenting our measurement protocol.—We consider

two options for implementing the measurement protocol.
The first option is conceptually the simplest one but
requires single-site addressing and imaging, e.g., using a
quantum gas microscope. The second option is tailored
instead for “time-of-flight” experiments and replaces the
measurement of single site population Ni and correlations
Ni;j by the populations Nk and correlations Nk;k0 between
different momentum components. For the first option, our
measurement protocol begins by making the system non-
interacting, e.g., by changing the dipole moment of the
atoms via a change of internal levels [63,64]. This step is
not required for the second option, see details below. Our
measurement protocol then consists of applying succes-
sively a sequence of two-site random beam splitter oper-
ations to create a global random transformation. Two-site
beam splitter operations are engineered between two
adjacent lattice sites i, iþ 1, e.g., by ramping potential
barriers [65] and can be realized with high fidelity in
present experimental setups [9,65]. For each two-site beam
splitter operation, the system then evolves according to a

two-site free-fermionic Hamiltonian with the lattice oper-
ators being transformed in the Heisenberg picture as

�
ci
ciþ1

�
→ uiðα;ϕ;ψÞ

�
ci
ciþ1

�
: ð4Þ

Here, uiðα;ϕ;ψÞ is a 2 × 2 unitary matrix which can be
parametrized by three angles α;ψ ∈ ½0; 2π� and ϕ ∈
½−π=2; π=2� (see Supplemental Material [33] for more
details). A noninteracting global unitary transformation
from the circular unitary ensemble (CUE) [66] is then
generated by a sequence of LðL − 1Þ=2 such beam splitters
U ¼ Q

L−1
j¼1

Qj
i¼1 1i ⊗ uiðαj;ϕj;i;ψ j;iÞ ⊗ 1L−i−1, where the

angles αj;ϕj;i;ψ j;i are sampled independently from par-
ticular distributions (see Supplemental Material [33] and
the schematic Fig. 1 for more details). Note that, if using
spinful fermions [48,52,55,67], one can realize the protocol
by first mapping L sites to 2L spinless sites and then
implement the beam-splitter operations as described above.
Such mapping can be done using, for example, magnetic
field gradients [68] and local Raman transitions.
At the end of the sequence described above, the

Heisenberg operators c are transformed to cðUÞ ¼ U · c,
and a projective measurement is realized. As we have used
a global noninteracting unitary U, we can easily express
measurements in terms of the correlations of the system. By
measuring the occupation of the lattice sites, we obtain

estimates of any expectation value of the form NðUÞ
i ¼

hc†;ðUÞ
i cðUÞ

i i ¼ hnðUÞ
i i and NðUÞ

ij ¼ hnðUÞ
i nðUÞ

j i. This pro-
cedure (sequence of random beam splitters and projective
measurement) is repeated for a number NU of random
transformations. As we show now, the statistics of these
measurements yield the correlations in Eq. (1).
Extracting correlations from the measured data.—In

order to extract Cð1Þ
ij from the measured data NðUÞ

i , the key
idea in randomized measurements consists of using the fact
that statistical correlations of random unitary transforma-
tions U can be calculated using the theory of unitary n
designs [69,70]. As shown in the Supplemental Material
[33], we obtain

Cð1Þ
ij ¼ L

XL
s1;s2¼1

ð−LÞδs1 ;s2−1NðUÞ
s2 Us1;iU

�
s1;j

; ð5Þ

where the overline denotes the average over all different
unitary transformations drawn randomly from the CUE.
Here, we have used the statistical correlations between 4
matrix elements of U and used accordingly the two-design
properties of the CUE. Similarly, the four-point correlation
tensor Cð2Þ is obtained from higher-order statistical corre-
lations. To provide an analytical estimator, we need to
consider a slight modification of our protocol: The system
of L sites is embedded in a larger optical lattice of LB sites
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with LB > L, these additional LB − L sites are not occu-
pied at the beginning of the measurement sequence. The
reason for this embedding is that in the limit LB ≫ 1, the
statistical correlations of the large LB × LB matrices U
simplify drastically: Restricting indices to a subset of
values, the matrix elements Uij become effectively inde-
pendent Gaussian random variables, see [71] and
Supplemental Material [33]. This allows us to invert the
relation between the measured data and the correlations,
and to write

Cð2Þ
ijkl ¼

XLB

s¼1

oð2Þs NðUÞ
s3;s4Us1;iU

�
s1;j

Us2;kU
�
s2;l

þO
�
L2

LB

�
ð6Þ

with s ¼ s1; s2; s3; s4, and

oð2Þs ¼

8>>>>>><
>>>>>>:

ðLB − 2ÞðLB − 3Þ ðs1 ¼ s3Þ ≠ ðs2 ¼ s4Þ
−ðLB − 3Þ ðs1 ¼ s3Þ ≠ s2 ≠ s4
−ðLB − 3Þ ðs2 ¼ s4Þ ≠ s1 ≠ s3
1 s1 ≠ s2 ≠ s3 ≠ s4
0 otherwise:

ð7Þ

The second term in Eq. (6) represents the non-Gaussian
effects of the CUE matrices, that vanishes in the limit
LB → ∞. Since the embedding procedure does not affect

the reconstruction of Cð1Þ
ij , both correlation matrices can be

reconstructed using the same experimental data.
Protocol with a time-of-flight apparatus.—We now

discuss the second option associated with time-of-flight
experiments, where we propose to implement beam split-
ters between momentum states during a time-of-flight
expansion. Here, we consider that the fermionic state is
prepared using the same resources, i.e., the Fermi-Hubbard
model Eq. (3). The measurement sequence is instead
changed. In this second scenario, ultracold atoms are first
released from the optical lattices by switching off abruptly
the latter. In our regime of interest for which the lattice
filling is of order unity (or less), the expansion of the gas is
driven by the zero-point energy in a lattice site and it is
ballistic to an excellent approximation [19,72]. After a
short duration (set by the inverse of the zero-point energy
in a site), the gas is diluted and exhibits the quadratic
dispersion ϵðkÞ of noninteracting atoms. Two-photon
(Bragg) transitions then allow one to realize a beam splitter
operation analogous to Eq. (4) between two momentum
states [73],

�
c̃k
c̃kþ1

�
→ ukðα;ϕ;ψÞ

�
c̃k
c̃kþ1

�
; ð8Þ

where c̃k ¼
P

j cje
−i2πkj=LB=

ffiffiffiffiffiffi
LB

p
, k ¼ 0;…; L − 1, are

the momentum-space operators. The energy difference
Δω between the two Bragg beams is set to match the

energy difference ϵðkþ 1Þ − ϵðkÞ of the two coupled
momentum states. Implementing many beam splitters at
once is permitted by the nonlinearity of ϵðkÞ and realized
with multiple Bragg beams of varying energy differences
Δω [74]. Similarly to the first scenario, measuring the
occupation of the momentum lattice sites yields expectation

values of the form Ñk ¼ hc̃†;ðUÞ
k c̃ðUÞ

k i ¼ hñðUÞ
k i, Ñk;k0 ¼

hñðUÞ
k ñðUÞ

k0 i, from which correlators of the momentum
operators are estimated using Eqs. (5) and (6). Single-
atom-resolved detection in time-of-flight experiments
[75,76] is perfectly suited to this goal. Finally, Fourier
transforms relate the correlations Eq. (1) in the position
space to those measured after expansion in the momen-
tum space.
Systematic and statistical errors.—Finally, we address

quantitatively the role of systematic and statistical errors in
the measurement part of the protocol. Systematic errors can
arise from the miscalibration of the random unitary trans-
formations. This effect, analyzed, for instance, for other
randomized measurement protocols [77], is assessed here
by adding random offsets to the three angles fα;ϕ;ψg
defining each beam splitter

fα;ϕ;ψg → fαþ ενα;ϕþ ενϕ;ψ þ ενψg; ð9Þ

where ε tunes the miscalibration and the variables
fνα; νϕ; νψg are picked uniformly from the interval
½−1; 1�. A numerical study is shown in Fig. 2(a) for various
values of miscalibration noise ε. The accuracy in the energy
estimation is defined as aε ¼ jEε − Ej, with E and Eε

being, respectively, the exact energy and the one affected
by miscalibration. At large values of ε, the error is maximal
at large LB. This is because the number of beam splitter
operations increases with LB, leading to the propagation of
miscalibration errors. Instead, at small ε, we observe the
influence of another source of systematic errors, which is

(a) (b)

FIG. 2. Analysis of systematic and statistical errors. We study
the H4 molecule with bond distance of 1.5 Å. Herewe assume that
the exact GS has been prepared in the system. (a) Reconstruction
error aε due to unitary miscalibration as a function of L−1

B for
increasing miscalibration strength ε (see text), colors from light to
dark. Here, we consider Nm ¼ ∞ and NU ¼ 103. (b) Scaling of
statistical error ΔE as a function of the measurement budget
NmNU. Here, we assume perfect beam splitters, i.e., ε ¼ 0.
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the error in Oð1=LBÞ appearing in the estimation of the

four-point correlations Cð2Þ
ijkl; cf. Eq. (6), see also additional

numerical calculations in Supplemental Material [33]. This
effect, responsible for the offset between the reconstructed
and exact result, can be reduced by using a linear
extrapolation for different values of 1=LB → 0, as shown
in Fig. 1(c). Finally, statistical errors arise from two
contributions: (i) the finite number of random unitary
transformations NU used to estimate the ensemble average
in Eqs. (5) and (6), (ii) the finite number of projective
measurement Nm used to obtain for a given unitary U, the

expectation values NðUÞ
s1 , and NðUÞ

s1;s2 . In our protocol, the
estimation of the ground state energy is obtained by
averaging the results obtained from NU independently
sampled unitary transformations. Thus, we quantify stat-
istical errors in terms of the standard deviation on the mean
ΔE ¼ δE=

ffiffiffiffiffiffiffi
NU

p
, with δE being the standard deviation

associated with estimates built from a single random
unitary NU ¼ 1. As shown in the Supplemental Material
[33] for the extreme case NM ¼ 1, the required values of
NU to estimate Cð1Þ and Cð2Þ scale as L2 (L2

B, respectively).
This implies, in particular, that the measurement budget
NmNU to estimate E scales polynomially in the system size.
As an illustration, we represent ΔE versus NmNU in
Fig. 2(b) for LB ¼ 80 and different values of Nm, which
also shows an approximate 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NmNU

p
dependence. These

results show that fermionic correlations can be efficiently
estimated accurately using our protocol.
Conclusion.—Our fermionic measurement protocol pro-

vides access to two- and four-point correlation functions in
ultracold atom experiments and sets the stage to run
fermionic quantum algorithms. Our work also points to
several interesting research directions. We can, in particu-
lar, extend our protocol to continuous variable systems such
as degenerate Fermi gases [78] to detect off-diagonal long-
range order and bosonic systems [79] where emergent field
theories can be explored. In this context, our protocol could
also be exploited to estimate entanglement based on
Gaussian entropies [80].
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Notes added.—Recently, a work was posted in Ref. [81]
extending our findings to the measurement of arbitrary
fermionic k-reduced density matrices.
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