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We uncover a dynamical entanglement transition in a monitored quantum system that is heralded by a
local order parameter. Classically, chaotic systems can be stochastically controlled onto unstable periodic
orbits and exhibit controlled and uncontrolled phases as a function of the rate at which the control is
applied. We show that such control transitions persist in open quantum systems where control is
implemented with local measurements and unitary feedback. Starting from a simple classical model with a
known control transition, we define a quantum model that exhibits a diffusive transition between a chaotic
volume-law entangled phase and a disentangled controlled phase. Unlike other entanglement transitions in
monitored quantum circuits, this transition can also be probed by correlation functions without resolving
individual quantum trajectories.
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The dynamics of quantum many-body systems hosts
phenomena usually inaccessible to the classical world. In
particular, the measurement and control of such systems
enables quantum technologies such as efficient state
preparation [1–4], quantum error correction [5,6], and
nondestructive measurements [7,8]. Enriching unitary
dynamics with such nonunitary operations has also led
to the discovery of entanglement phase transitions arising
from competition between entangling unitary dynamics and
projective local measurements [9–12].
The measurement-induced phase transition (MIPT) in its

original formulation entails a fundamental change of
entanglement scaling from volume law to area law that
is connected to percolation [11,13,14], but it has grown past
that paradigm [14–57]. While numerous incarnations of the
transition exist, it can only be witnessed by quantities that
are nonlinear in the density matrix; correlation functions
averaged over measurement outcomes are unaffected by the
local measurements in the long-time limit. This makes
observing MIPTs in experiment a significant challenge
requiring either postselection or decoding.
However, augmenting each local measurement with

control [58,59] (i.e., unitary feedback conditioned on the
measurement outcome) could stabilize a dynamical phase
transition that is observable in quantities that are linear in
the density matrix. In this work, we identify such a control
transition in an open quantum many-body system. Unlike

previously studied MIPTs, incorporating local feedback
leads to a unique control transition visible in both entan-
glement measures and correlation functions, making it
observable using current experimental setups.
The central idea stems from classical dynamical systems,

where methods to control chaotic dynamics have been
developed [60–63]. We focus on probabilistic control
[61–63], which entails the coupled stochastic action of a
chaotic map (with probability 1 − p) and a control map
(with probability p). These two maps share a periodic orbit,
unstable for the chaotic map and stable for the control map.
Under the combined stochastic map, the periodic orbit
becomes the global attractor at some critical control rate
pctrl. Prima facie, this control transition mirrors aspects of
MIPTs, albeit at a purely classical level, with the control
map as a classical proxy for quantum measurements. The
question then arises of whether we can construct a quantum
version of probabilistic control transitions and contrast
these with quantum MIPTs.
In this Letter, starting from a classically chaotic map with

a control transition, we construct a quantum model involv-
ing measurements and feedback in which the control
transition is enriched by quantum entanglement. The phase
transition in the quantum model can be probed by a local
order parameter, and is diffusive with dynamic exponent
z ≈ 2 and correlation length exponent ν ≈ 1, similar to
the classical case. Further, the transition is observed in
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entanglement and purification measures traditionally used
to diagnose MIPTs. In contrast to feedback-free MIPTs, the
entanglement entropy grows diffusively at the transition
before saturating to an area-law value. Many properties of
the transition are understood through the dynamics of an
emergent semiclassical domain wall, which undergoes an
unbiased random walk at the transition [64]; see Fig. 1.
Model.—We consider a control transition in the classical

Bernoulli map [67], given by

x ↦ 2x mod 1; ð1Þ

for x ∈ ½0; 1Þ. Any rational number x0 ¼ a=b undergoes a
finite-length periodic orbit; for instance, x0 ¼ 1=3 ↦ x1 ¼
2=3 ↦ x0 is a periodic orbit of length 2. However, since
the rational numbers are a set of measure zero in the interval
[0, 1), almost every initial state undergoes chaotic dynam-
ics. To control this dynamics onto a periodic orbit of our
choosing (with points fxjg), we define connected regions
Δj such that xj ∈ Δj and ∪j Δj ¼ ½0; 1Þ, yielding the
control map [61]

x ↦ ð1 − aÞxj þ ax if x ∈ Δj: ð2Þ

Note that xj are attractive fixed points of the control map
for jaj < 1. We consider a stochastic dynamics which, at
each time step, applies the chaotic map [Eq. (1)] with
probability 1 − p and the control map [Eq. (2)] with

probability p. For a critical control rate pctrl, there is a
phase transition, with properties that are known exactly
[62,64], between an uncontrolled phase where the system
never reaches the periodic orbit and a controlled phase
where it always reaches the orbit.
To build a quantummodel, we map the above to qubits as

follows. Write x ∈ ½0; 1Þ in base 2 as x ¼ 0:b1b2b3 � � �
where bi ∈ f0; 1g. The Hilbert space is then spanned by
computational basis (CB) states jb1b2b3 � � �i≡ jxi. Now,
j2x mod 1i ¼ jb2b3b4 � � �i, i.e., Eq. (1) implements a left-
ward shift of the bitstring. Next, we truncate the Hilbert
space to bitstrings of length L and implement Eq. (1) via the
unitary operator

Tjb1b2 � � � bLi ¼ jb2b3 � � � bLb1i; ð3Þ

which is identical to Eq. (1) up to an error Oð2−LÞ.
However, in this formulation, every initial state belongs
to a periodic orbit of length ≤ L. To restore a notion of
chaos in the thermodynamic limit L → ∞ requires the
typical orbit length to be exponential in L [68–70]. To
accomplish this, we compose Eq. (3) with a scrambling
operation Sα on the last few qubits. We consider two
options for Sα: a “classical” (α ¼ cl) and a “quantum”
(α ¼ qm) one. The former acts as a permutation on the
eight-dimensional space of bitstrings bL−2bL−1bL, while
the latter is a Haar-random unitary acting on the last 2
qubits. The chaotic unitary is then

Uα
chaotic ¼ SαT: ð4Þ

The unitary map Ucl
chaotic is classical in that it maps CB

states to CB states—it is a reversible cellular automaton
(CA). We choose Scl such that Ucl

chaotic is a chaotic CAwith
typical orbit length eOðLÞ [64]. This construction mimics the
dynamics of a dense subset of the real numbers, called
normal numbers [71], that can rigorously be shown to
recover the ergodic behavior of the Bernoulli map [64].
Contrariwise, Uqm

chaotic generates chaotic quantum dynamics
in the sense that an initial CB state develops volume-law
entanglement in OðL2Þ time owing to the locality of the
scrambler Sqm [64]. Crucially, in the quantum-chaotic
implementation the dynamics is no longer that of a single
bitstring, but rather of an entangled superposition of such
strings and hence no longer corresponds to the representa-
tion of a single number.
We implement the (inherently nonunitary) control map

via measurement and feedback. We choose the period-2
orbit fx0 ¼ 1=3; x1 ¼ 2=3g and a ¼ 2−1 in Eq. (2). For this
a, the classical control transition occurs at pctrl ¼ 0.5 [62].
We then break up the control map,

C ¼ ActrlT−1RL; ð5Þ

FIG. 1. Control transition. The quantum transition is seen in the
dynamics of single trajectories, shown above for L ¼ 16. Left: a
realization of the stochastic quantum circuit composed of unitary
dynamics Uα

chaotic and a nonunitary control map C. Right: the
phase diagram as a function of the control probability p (black
horizontal line). For p < pctrl, the domain wall between con-
trolled and uncontrolled regions (red) is swept left; entanglement
(color scale with brighter colors indicating higher entanglement)
grows behind it in a volume-law fashion. For p > pctrl, the
domain wall is pinned to the right edge, and the region to its left is
controlled and disentangled. At p ¼ pctrl, the domain wall
undergoes an unbiased random walk and the entanglement grows
to an Oð1Þ value.
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into the multiplication jxi ↦ j2−1xi (T−1RL) followed by
the addition j2−1xi ↦ j2−1xþ 2−1xji (Actrl). RL projec-
tively measures qubit L in the CB and flips it if the outcome
is jbLi ¼ j1i:

RLjψi ¼
8
<

:

P0
Ljψi

kP0
Ljψik

with probability kP0
Ljψik2;

XLP1
Ljψi

kP1
Ljψik

with probability kP1
Ljψik2;

ð6Þ

where P0
L and P1

L project the Lth qubit onto j0i and j1i,
respectively, and XL is the Pauli-X operator at site L. Sub-
sequently, T−1jb1b2 � � � bL−10i ¼ j0b1b2 � � � bL−1i comple-
tes the multiplication operation. Finally, we apply the
controlled adder circuit

Actrljxi ¼
� jxþ 0.00101…011i if b2 ¼ 0

jxþ 0.01010…101i if b2 ¼ 1
; ð7Þ

which can be built from local unitary operations as
described in the Supplemental Material [64]. The condi-
tional on b2 determines whether to push CB states jxi
toward jx0i or jx1i.
The stochastic dynamics at each time step is generated by

Uα
chaotic with probability 1 − p and C otherwise. When the

chaotic dynamics is generated by Ucl
chaotic, this dynamics

occurs in the space of CB states, and is therefore equivalent
to a probabilistic cellular automaton; the dynamics is
classical, despite being phrased quantum mechanically.
For Uqm

chaotic, the chaotic dynamics becomes entangling,
and C disentangles the system by pushing it toward the
periodic orbit of the underlying classical model. These
dynamics can be formulated as a quantum channel; with
additional dephasing, the superoperator that evolves the
average densitymatrix reduces to the Frobenius-Perron evo-
lution operator for classical phase space distributions [64].
Classical transition.—Our first order of business is to

show that the classical control transition survives the
above mapping to qubits. To characterize the transition,
we first note that the orbit fx0 ¼ 1=3; x1 ¼ 2=3g is a two-
dimensional subspace spanned by the CB states j1=3i ¼
j0101 � � � 01i and j2=3i ¼ j1010 � � � 10i. Thus, the control
map [Eq. (2)] steers the system’s dynamics onto Néel-
ordered antiferromagnetic states. We probe this order using
the order parameter

O ¼ −
1

L

XL

i¼1

ZiZiþ1; ZLþ1 ≡ Z1; ð8Þ

where Zi is the Pauli Z operator for bit i
[Zijbii ¼ ð−1Þbiþ1jbii]. The two Néel states maximize
hOi ¼ 1, so the controlled phase can be viewed as an
ordered phase characterized by hOi → 1 in the thermody-
namic limit. To probe the transition into the ordered phase

in the classical case, we simulate the dynamics of CB states
under the stochastic action of Ucl

chaotic and C out to 2L2 time
steps for a range of p and L. For each p and L, we calculate
hOi at the final time, and average the result over 1000
randomly chosen initial states and circuit instances. We
refer to this realization-averaged quantity as hOi. Our
results, shown in Fig. 2 (left), show that Néel order
develops for p≳ 0.5. Scaling collapse with an ansatz
hOi ¼ f½L1=νðp − pctrlÞ� is consistent with a transition
point pctrl ¼ 0.500ð1Þ, coinciding with the known result
for Eqs. (1) and (2) [62], and with a correlation length
critical exponent ν ¼ 1.00ð2Þ that also agrees with analytic
results for the classical transition [62,64]. (For details on
our scaling collapse methodology and further comparison
with the classical map and control transition studied in
Refs. [61,62], see the Supplemental Material [64].)
Additionally, the fluctuations of hOi over realizations peak
at p ¼ 0.5 (not shown), serving as another indicator of the
transition.
To further characterize the control phase transition, we

consider the behavior of the “first” (i.e., leftmost) Néel
domain wall in the chain—for example, the first domain
wall (FDW) in the following configuration is highlighted
with a box: j01010110110…i. The position of the FDW
bounds the distance from a point x ∈ ½0; 1Þ to the periodic
orbit: if the FDW is on the rth bond in the chain, then
minjjx − xjj ≲Oð2−rÞ for j ¼ 0, 1. The FDW thus con-
stitutes the boundary between controlled and uncontrolled
regions of the qubit chain; see Fig. 1. We simulate the
dynamics of the FDW when initialized at r0 ¼ L=2 and
find averaged displacement and mean-squared displace-
ment consistent with a random walk with bias 2p − 1 [see
Fig. 2 (right)]:

hr− r0i ¼ ð2p− 1Þt; hðr− r0Þ2ijp¼0.5 ¼ t: ð9Þ

FIG. 2. Classical transition. Left: realization-averaged order
parameter hOi for various system sizes. The crossing near p ¼
0.500ð1Þ is where the transition occurs. Inset: collapse indicates
that ν ¼ 1.00ð2Þ. Right: the position of the FDW initialized at
L=2 for L ¼ 1000 in the controlled phase (p ¼ 0.75), the
uncontrolled phase (p ¼ 0.4), and at the transition (p ¼ 0.5).
Gray curves are all 1000 realizations, and red curves are averages.
Inset: at p ¼ 0.5 we see random walk behavior in 4 orders of
magnitude for r2 ¼ t, and a fit confirms z ¼ 2.04ð8Þ.
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Fitting hðr − r0Þ2i ∼ t2=z at p ¼ 0.5 confirms that
z ¼ 2.04ð8Þ, consistent with an unbiased random walk
and with exact results for the original Bernoulli map
[62,64]. Thus, our finite size bit string representation of
the control transition in the Bernoulli map preserves the
universality class of the transition.
Quantum transition.—Next, we examine the fate of the

control transition when the classical scrambler Scl is
replaced by the Haar-random scrambler Sqm. Since the
hybrid control circuit [Eq. (2)] distributes over super-
positions of CB states, we hypothesize that the control
transition survives. Then, above some critical p, the control
circuit drives the system to a disentangled state with
hOi → 1 as L → ∞, while below this critical value the
system enters a volume-law entangled steady state with
hOi → 0 as L → ∞. Thus, in addition to a control
transition, we expect to see an entanglement transition
along the lines of those encountered in feedback-free
MIPTs, but with a distinct universality class.
Exact numerical results confirm this simple picture.

Figure 3 (left) shows the realization-averaged order param-
eter hOi as a function of p. hOi is measured at t ¼ 2L2 to
ensure that the system reaches a steady state [64]. Similar to
the classical case, there is a crossing near p ¼ 0.5. The
inset of Fig. 3 (left) shows a scaling collapse assuming
ν ¼ 1.0ð1Þ and pctrl ¼ 0.48ð1Þ, suggesting a control tran-
sition near the expected location. In the Supplemental
Material, we show that the fluctuations over realizations of
hOi peak at p ¼ 0.5, similar to the classical transition.
We further investigate this transition using tools devel-

oped for MIPTs. Certain MIPTs are viewed as purification
transitions with one phase able to purify mixed states in a
finite time [15]. This purification transition is probed by
preparing the system in a maximally entangled state with
one ancilla qubit and tracking the ancilla’s entanglement
entropy Sanc as a function of time [72] for varying L and p.
At the purification transition, we expect a crossing of the

Sanc-vs-p curves for different L at times of order L2; Fig. 3
(middle) shows this crossing near p ¼ 0.5 with the inset
showing data collapse assuming ν ¼ 0.9ð1Þ and
pctrl ¼ 0.51ð1Þ. These data are taken after evolving the
system for a time t ¼ L2=2, but the results are insensitive to
small variations of this hyperparameter. To characterize the
quantum dynamics at the transition, we consider SancðtÞ in
Fig. 3 (right) at p ¼ 0.5. We find that the curves for various
L nearly collapse upon rescaling t → t=Lz with z ¼ 2.1ð1Þ,
consistent with the dynamical exponent of the classical
transition.
Another perspective on MIPTs is that they constitute a

volume-to-area-law transition in the entanglement entropy
of a pure state. In Fig. 4, we show that the system’s
entanglement entropy is also sensitive to the control
transition. We calculate the von-Neumann entanglement
entropy of the half chain, SA, taking region A to be the
leftmost L=2 sites of the chain. In Fig. 4 (left) we show SA

FIG. 3. Quantum transition. Left: Order parameter hOi at t ¼ 2L2 averaged over initial states and circuit realizations. Inset: scaling
collapse assuming ν ¼ 1.0ð1Þ and pctrl ≈ 0.48ð1Þ. Middle: ancilla entanglement order parameter Sanc (in units of ln 2) at time L2=2
averaged over initial states and circuit realizations. Inset: scaling collapse assuming ν ¼ 0.9ð1Þ and pctrl ≈ 0.51ð1Þ. Right: dynamics of
Sanc collapsed as a function of rescaled time t=Lz near the control transition (p ¼ 0.5) with z ¼ 2.1ð1Þ. Data are averaged over 2000
realizations for L ¼ 10;…; 16, and 1000 realizations for L ¼ 18, 20. (For Sanc data, 500 realizations are used for L ¼ 20.) All points
have error bars indicating standard error of the mean; where not visible, they are smaller than the points.

FIG. 4. Entanglement structure and dynamics. Left: realization-
averaged von-Neumann entanglement entropy SA at time 2L2 for
various L and p. At large p SA decreases with L, while at small p
it increases linearly with L. There is a crossing near p ¼ 0.5,
suggesting area-law entanglement at the transition. Inset: scaling
collapse of SA assuming ν ¼ 0.9ð4Þ and pctrl ¼ 0.50ð2Þ. The data
collapse near and above the control transition. Right: SA as a
function of rescaled time

ffiffiffiffiffiffiffiffiffi
t=L2

p
near the quantum transition

(p ¼ 0.5). The entanglement dynamics nearly collapse, and there
is an intermediate-time regime where SA ∼

ffiffi
t

p
(red line).
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as a function of p for different L, finding that it increases
with L for p≲ 0.51 and decreases with L for p≳ 0.51. At
the transition, we find that the wavefunction is area-law
entangled on average, as indicated by a data collapse (inset)
assuming ν ¼ 0.9ð4Þ and pctrl ¼ 0.50ð2Þ. In Fig. 4 (right),
we plot SAðtÞ for L ¼ 10;…; 18. The results collapse
as a function of

ffiffiffiffiffiffiffiffiffi
t=L2

p
(see also Fig. 3) consistent with

the classical expectation. In the early-time regime t ≪ L,
the realization-averaged entanglement grows diffusively,
SAðt; LÞ ∼

ffiffi
t

p
=L.

The entanglement properties at the transition also follow
from the FDW dynamics. In the quantum model, the
FDW becomes a wave packet with average position
hrðtÞi ¼ P

x jhxjψðtÞij2rx, where rx is the position of the
FDW in the CB state jxi. In the quantum setting, the
uncontrolled region to the right of the FDW develops
entanglement due to the action of the local scrambler Sqm
(see Fig. 1). The FDW thus constitutes a front between
entangled and disentangled regions, so its dynamics govern
the half-cut entanglement. At the transition the transport of
the FDW is diffusive, so the entanglement dynamics must
also be diffusive. Furthermore, since volume-law entangle-
ment can only develop when the FDW “sticks” to the left
edge of the chain for at least an OðLÞ time [64], which is
exponentially unlikely in an unbiased random walk, the
average entanglement is at most area law at the transition.
Discussion and outlook.—In this Letter, we construct a

quantum model that generalizes the stochastic dynamics
associated with the probabilistic control of classical chaos.
The model exhibits a dynamical entanglement transition
reminiscent of MIPTs as well as a control transition that is
witnessed by a local order parameter. We present an
analytical argument based on the dynamics of the FDW
that the entanglement and control transitions coincide, and
our finite-size scaling analysis [64] finds that the two
transitions are not distinguishable. Our numerical results
indicate a diffusive transition at a critical control rate
pctrl ¼ 0.5� 0.02, consistent with both large-system
numerics and previous analytical results for the classical
version of the transition. We note, however, that the control
and entanglement transitions need not coincide in general,
and indeed models can be designed where the transitions
are pulled apart by separately adjustable measurement and
control rates [73,74]. Control transitions like the one
studied here open the door to probing ordered phases
and phase transitions in monitored quantum dynamics
without the need for postselection onto individual quantum
trajectories [75]. We therefore expect that such transitions
can be observed in a variety of noisy intermediate-scale
quantum experiments.
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