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Understanding quantum phase transitions in highly excited Hamiltonian eigenstates is currently far from
being complete. It is particularly important to establish tools for their characterization in time domain. Here,
we argue that a scaled survival probability, where time is measured in units of a typical Heisenberg time,
exhibits a scale-invariant behavior at eigenstate transitions. We first demonstrate this property in two
paradigmatic quadratic models, the one-dimensional Aubry-Andre model and three-dimensional Anderson
model. Surprisingly, we then show that similar phenomenology emerges in the interacting avalanche model
of ergodicity breaking phase transitions. This establishes an intriguing similarity between localization
transition in quadratic systems and ergodicity breaking phase transition in interacting systems.
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Introduction.—Quantum phase transition in highly
excited Hamiltonian eigenstates (henceforth, eigenstate
transitions) can be seen as a generalization of ground-state
quantum phase transitions [1]. They are often characterized
by an abrupt change of certain wave function properties
such as participation ratios or entanglement entropies.
Some remarkable consequences of eigenstate transitions
may be manifested in nonequilibrium quantum dynamics of
isolated [2,3] or Floquet [4–9] quantum systems, and may
call for refinement of our understanding of quantum chaos
[10–12] and thermalization [12–14].
In time domain, the overlap of two time-evolving

quantum states may represent a useful probe to study
the properties of Hamiltonians that govern the dynamics.
Generally, stability of isolated quantum systems against
perturbations is studied within the concept of fidelity or
Loschmidt echo [15], which became one of the most
important tools in the theory of quantum chaos [16,17]
and other areas of physics [17]. Here, we focus on survival
probability [18], which is the squared overlap of the time-
evolving state with its initial state, whose main features
(e.g., the slopes of its decay) can also be extracted [19], for
small systems, from experimental protocols based on
Loschmidt echoes [19,20]. Of particular interest are its
properties at intermediate and long times, which may carry
nontrivial fingerprints of eigenstate transitions [18,21,22].
In the context of quadratic Hamiltonians in which

eigenstate transitions are driven by disorder, a large
amount of previous studies focused on survival probability
[18,21–27]. Perhaps the most important outcomes of these
studies are (i) emergence of a power-law behavior close to
and at the eigenstate transition [18,21–27], and (ii) con-
necting the power-law exponent to the fractality of the wave
function [18,23,28–33]. It appears that these properties do
not crucially depend on whether the quadratic Hamiltonian

is local (such as the Anderson and Aubry-Andre models)
or it is given by a random-matrix-theory type of model
[25,34]. In spite of these activities, however, it remains
unclear whether a power-law decay of survival probability
is a sufficient criterion for a detection of the transition point.
Survival probability in interacting systems has not yet

received as much attention as in quadratic systems, apart
from several exceptions [35–40]. In random-field spin-1=2
Heisenberg chains, emergence of a power-law decay was
reported for a broad range of disorder strengths [35,37–40],
suggesting that the power-law survival probability per se
may not be sufficient to pinpoint the transition in finite
systems. However, the quest for exploring the boundaries
of thermalization and the emergence of nonergodic phases
of matter has recently experienced tremendous scientific
interest [41–43]. It is then an urgent task to establish tools
to detect eigenstate transitions through the lens of quantum
dynamics, both for single-particle and many-body states.
In the context of interacting systems, it is currently not

obvious which are the prototypical models that exhibit an
ergodicity breaking phase transition in the thermodynamic
limit and are at the same time not subject to severe finite-
size effects in numerical analyses. One of the most widely
studied systems in this respect is the random-field spin-1=2
Heisenberg chain, for which different predictions about the
fate of ergodicity breaking phase transition have recently
been made [44–71]. A convenient alternative for such
studies can be formulated within the so-called avalanche
model of ergodicity breaking phase transitions [68,72–78],
which allows for establishing analytical predictions of the
value of the transition point [72,73]. Importantly, numerical
results in finite systems comply with these predictions and
exhibit only mild finite-size effects [77].
In this Letter, by studying quantum dynamics through

the perspective of survival probability, we show that its
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scale-invariant behavior is a hallmark of eigenstate tran-
sitions in both quadratic and interacting systems. This
allows us to establish a connection between eigenstate
transitions in disordered quadratic systems and ergodicity
breaking phase transitions in interacting systems.
Our analysis consists of two steps. In the first step, we

study two paradigmatic quadratic systems, the one-
dimensional (1D) Aubry-Andre model and the three-
dimensional (3D) Anderson model, and we introduce a
scaled survival probability pðtÞ; see Eq. (3). With this we
benchmark scale invariance of pðtÞ as an indicator of a
disorder-driven localization transition point in quadratic
systems. Then we extend our analysis to an interacting
system, i.e., to the avalanche model. We show that an
identically defined pðtÞ, however on many-body wave
functions, also exhibits scale invariance at the ergodicity
breakingphase transition. The scale invariance ofpðtÞ allows
us to relate the power-law exponent of pðtÞ to the fractal
dimension of initial states in the eigenbasis of Hamiltonian
Ĥ, and the scaling properties of the typical Heisenberg time.
Finally, we also discuss a connection of wave function based
dynamical measures of the transition to the spectrum based
measures, such as the spectral form factor.
Scaled survival probability.—We are interested in quan-

tum quenches from the initial Hamiltonian Ĥ0 with
eigenstates fjmig to the final Hamiltonian Ĥ with eigen-
states fjνig. The eigenstates correspond to single-
particle (many-body) eigenstates in quadratic (interacting)
Hamiltonians. The eigenstate survival probability for a
fixed Hamiltonian realization is defined as

PH
mðtÞ ¼ jhmje−iĤtjmij2 ¼

�
�
�
�

XD

ν¼1

jcνmj2e−iEνt

�
�
�
�

2

; ð1Þ

where we set ℏ≡ 1, D is the Hilbert-space dimension,
cνm ¼ hνjmi is the overlap of jmi with jνi, and Eν is an
eigenenergy of Ĥ. The averaged survival probability is
defined as PðtÞ ¼ hhPH

mðtÞimiH, where h…im denotes the
average over all eigenstates jmi of the initial Hamiltonian
Ĥ0, and h…iH denotes the average over different realiza-
tions of the final Hamiltonian Ĥ.
At long times, PðtÞ approaches the average inverse

participation ratio of eigenstates of Ĥ in the eigenbasis
of Ĥ0, P ¼ hhPν jcνmj4imiH. We express P̄ as

P̄ ¼ P∞ þ cD−γ; ð2Þ

i.e., as a sum of the nonzero asymptotic value P∞ ¼
limD→∞ P and a part that vanishes in the thermodynamic
limit D → ∞ as ∝ D−γ, where γ > 0 is the fractal dimen-
sion. In the fully delocalized regime one gets P∞ ¼ 0,
while P∞ > 0 in the localized regime or the regime with a
mobility edge. If the initial wave function at the transition

exhibits (multi)fractal properties in the eigenbasis of Ĥ, one
expects γ < 1.
These considerations allow us to define our central

quantity, the scaled survival probability pðtÞ, henceforth
survival probability,

pðtÞ ¼ PðtÞ − P∞

P − P∞
; ð3Þ

which saturates at long times to limt→∞pðtÞ ¼ 1. We
study p in units of scaled time τ ¼ t=ttypH , where
ttypH ¼ 2π=δEtyp is the typical Heisenberg time, δEtyp ¼
exp½hhlnðEνþ1 − EνÞiνiH� is the typical level spacing, and
h…iν denotes the average over all pairs of nearest levels.
Models.—We study two quadratic models with particle-

number conservation that exhibit localization-delocalization
transitions, given by the Hamiltonian

Ĥ ¼ −J
X

hiji
ðĉ†i ĉj þ ĉ†j ĉiÞ þ

XD

i¼1

ϵin̂i; ð4Þ

where ĉ†j (ĉj) are the fermionic creation (annihilation)
operators at site j, J is the hopping matrix element between
nearest neighbor sites, n̂i ¼ ĉ†i ĉi is the site occupation
operator, and ϵi is the on-site energy. The first is
the Aubry-Andre model on a 1D lattice with L sites
(D ¼ L) subject to the quasiperiodic on-site potential
ϵi ¼ λ cosð2πqiþ ϕÞ, where λ is the amplitude of the
potential, q ¼ ½ð ffiffiffi

5
p

− 1Þ=2� is the golden ratio, and ϕ is
a global phase. The model exhibits a sharp localization-
delocalization transition at λc=J ¼ 2 for all single-particle
eigenstates [79–89] as a consequence of self-duality at the
transition. This transition was observed experimentally
using cold atoms [90,91] and photonic lattices [92]. The
second is the Anderson model on a 3D cubic lattice
(D ¼ L3) subjected to independent and identically distrib-
uted on-site energies drawn from a box distribution
ϵi ∈ ½−W=2;W=2�. Numerical studies of transport proper-
ties of single-particle eigenstates at the center of energy
band [93–95] based on the transfer-matrix technique
have shown that the system is insulating for W > Wc ≈
16.54J [96] and belowWc it becomes diffusive [97–99]. At
the transition, the model exhibits subdiffusion [97] and
multifractal single-particle eigenfunctions [100–102]. The
transition point is energy dependent, i.e., at W > Wc all
single-particle states are localized, while at W < Wc the
system exhibits a mobility edge [103].
We complement our analysis by studying an interacting

model that exhibits an ergodicity breaking phase transition,
i.e., the avalanche model [72,73,77]. The model consists of
N þ L spin-1=2 degrees of freedom in a Fock space of
dimension D ¼ 2NþL. It is divided into a dot with N spins
and a remaining subsystem with L spins outside the dot,
described by the Hamiltonian
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Ĥ ¼ R̂þ g0
XL−1

i¼0

αui Ŝxni Ŝ
x
i þ

XL−1

i¼0

hiŜ
z
i : ð5Þ

The spins outside the dot are subject to local magnetic
fields hi ∈ ½0.5; 1.5� that are drawn from a box distribution.
Interactions within the dot denoted by R̂ are all-to-all and
they exclusively act on the dot subspace. They are
represented by a 2N × 2N random matrix drawn from the
Gaussian orthogonal ensemble [104]. Each of the spins
outside the dot is coupled to one spin in the dot, and the
interaction strength is αui . For a chosen spin i outside the
dot, we randomly select an in-dot spin ni. The coupling to
the first spin outside the dot (i ¼ 0) is set to one since
u0 ¼ 0, while at i ≥ 1, ui ∈ ½i − 0.2; iþ 0.2� is drawn from
a box distribution.
We set N ¼ 5 and g0 ¼ 1 in Eq. (5), and vary the

parameter α. For these parameters, the transition estimated
from the gap ratio statistics occurs at αc ≈ 0.716 [105],
which is very close to the analytical prediction ᾱ ¼ 1=

ffiffiffi

2
p

≈
0.707 [72,73]. For α > αc the model is ergodic and it
exhibits the Gaussian orthogonal ensemble level statistics
[73,77]. This can be interpreted as a successful avalanche
induced by the dot. For α < αc there is localization of spins
outside a thermal bubble and the Poisson level statistics
emerges [73,77].
Initial states.—Unless stated otherwise, the initial

Hamiltonian for quadratic models is Ĥ0 ¼
P

i ϵin̂i, for
which the single-particle eigenstates fjmig in Eq. (1) are
fully localized in the site occupation basis. The survival
probability can then be interpreted as a quantity that
describes the spreading of a particle initially localized in
the disordered lattice. For the interacting model the initial
Hamiltonian is Ĥ0 ¼ diagðĤÞ, i.e., we quench from fjmig,
which are product states of fully localized spins in the
whole system. The survival probability hence tracks the
stability of the initially localized spins against the ava-
lanche spreading from the dot.
Scale invariance at the transition.—We first study the

results in quadratic models. In the upper panels of Fig. 1 we
show pðτÞ in the 1D Aubry-Andre model, while the middle
panels of Fig. 1 show pðτÞ in the 3D Anderson model. At
the eigenstate transition, see Figs. 1(b) and 1(e), the decay
of pðτÞ appears to be independent of the system size. This
scale-invariant behavior extends over several orders of
magnitude in time, and it is marked by the shaded areas
in Figs. 1(b) and 1(e). We fit the functional dependence in
this regime by a power law,

pðτÞ ¼ aτ−β; ð6Þ

where a and β are fitting parameters. We obtain β ¼ 0.25 in
Fig. 1(b) and β ¼ 0.42 in Fig. 1(e), moreover, in all cases
considered in this Letter we obtain a < 1. In contrast, when
departing from the transition point toward the delocalized

regime, see Figs. 1(a) and 1(d), and toward the localized
regime, see Figs. 1(c) and 1(f), scaled-invariant properties
are lost and we do not focus on these regimes further on.
We now ask whether a similar behavior can also be

observed in an interacting model, i.e., in the avalanche
model. Remarkably, the lower panels of Fig. 1 suggests that
this is indeed the case. Specifically, in Fig. 1(h) we observe
scale-invariant behavior at the ergodicity breaking transi-
tion that is fitted by the power law from Eq. (6) with

FIG. 1. Survival probability pðτÞ as a function of the scaled
time τ ¼ t=ttypH in the 1DAubry-Andre model (upper panels, a–c),
the 3D Anderson model (middle panels, d–f) and the avalanche
model (lower panels, g–i) at different system sizes L, plotted in
the delocalized regime (left column), at the transition point
(middle column), and in the localized regime (right column).
The shaded areas in the middle column denote the time intervals
of the scale-invariant behavior for the largest system sizes. The
dashed lines denote the fits from Eq. (6) in the scale-invariant
power-law regime.

FIG. 2. Scale invariance of survival probability pðτÞ at the
transition point demonstrated for the largest system sizes L of the
models under consideration (the larger L, the darker the color).
The curves are identical to those in Figs. 1(b), 1(e), and 1(h), but
shifted in y axis (i.e., multiplied by constants) for clarity. The
shaded area denotes the time interval of the scale invariant
behavior for the largest L (for the 3D Anderson model and the
avalanche model this time interval roughly coincides). The
dashed lines denote the fits from Eq. (6).
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β ¼ 0.56. The time interval in which the power law is
observed, see the shaded region in Fig. 1(h), is as broad as
that in 3D Anderson model in Fig. 1(e). Scale invariance of
pðτÞ is lost in the ergodic phase, see Fig. 1(g), and in the
localized phase, see Fig. 1(i).
Consequences of scale invariance.—We now explore the

consequences of the observed scale invariance of pðτÞ at
eigenstate transitions, which is shown in Fig. 2 for all
models under consideration. We describe the procedure that
allows us to relate β from Eq. (6) to other properties at the
transition such as the fractal dimension γ.
We start by inserting P̄ − P∞ from Eq. (2) and the

power-law form of pðtÞ from Eq. (6) into Eq. (3), and
considering its logarithm, one obtains ln½PðtÞ − P∞� ¼
−β ln tþ lnðaðttypH ÞβcD−γÞ. We note that if the power-law
decay of PðtÞ − P∞ was to extend until t ¼ ttypH [cf. the
dashed lines in Figs. 1(b), 1(e), and 1(g)], the value
PðttypH Þ − P∞ would be lower than cD−γ since a < 1.
However, our goal is to understand the behavior of β that
corresponds to the slope of the function ln½PðtÞ − P∞�
versus ln t, and hence one can shift the offset by setting
a ¼ 1. The slope β can then be obtained by the ratio
β ¼ −f½yðL1Þ − yðL2Þ�=½xðL1Þ − xðL2Þ�g, where the func-
tions y and x are evaluated at time t ¼ ttypH such that the
dependence on the system size L enters through ttypH .
Specifically, yðLÞ ¼ ln½PðttypH Þ − P∞� ¼ −γ ln½cDðLÞ� and
xðLÞ ¼ ln½ttypH ðLÞ�, and we express the ratios of Heisenberg
times as ttypH ðL2Þ=ttypH ðL1Þ ¼ ½DðL2Þ=DðL1Þ�n. This leads to

β ¼ γ=n; ð7Þ

where n is a rational positive number. The power-law
exponent β is hence determined by the fractal dimension γ
and the scaling properties of ttypH when expressed in terms of
the Hilbert-space dimension D.
If the scaling of ttypH with L is identical to the scaling of

the average tH with L, it implies n ≈ 1, but if the spectrum
exhibits level clustering or large gaps, they may lead to
n > 1. While this derivation does not distinguish between
quadratic and interacting systems, we note that by intro-
ducing n in Eq. (7) for interacting systems, where DðLÞ
scales exponentially with L, we neglect multiplicative
factors that scale polynomially with L. Still, as shown
below, at sufficiently large L these contributions can be
neglected.
We test predictions from Eq. (7) numerically in Fig. 3.

Specifically, we extract γ and n from the scaling properties
of P̄ and ttypH at eigenstate transitions in Figs. 3(a)–3(c) and
3(d)–3(f), respectively, and compare their ratios to the
values of β obtained in Figs. 1(b), 1(e), and 1(h), finding
excellent agreement. We note that in the 1D Aubry-Andre
model, the distribution of level spacings at the transition is
anomalous [28]. In Fig. 3(d), we observe ttypH ≈D2, which
justifies the introduction of n ≠ 1 in Eq. (7), and is

consistent with β ≈ γ=2 from Ref. [29]. On the other hand,
in the 3D Anderson model where β ≈ γ [97,106], see
Fig. 3(b), we observe P∞ ≠ 0 at the transition, which is
a consequence of the mobility edge [103] and hence
justifies the introduction of P∞ to the definition of scaled
survival probability in Eq. (3).
It is interesting to observe that P̄ at the transition in the

avalanche model [cf. α ¼ 0.716 in Fig. 3(c)] exhibits
(multi)fractal behavior, and we attribute its saturation to
a small nonzero P∞ as a hallmark of the mobility edge. In
the nonergodic phase [cf. α ¼ 0.6 in Fig. 3(c)], P̄ saturates
to a rather large value, indicating Fock space localization.
Note that the latter is a consequence of interactions and is
not expected to emerge in many-body states of localized
quadratic models.
Survival probability and spectral form factor.—An

interesting open question concerns the relation of survival
probability at eigenstate transitions with the statistical
properties of Hamiltonian spectra. Recent studies of the
spectral form factor (SFF) at eigenstate transitions of the
3D Anderson model [107] and the avalanche model [77]
observed a scale-invariant plateau in time domain that
extends over several orders of magnitude. Even though
survival probability is formally not equivalent to the SFF,
certain analogies can be established for the random
matrices [37,108] and in general [108,109] (see also
[105]). It is then reasonable to conjecture in these cases
that the scale-invariant plateau in the SFF is related to the
scale-invariant behavior of the survival probability. In [105]

FIG. 3. Scaling of P̄ and ttypH in the models under investi-
gation: (a),(d) 1D Aubry-Andre model with D ¼ L; (b),(e) 3D
Anderson model with D ¼ L3; and (c),(f) avalanche model with
D ¼ eðln 2ÞðNþLÞ. Black dashed lines are fits to the data at eigenstate
transitions (circles). (a)–(c): The fractal dimension γ is obtained
using Eq. (2), where the horizontal lines denote P∞. At eigenstate
transitions we get (a) γ ¼ 0.53, (b) γ ¼ 0.42, and (c) γ ¼ 0.57.
(d)–(f): The number n is obtained using the ansatz ttypH ∝ Dn. At
eigenstate transitions we get (d) n ¼ 2.03, (e) n ¼ 1.01, and
(f) n ¼ 0.99. The ratios γ=n given in the legends accurately match
the values of β from Fig. 2, in accordance with Eq. (7).
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we numerically test this conjecture and observe that both
scale-invariant phenomena occur in approximately the
same time windows.
We note that the SFF in the 1D Aubry-Andre model, in

contrast to the other two models, exhibits a scale-invariant
power-law decay at the transition due to fractality of the
eigenspectrum at the transition. The latter emerges in nearly
the same time window as a power-law decay of the survival
probability [105].
Conclusions.—The new results of this Letter can be

summarized in two steps. In the first, we established scale
invariance of survival probability at eigenstate transitions.
This allows us to consider scale invariance in two para-
digmatic quadratic models, the 1DAubry-Andre model and
the 3DAnderson model, within the same framework. In the
second, most important step, we observe that this phenom-
enology also applies to ergodicity breaking transitions in
interacting systems. We note that the hallmark of the
transition is scale invariance and not the mere power-law
decay of the survival probability. For quantum quenches
from initial states different than those considered here, e.g.,
translationally invariant plane waves, power-law decay may
not be present; however, signatures of scale invariance may
still emerge [105,110].
The main advantage of introducing scale invariance at

eigenstate transitions is to establish a tool to detect the
transition point in time domain at relatively short times.
These times are much shorter than the characteristic
relaxation time (also denoted as the Thouless time), which
in the interacting models scales exponentially with L at the
transition. This opens new possibilities to characterize and
detect ergodicity breaking phenomena, in particular, to
extend our framework to few-body observables measured
in experiments.
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