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Recent breakthroughs have opened the possibility of intermediate-scale quantum computing with tens to
hundreds of qubits, and shown the potential for solving classical challenging problems, such as in
chemistry and condensed matter physics. However, the high accuracy needed to surpass classical
computers poses a critical demand on the circuit depth, which is severely limited by the non-negligible
gate infidelity, currently around 0.1%–1%. The limited circuit depth places restrictions on the performance
of variational quantum algorithms (VQA) and prevents VQAs from exploring desired nontrivial quantum
states. To resolve this problem, we propose a paradigm of Schrödinger-Heisenberg variational quantum
algorithms (SHVQA). Using SHVQA, the expectation values of operators on states that require very deep
circuits to prepare can now be efficiently measured by rather shallow circuits. The idea is to incorporate a
virtual Heisenberg circuit, which acts effectively on the measurement observables, into a real shallow
Schrödinger circuit, which is implemented realistically on the quantum hardware. We choose a Clifford
virtual circuit, whose effect on the Hamiltonian can be seen as efficient classical processing. Yet, it greatly
enlarges the state’s expressivity, realizing much larger unitary t designs. Our method enables accurate
quantum simulation and computation that otherwise are only achievable with much deeper circuits or more
accurate operations conventionally. This has been verified in our numerical experiments for a better
approximation of random states, higher-fidelity solutions to the XXZ model, and the electronic structure
Hamiltonians of small molecules. Thus, together with effective quantum error mitigation, our work paves
the way for realizing accurate quantum computing algorithms with near-term quantum devices.
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Almost four decades after Richard Feynman put forward
the idea of quantum computing [1], the quantum advantage
has been experimentally tested recently in the solid state
systems [2–4] and photonic systems [5,6]. However, those
quantum computational advantage works focused on well-
defined quantum sampling problems which were not
designed to be practically useful. Therefore, the next
important near-term milestone is to find algorithms for
noisy intermediate-scale quantum (NISQ) [7] devices to
solve nontrivial practical problems that are intractable for
classical computation.
One of the most promising NISQ applications is using

variational quantum algorithms (VQA) [8,9] such as the
variational quantum eigensolver (VQE) [10] and the varia-
tional quantum simulation (VQS) [11] where a quantum
circuit is optimized classically to approximate the eigenstate
state energy and to simulate the dynamics of a Hamiltonian
respectively for tasks that are widely considered in combi-
natorial optimization problems [12], condensed matter
physics [13], and quantum chemistry [14,15]. A practical

advantage of hybrid algorithms is their certain degree of
resilience to noise in the optimization and quantum hard-
ware [8,16,17].
Considering the limitations of NISQ devices, VQAs

generally use a shallow local unitary circuit (LUC)
[Fig. 1(a)] to approximate the target quantum states.
States prepared by shallow LUCs however, could be trivial,
obeying the entanglement area law [18] which can be well
captured by classical tensor networks [19]. Indeed, the
Lieb-Robinson bound [20] indicates that the entanglement
light cone restricts the propagation of correlations, and,
therefore, shallow LUC cannot generate long-range entan-
glement. However, the ground states of some Hamiltonians
of interest could be highly nontrivial and require a relatively
deep LUC with a depth that has linear or even higher
scaling with the qubit number [20,21] such as interacting
spins at critical points [22,23], topological quantum orders
[24,25], and interacting fermions in complex molecules
[15]. This is a big challenge for NISQ devices. Indeed,
without an effective quantum error correction, the final
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fidelity of the quantum circuits drops exponentially with
the number of gates. For example, a state-of-the-art random
quantum circuit with 60 qubits and 24 layers [3] ended up
with a cross-entropy benchmarking fidelity as low as
0.037%. We thus need to significantly improve the
NISQ hardware to implement those VQAs to the desired
accuracy.
This situation can be summarized as a trade-off between

the fidelity of the LUC and its expressivity [9] (i.e., the
ability for the quantum circuits to “express” a sufficiently
large volume of quantum states to include those nontrivial
ones). To circumvent this problem, we propose a new
framework of VQAs, enhanced by virtual Heisenberg

circuits, which can noiselessly increase the effective circuit
depth and thus simultaneously improve its expressivity and
fidelity. We want to mention that there is a related work by
Zhang et al. where their classical neural networks serve for
a purpose similar to our virtual Heisenberg circuits [26].
And there is an orbital optimized unitary coupled cluster
method [27] that shares a similar idea as ours where they
turn single-excitation circuits into classical processing on
chemical Hamiltonians. We call our scheme Schrödinger-
Heisenberg (SH) VQA, which illustrates that the main idea
is that, in addition to the physical unitary circuit, U, acting
on the quantum states in the Schrödinger picture, we bring
in a virtual circuit, T, acting on the target HamiltonianH in
the Heisenberg picture [see Fig. 1(a)]. In the following, we
consider SHVQE as an example, but we note that the
algorithm works for general VQAs. In this case, the energy
expectation value EðT;UÞ ¼ h0⊗njU†T†HTUj0⊗ni of the
system becomes

EðT;UÞ ¼ h0⊗njU†HTUj0⊗ni ð1Þ

where the classically calculated transformed Hamiltonian
HT ¼ T†HT has the same energy spectrum as H. By
properly choosing a relatively deep but noiseless T, the
state TUj0⊗ni could explore the Hilbert space far outside
the range of Uj0⊗ni [see Fig. 1(b)] and hence can obtain
lower and more accurate ground-state energy than conven-
tional VQE for nontrivial problems. We show a workflow
of SHVQE together with a comparison to conventional
VQE in Fig. 1(c). Compared with VQE, both the real
Schrödinger circuit U and the virtual Heisenberg circuit T
in SHVQE are parametrized and updated when minimizing
the expectation value EðT;UÞ. The key feature of SHVQE
is that onlyU as a shallow LUC is physically implemented,
whereas the relatively deep circuit T is performed virtually
and noiselessly using a classical computer.
We first show how to effectively measureHT . In general,

the target Hamiltonian H could be expressed as a linear
sum of multiqubit Pauli terms H ¼ P

m
i¼1 giPi, where

Pi ∈ fσI; σX; σY; σZg⊗n. Then we can measure each Pi

with a total number of samples ðm=ϵ2ÞPi g
2
iVar½Pi�,

proportional to the number of terms m in the
Hamiltonian [28], to evaluate the energy expectation value
within an error of ϵ. Here Var½Pi� ¼ hP2

i i − hPii2. We can
similarly measure HT , by similarly decomposing each
T†PiT into Pauli strings. While most practical
Hamiltonians H only contain a polynomial number of
terms, this might not be the case for T†PiT or HT, after the
transformation [29].
Here we propose a structure of the Heisenberg circuit that

also leads to efficientlymeasurableT†PiT orHT. The circuit
consists of two parts (Fig. 1(a)), where the first part is an
arbitrary Clifford circuit that can be decomposed into a
sequence of Oðn2Þ basic gates from the set fH; S;CNOTg,
and the second part is a layer of single-qubit gates. The first
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FIG. 1. SHVQE. (a) The SHVQE circuit. The circuit is
composed of the Schrödinger circuit U and the Heisenberg
circuit T, where U is the local unitary circuit running on real
quantum computers and T is the virtual circuit acted on the
Hamiltonian consisting of two parts, the Clifford part, and the
single qubit layer. The architecture we use for U throughout this
work is layers of parallel 2-qubit gates, which has a well-defined
light cone that constrains the propagation of correlations and
entanglements. (b) Improvements of SHVQE. By adding the
virtual circuit, TUj0⊗ni is able to explore more of the Hilbert
space compared with Uj0⊗ni in conventional VQE, and the
trainable Hilbert space is much larger than the conventional VQE.
(c) Algorithm structure comparison between VQE and SHVQE.
The transformed Hamiltonian HT replaces H in SHVQE. We
update parameters in both U and T to minimize the expectation
value of HT .
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part realizes discrete gates such as CNOT to build correla-
tions between any 2 qubits, and the second part makes them
continuous. The Clifford circuit maps the multiqubit Pauli
group to itself, which conserves the number of terms of the
Hamiltonian. Also, the Gottesman-Knill theorem [30] indi-
cates that calculating the transformed Hamiltonian is easy.
While the second part might increase the number of terms
of the Hamiltonian, the overhead is polynomial for
Hamiltonians H consisting of only k-weight terms, i.e.,
the Pauli operators fσX; σY; σZg act on at most k qubits since
theweight remains unchanged.We note that one can change
this part into other easier or more complex circuits for
different Hamiltonians, considering the trade-off between
the circuit power and the measurement cost.
We begin to study the expressivity of the circuit in

SHVQE. We consider the expressivity measure using the
method of quantum complex projective t design [31],
which means that the distribution of the output states
has equal moments up to the tth order to a Haar uniform
distributed states from the whole Hilbert space. Intuitively,
as illustrated in Fig. 2(a) [32], a higher t design indicates a

more uniform and denser state distribution in the Hilbert
space, and vice versa. In general, a LUC of depthOðnt10Þ is
needed to generate a t design [33], and the Clifford circuits
can produce a three design [34]. Using the tight Page’s
theorem [35], we define the logarithmic difference of
entanglement entropy as

Δt ¼ log ðEHaar½Trðρtn=2Þ�Þ − log ðESH½Trðρtn=2Þ�Þ ð2Þ

to identify the order of expressivity of SHVQE, where ρn=2
is the reduced half system density matrix, EHaar is the
average over Haar random states, and ESH is the average
over the quantum states TUj0⊗ni. If Δt increases and
approaches 0, it means that TUj0⊗ni is a t design.
Figure 2(b) shows a comparison of the expressivity of

SHVQE versus VQE through a numerical experiment on a
12-qubit system. In the VQE setting, we run a random LUC
at different depths and calculate Δt to characterize the t
design. In the SHVQE setting, we implement both the real
Schrödinger circuitsU and the virtual Heisenberg circuits T
which are pure Clifford consisting of 500 random gates
from fH;S;CNOTg. The key observation for both cases is
the critical depths when the Δt measure increases to and
saturates at around 0. It is evident that the Δt curves for
SHVQE rise much more rapidly than that for VQE for all t
values from 3 to 12. The rising curve for SHVQE quickly
hits the saturation point at a Schrödinger circuit depth of
∼2, while the VQE curve arrives at a much deeper depth of
∼36. This indicates that SHVQE can effectively reduce the
gate depth by more than 1 order of magnitude to achieve the
same level of expressivity. For a higher number of qubits,
we expect an even more dramatic advantage, which can be
inferred from a qubit-size dependent test of depth reduction
as shown in Fig. D3 in the Supplemental Material [29]. The
above results indicate that we can use current NISQ
hardware to effectively run deep quantum circuits while
maintaining high fidelity. Particularly, based on a 2-qubit
gate fidelity of 99.5%, the SHVQE can allow us to run, for
instance, a 12-qubit four-depth quantum circuit with
an output fidelity of 90%, which would otherwise demand
a 2-qubit gate fidelity of 99.95% (currently unrealistic) and
depth of 40 in conventional VQE (Fig. D2 in the
Supplemental Material [29]). Note that shallow LUCs or
Clifford circuits alone can only generate small design
orders, but a combination of them can achieve high
expressivity.
We consider an example of the XXZ spin model with a

periodic boundary condition,

HXXZ ¼
Xn

i¼1

½σxi σxiþ1 þ σyi σ
y
iþ1 þ Δσziσ

z
iþ1�; ð3Þ

to demonstrate a kind of working flow of SHVQE. At the
critical point Δ ¼ 1, the XXZ model is equivalent to the
Heisenberg model whose ground state has a logarithmic

(a)

(b)

FIG. 2. SHVQE expressivity. (a) Relationship between expres-
sivity and the t design. We show the point distribution on the
Bloch sphere of different design orders t ¼ 3, 6, 9, 12. (b) Com-
parison of the expressivity measure Δt between VQE and
SHVQE. The structure of the Clifford part is formed by 500
randomly picked basic Clifford gates in the set fH;S;CNOTg.
The other parts including the two-qubit blocks in Schrödinger
LUC and gates in the Heisenberg single qubit layer are random
gates drawn from the Haar measure. The zero-depth setting in
SHVQE can be understood as the performance of the Clifford
circuit. Since Clifford circuit can generate 3-design, Δt ap-
proaches 0 for t ¼ 3 whereas below 0 in other cases. Schrödinger
circuit of depth greater than 6 combined with the Heisenberg
circuit is believed to generate the maximally scrambled states
since values of Δt from t ¼ 3 to t ¼ 12 are all zero [35].
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scaling of entanglement entropy [22,23], and hence cannot
be prepared by a constant-depth LUC. Since we aim to
boost the performance of the NISQ experiments, we use the
hardware efficient ansatz [14] for the real Schrödinger
circuit even though this may lead to barren plateau
problems [36], where each circuit layer composes a layer
of CZ gates and a layer of parametrized arbitrary single-
qubit gates (denoted as θ⃗) .
For the Heisenberg circuit, the single-qubit gate layer is

parametrized with parameters ϕ⃗. And we restrict the
Clifford part to graph circuits [37] where only commuting
CZ gates are used. We separate the graph circuit into
patterns of different connectivity with the same transla-
tional invariant (TI) symmetry as HXXZ. More concretely,
for an n-qubit circuit, we can set bn=2c elementary graphs
(For the jth elementary graph, each node I is connected with
node iþ j. b·c is the floor function.). As each elementary
graph can be turned on or turned off, the total number of
possible patterns is 2bn=2c, and we use a bn=2c-bit string to
label all the possible patterns such as “01001…,” where 0
means the corresponding elementary graph is turned on
whereas 1 means off [Fig. 3(a)]. To efficiently search
through an exponentially large space of Clifford gate
patterns, we borrow the idea from differentiable quantum
architecture search [38], where each elementary TI graph is
turned on independently according to a probability
described by a two-parameter softmax function [39].

Thus, only bn=2c × 2 parameters (denoted as α⃗) are needed
to implement the discrete search of the huge Clifford
patterns. Therefore, the circuit ansatz for the SHVQE is

Tðα⃗; ϕ⃗ÞUðθ⃗Þj0⊗ni; ð4Þ

where α⃗ and ϕ⃗ represent all configurations of the
Heisenberg circuit T and θ⃗ are the continuous parameters
in the single-qubit gates inside the Schrödinger circuit U.
The parameters α⃗ are used to generate samples of different
circuits, and the cost function is the average of the
Hamiltonian expectation values of these circuits under
the same gate parameters θ⃗ and ϕ⃗. The SHVQE method
then optimizes over all the parameters to search for the
ground state of the Hamiltonian.
In our numerical simulation, we consider an eight-spin

XXZmodel with a four-depth circuitU and four elementary
TI graphs of the Clifford layer as shown in Fig. 3(a). We
show the energy expectation and the evolution of the
possibilities of all 16 configurations during the optimization
as functions of the number of iterations in Fig. 3(b).
When the energy expectation is converged, the probabilities
of the candidate circuit structures concentrate on the optimal
configuration, the fully connected graph “1111.” In
Fig. 3(c), we show the optimal energies of all the 16
candidate circuit configurations, which verifies that the

(a) (b)

(c)

(d)

FIG. 3. Searching the Clifford circuit for the XXZ model. (a): The 4 elementary graphs and their corresponding code strings for n ¼ 8
TI graphs. (b): Upper Panel: Minimizing the cost function to search for the best graph. Parameters contain both gate parameters and
probability parameters. The cost function is the sum of the Hamiltonian expectation values of circuits sampled from α⃗ under the same
gate parameters. The number of samples at each iteration is 800. Lower Panel: Probabilities of all 16 graphs as functions of iteration
times. All graphs have the same probabilities at the beginning. The probability of the fully connected graph “1111” becomes 1 as the
iteration times grow. The optimization algorithm used for circuit structure searching is adam-SPSA [40]. (c): Direct comparisons
between different graphs. The dashed line is the result of the graph type: “0000” i.e. without the Heisenberg circuit. The fully connected
graph is indeed the best choice. There exist graphs that have worse performance than “0000”. (d): Comparison of solved ground state
fidelities. We use VQE and SHVQE to solve 8, 10, 12,14, and 16-qubit XXZ models. Fully connected graphs are used as the Clifford
layer. VQE and SHVQE of the same Schrödinger circuit depth share the same color. Each point is the best result obtained from 20 sets of
random initial parameters.
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optimal configuration is indeed the fully connected graph
“1111.” We further solve larger models up to 16 spins to
show the improvement of SHVQE compared with conven-
tional VQE using the same Schrödinger circuits [Fig. 3(d)].
For SHVQE,we directly use the generalized fully connected
graph circuits as the Clifford part. We can find under the
same circuit depth, the SHVQEobtains higher fidelities than
the VQE (an average improvement of 25.2%).
To further demonstrate the practical values of our

algorithm, we implement our algorithm to solve the
electronic structure problems of H4 and H2O molecules
following the same workflow as above. The H4 molecule
corresponds to an 8-qubit Hamiltonian. For the H2O
molecule, we use the active space method [41] to create
an effective 10-qubit Hamiltonian containing ten spin
orbitals and six electrons. Since the SHVQA has the
Pauli weight restriction, we use the Bravyi-Kitaev mapping
which transforms an M-mode fermionic Hamiltonian to a
spin Hamiltonian of Oðlog2MÞ Pauli weight [41,42]. Note
that the ground states of these molecule Hamiltonians have
the correct number of electrons. The results are shown in
Fig. 4, where we can see SHVQE can reach the chemical
accuracy (1.6 × 10−3) with Schrödinger circuits of much
shallower depth than VQE.
We now give some discussions for SHVQA. First, we

want to emphasize that the states TUj0⊗ni are both hard to

prepare on NISQ devices, as it requires implementing the
relatively deep T circuit, and hard to simulate on classical
computers, as it can be treated as Clifford circuits with
nonstabilizer input states. However, interestingly, within
the SHVQE framework, the operator expectation values
under these states can be efficiently evaluated as long as U
is classically tractable. Second, we want to talk about the
trainability of SHVQA. A known result is that in general,
an ansatz with high expressivity may lead to low
trainability [43]. We want to emphasize that the expres-
sivity benchmarked under the very random settings in
Fig. 2 should be understood as the achievable expressivity
of the NISQ devices enhanced by Heisenberg circuits but
not the actual expressivity of the ansatz within the SHVQA
framework for specific problems. Thus, SHVQA can be
understood as a general methodology for improving
existing variational algorithms within which biased and
trainable ansatzes can be tested. We summarize some
strategies in the Supplemental Material [29].
In summary, we have introduced a novel variational

quantum algorithm, the SHVQA, to efficiently extend the
circuit depth of near-term noisy quantum processors. By
virtually introducing relatively deep and nonlocal Clifford
circuits, we show that the expressivity of shallow quantum
circuits can be significantly enhanced, without sacrificing
the fidelity. We use the XXZ model to demonstrate the
workflow of SHVQA and further demonstrate the practical
values of SHVQA by solving small molecules. Our method
is directly applicable to current quantum hardware and is
compatible with most existing quantum algorithms.
Leveraging quantum error mitigation, our work pushes
near-term quantum hardware into wide nontrivial
applications.
We use the QULACS [44] and the QISKIT [45] packages for

parts of simulations.
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[22] Guifre Vidal, José Ignacio Latorre, Enrique Rico, and
Alexei Kitaev, Entanglement in Quantum Critical Pheno-
mena, Phys. Rev. Lett. 90, 227902 (2003).
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