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Understanding the phase behavior of mixtures with many components is important in many contexts,
including as a key step toward a physics-based description of intracellular compartmentalization. Here, we
study phase ordering instabilities in a paradigmatic model that represents the complexity of—e.g.,
biological—mixtures via random second virial coefficients. Using tools from free probability theory we
obtain the exact spinodal curve and the nature of instabilities for a mixture with an arbitrary composition,
thus lifting an important restriction in previous work. We show that, by controlling the concentration of
only a few components, one can systematically change the nature of the spinodal instability and achieve
demixing for realistic scenarios by a strong composition imbalance amplification. This results from a
nontrivial interplay of interaction complexity and entropic effects due to the nonuniform composition. Our
approach can be extended to include additional systematic interactions, leading to a competition between
different forms of demixing as density is varied.
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Phase separation is an important phenomenon and espe-
cially rich in mixtures with many components. For example,
biological mixtures such as the cytoplasm show complex
phase behavior believed to be a key driver in the formation of
nucleoli and other intracellular structures [1–5]. Typically,
these systems demix into liquid droplets with different
compositions, where each phase is enriched in selected
components and depleted in others [4,6].
Recent studies [7–11] have explored the behavior of

complex mixtures based on the model introduced by Sear
and Cuesta [12] where the interactions between compo-
nents are taken as random. The model captures typical
effects of complex mixture interactions. It provides a
generic maximum entropy description of the distribution
of the large number of second virial coefficients in a
multicomponent mixture when the mean and variance are
known, analogously to the standard, and successful use of
random matrices in nuclear physics [13]. Recently, an
extended version of the model including systematic inter-
actions has also been used to qualitatively describe experi-
mental results on phase separation triggered by a change in
pH in the cytoplasm of eukaryotic cells [14]. Although
these studies have been able to illuminate some of the
resulting physics, a key restrictive assumption common to
all of them is uniform composition, meaning all species are
taken to be present in equal amounts. However, biological
mixtures rarely satisfy this condition [15–17], and the size
of intracellular structures is in fact heavily dependent on the
composition of the cytoplasmic pool [18,19].
With this in mind, our aim in this Letter is to open the

door to exploring the full composition-dependent physics
of complex multicomponent mixtures, within the Sear and

Cuesta model [12]. We lift the drastic simplification of
uniform composition, significantly broadening the appli-
cability of the approach and pointing towards new experi-
mental protocols. These could exploit our key insight:
systematically changing the concentration of only a few
components enables one to control the nature of phase
ordering instabilities and, as a consequence, the phases that
can be formed. Recent experiments already point in this
direction [16,20–22], but a theoretical description of the
observations, including the strong dependence of the
phases formed on a dominant component [20], has been
lacking. Our work also makes composition-dependent
effects accessible for complex mixtures including polymers
or colloids that have (additional) systematic interactions.
More generally, while we focus on mixtures here, insta-
bilities in many complex systems can be approached within
an analogous random matrix framework. Our approach can
accordingly be translated to similar problems in areas as
diverse as glass physics, socioeconomics, ecology, and
optimization problems [23–28].
Model and general results.—We study a homogeneous

mixture of M different components, labeled by Greek
letters, with interactions described by the second virial
coefficients ϵαγ . The mean-field bulk free energy density f
is given by [29]

f ¼ 1

2

XM
α;γ¼1

ραϵαγργ þ T
XM
α¼1

ρα ln ρα þ Tρ0 ln ρ0; ð1Þ

where ρα ¼ Nα=V is the number density of species α, T is
temperature, and we use kB ¼ 1. The last term in (1) is the
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entropic contribution of an implicit solvent, interacting
only via volume exclusion. We define the total density as
ρ ¼ P

α ρα, the average density per component as
ρ̄ ¼ ρ=M, and we work with units such that ρ0 ¼ 1 − ρ.
From (1) we obtain the M ×M Hessian matrix H with

entries Hαγ ¼ ∂
2f=ð∂ρα∂ργÞ. Thermodynamic stability re-

quires all eigenvalues of H to be non-negative. Otherwise,
i.e., if the lowest eigenvalue λmin is negative, the system is
unstable to phase separation by spinodal decomposition.
The corresponding eigenvector v determines the nature of
the spinodal instability, with local density fluctuations of
the different mixture components α growing proportionally
to v, δρα ∼ vα.
The phase diagram in the ðρ; TÞ plane for a fixed set of

relative densities fyα ¼ ρα=ρ̄g splits into stable and unsta-
ble regions, separated by a spinodal line determined by the
condition λmin ¼ 0 [30]. Close to this line, v is governed
only by the bulk free energy and additional interfacial
contributions not written in (1) can be neglected. Wewill be
interested in instabilities of condensation type (v ∼ u), with
u ¼ ð1; 1…; 1ÞT, where the densities of all species change
by similar amounts, and of demixing type (vTu ≈ 0), where
some species are enhanced while others are depleted. We
will show that the demixing case can be further split into
delocalized or random, where all components of v are of
similar order, and localized where a few species have much
larger entries in v and thus dominate the demixing.
Following Ref. [12], we model the second virial coef-

ficients ϵαγ as Gaussian random variables of mean −b and
variance s2, drawn independently except for the symmetry
constraint ϵαγ ¼ ϵγα. With this choice the Hessian matrix
reads

H ¼ R1 þ Dþ sη with

R1 ¼
�
−bþ T

ρ0

�
uuT; D ¼ T

ρ̄
diag

�
1

yα

�
ð2Þ

and η a Wigner matrix with entries of zero mean and unit
variance [31], while diagð1=yαÞ is a diagonal matrix with
the 1=yα as entries. Understanding phase ordering insta-
bilities then requires us to obtain the eigenvalue distribution
or spectrum of H, and specifically its lower edge λmin. We
focus throughout on the interesting multicomponent limit
M ≫ 1, where the following analysis in fact applies for
generic, non-Gaussian distributions of the ϵαγ (with the
same first four moments [32]).
The sη term in H produces a continuous spectrum of

eigenvalues, and this extends toDþ sη [33]. The term R1 is
a rank one perturbation to this; due to the interlacing
property of eigenvalues [34], the spectrum ofH for largeM
is then either the same as the spectrum of Dþ sη, or R1

may give rise to a single outlier [35] separated from the
continuous bulk spectrum of eigenvalues. We therefore
have two regimes: if an outlier exists to the left of the bulk,

then it is the lowest eigenvalue λmin. Otherwise the lowest
eigenvalue is given by the lower edge of the bulk itself.
Free probability [31,36] is a powerful tool to obtain the

statistics of eigenvalues and eigenvectors of large random
matrices, provided they obey the so-called freeness criteria.
A key insight is that freeness generically holds between D,
sη, and R1 [37]. We can thus use free probability to analyze
the spectrum of the scaled Hessian H=M; adopting also the
scaling s ¼ M1=2s̃ [12] ensures all matrices involved have
eigenvalues of Oð1Þ. We find [37] for the spinodal
equation, which determines where λmin ¼ 0,

hð1=yα − ξzÞ−1i ¼ Tz=ρ: ð3Þ

The angular brackets denote an average over the distribu-
tion pðyαÞ of the yα, which specifies the mixture compo-
sition, and we have defined ξ ¼ ρs̃2=T. Equation (3) is to
be solved for T as a function of total density ρ. The
difference between the outlier and bulk regimes lies in the
way z ¼ zðρ; TÞ is determined, as we explain next.
First, in the outlier regime one has z ¼ θ−1, where

−θ ¼ T=ρ0 − b is the nonzero eigenvalue of R1=M; this
has to be negative to give rise to an outlier to the left of the
bulk, hence the definition as −θ. We can also determine the
overlap between the (normalized) instability vector v and
the normalized uniform vector û ¼ u=

ffiffiffiffiffi
M

p
as

jvTûj2 ¼ max

�hð1=yα − ξθ−1Þ−1i2
hð1=yα − ξθ−1Þ−2i −

s̃2

θ2
; 0

�
: ð4Þ

We refer to instabilities with nonvanishing overlap between
v and û as condensation (C), and as demixing otherwise.
Equation (4) thus provides information on the nature of the
instability and is one of our key results. The first term inside
the max, which is a squared mean over a second moment, is
unity for uniform compositions but lower for nonuniform
ones. This already suggests that nonuniformity will favor
demixing, which we will see confirmed below.
Turning next to the bulk regime, we find that the first

argument of the max in (4) is then negative and we have
demixing behavior, with the lowest eigenvalue of the
bulk Dþ sη governing thermodynamic stability. For the
restricted case of uniform composition, D ¼ ðT=ρ̄ÞI just
shifts the spectrum of sη by T=ρ̄; the entire demixing
regime is then described by a linear spinodal line
T ∝ ρ̄ [12]. For nonuniform composition, on the other
hand, the spread of eigenvalues in D can dominate at high
enough T [24] as illustrated in Fig. 1. The edge of the
bulk of the spectrum is then determined by D and in the
spinodal condition (3) one has [37] zξ ¼ 1=ymax, where
ymax ¼ maxαyα. The corresponding eigenvector of D only
has a single nonzero entry, and we find as a result that the
instability direction v becomes concentrated on a few
species. For low enough T, on the other hand, the sη term
dominates in Dþ sη and z has a larger value maximizing a
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known function depending only on s̃ and the composition
pðyαÞ [37]. The threshold temperature T� separating these
two cases (see Fig. 1) is given explicitly by

T� ¼ s̃ρymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hy2α=ðymax − yαÞ2i

q
: ð5Þ

Finally, the transition between condensation (outlier)
and demixing (bulk) regimes occurs when the two corres-
ponding solutions for the spinodal temperature meet
each other. Along the spinodal curve this condition de-
fines a threshold density ρ� such that, for ρ < ρ�, the
spinodal is condensation-like and otherwise of demix-
ing type.
Taken together, our results give a complete characteri-

zation of the spinodal line for any composition pðyαÞ via
Eq. (3), and of the nature of the spinodal instability via (4).
In addition to the condensation-demixing transition [12],
Eq. (5) reveals the novel possibility of composition-driven
demixing, with instability directions v primarily determined
by composition rather than the interaction pattern ϵαγ . We
show below that this is not a simple entropic effect, but
arises instead from an interplay between mixture compo-
sition and interaction complexity.
Example 1: Uniform composition.—The case where all

mixture components have the same density has been
studied in [12,23]. We revisit it briefly in order to illustrate
our approach.
Since yα ≡ 1, Eq. (3) becomes Tzð1 − zξÞ=ρ ¼ 1.

Using that z ¼ θ−1 in the condensation regime with
θ ¼ b − T=ð1 − ρÞ gives a quadratic equation for the
spinodal line TðρÞ. In the demixing regime, T� from
Eq. (5) diverges so that thermodynamic stability is always
governed by the interaction complexity sη. One finds from

the maximization condition [37] zξ ¼ 1 − ξ=s̃ which
yields, using the spinodal equation, T ¼ 2s̃ρ.
To understand the nature of the instabilitiesweuseEq. (4).

For uniform composition the first term is unity so one has
condensation (C) as long as θ≡ b − T=ð1 − ρÞ > s̃. This is
the case at low densities, where T and hence T=ð1 − ρÞ
vanishes along the spinodal, provided that b > s̃. Therefore,
at low densities jvTûj ¼ Oð1Þ with densities of all species
changing by similar amounts at the spinodal instability.
As the total density is increased, θ decreases and can
approach s̃; v and û then become orthogonal, resulting
in random demixing (RD), with a delocalized instability
vector v [35].
Example 2: One dominant species.—Next, we inves-

tigate the case of one single dominant species (α ¼ 1) with
relative concentration y1 > 1, while all other species have
y2 ≃ 1 (see [37] for M-dependent effects). This example
will show how tuning the density of a few species can
change the nature of the spinodal instability at high
densities.
As discussed above, the single distinct entry in D

results in a new type of demixing. Solving the spinodal
equation (3) and computing the nature of the instability
yields three different regimes depending on y1 [37]. At low
densities, the spinodal is dominated by the average inter-
action −b and by entropic effects, yielding condensation
behavior. Increasing ρ results in a transition to demixing.
We find explicitly for the instability direction in the
demixing regime jvTûj ¼ 0 and

jvTe1j2 ¼ max

�
y1 − 2

y1 − 1
; 0

�
; ð6Þ

where e1 ¼ ð1; 0; 0;…; 0ÞT indicates density changes only
in the dominant species. TheOð1Þ overlap between v and e1
demonstrates that, whenever y1 > 2, we have composition-
driven demixing (CD) controlled by the dominant
species. If, on the other hand, y1 < 2 the instability is
controlled by s and the mixture will undergo random
demixing. For y1 > y2, the transition from C to CD
happens at ρ� ¼ 1 − y1s̃=ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 − 1

p þ s̃Þ and the CD
spinodal for ρ > ρ� follows T ¼ y1s̃ρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 − 1

p
.

In Fig. 2 we show the predictions for the spinodal curves
for different y1 and the corresponding instability direction;
the comparison to results from numerical realizations of the
Hessian matrix shows excellent agreement. For y1 > 2 the
instability vector is strongly concentrated on the dominant
species at high densities, with v1=v2 ¼ Oð ffiffiffiffiffi

M
p Þ. What is

striking in this CD region is that the share of the dominant
species in the instability direction is much larger than
expected from entropic considerations, which would pre-
dict v1=v2 ∼ y1=y2 ¼ Oð1Þ. This strong composition
imbalance amplification is our key insight into instabilities
in complex mixtures. It results from an interplay of entropic

FIG. 1. Top: Example realization of eigenvalue distributions of
D and sη. The lower edge of the spectrum of the sum Dþ sη
decays with the same power law as the spectrum of sη for T < T�,
and of D for T > T�; for ease of visualization the spectra have
been shifted to have matching means. Bottom: sketch of density
changes δρα, which are proportional to the eigenvector entries vα,
illustrating the localization of the instability on a single compo-
nent for T > T�.
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effects and interaction complexity (s̃ > 0); indeed the CD
regime would be absent in the limit s̃ → 0 (where ρ� → 1).
Example 3: Beta distribution.—We now turn to continu-

ous distributions pðyαÞ of relative densities and show how
their shape affects instabilities. We focus on the beta
distribution defined by

pðyÞ ¼ Z−1
r;t ðy− yminÞrðymax − yÞt; y ∈ ½ymin; ymax� ð7Þ

with Zr;t ¼ ðymax − yminÞrþtþ1Bðrþ 1; tþ 1Þ and Bðx; yÞ
the beta function. The requirement hyi ¼ 1 reduces the
number of free parameters to three out of ðymin; ymax; r; tÞ.
The spinodal equation (3) can be solved numerically in

the condensation (C) region. More interesting here is
the demixing regime. According to Eq. (5), for T > T�
the demixing instability changes from being determined by

the interaction complexity (RD) to being governed by the
distribution of the yα (CD). From Eq. (7),

T� ¼ s̃ρymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZr;t−2=Zr;tÞhy2ir;t−2

q
; ð8Þ

where h·il;m denotes the average over the beta distribution
(7) with exponents modified to l andm (but unchanged ymin
and ymax). For T > T� the spinodal equation (3) yields

T ¼ s̃ρymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZr;t−1=Zr;tÞhyir;t−1

q
: ð9Þ

Comparing Eqs. (8) and (9), we see that whenever
Zr;t−1hyir;t−1 > Zr;t−2hy2ir;t−2 the demixing spinodal is
dictated by the mixture composition. This condition for
CD is independent of the total density and controlled only
by the shape of pðyÞ. If e.g., we fix ymin ¼ 0 it reduces to
t > rþ 3, meaning that the upper edge of the distribution
has a much longer tail than its lower edge. Thus, mirroring
our results for example 2, composition-driven demixing
occurs whenever a small fraction of species has signifi-
cantly larger density than the average.
We can deduce from the results of Ref. [41] that the

instability direction is delocalized across species in the RD
regime (T < T�). In the CD regime, it is concentrated on a
few dominant species: these have entries of Oð1Þ in v and
will, therefore, dictate the nature of the spinodal instability.
Translating the results of [41] further to our context, the
contribution of the highest-density species (denoted by e1)
to the instability direction is jvTe1j2 ¼ 1 − ðT�=TÞ2, which
is independent of ρ along the CD spinodal. For the sub-
sequent high-density species (j > 1) one has jvTejj2 ∼M−γ

with an exponent γ > 0 depending on the shape of pðyÞ.
The above results are the continuum analogs of the ones

obtained in the single dominant species case: by changing
the upper edge of the distribution pðyÞ one can control
the nature of instabilities, from delocalized to partially

FIG. 2. Example 2: Spinodal lines for different y1 ¼ ρ1=ρ̄ at
fixedM ¼ 100, s ¼ 1 and b ¼ 1 (lines: theory, symbols: average
over 50 numerical realizations of Hessian matrix). For y1 > 2 the
demixing is controlled by the dominant species. Insets: Projection
of instability direction onto the constant vector û and the
dominant species direction e1, showing the transitions from C
to RD and CD, respectively. We keep the M dependence of θ in
the theory to account for finite-size effects.

FIG. 3. (a) Beta distribution with ymin ¼ 0, r ¼ 0 and t ¼ ymax − 2. The inset shows the complement of the cumulative distribution
function, highlighting the different tail behaviors. (b) Spinodal line at fixedM ¼ 600, b ¼ 1.0, s ¼ 1.5 for same distribution parameters
(corresponding colors) as in (a). Inset: inverse participation ratio, showing the localization transition to CD on the right (ymax ¼ 10).
(c) Spinodal lines for beta distribution with ymax ¼ 5 and systematic interactions, for different δ. Inset: projection of instability direction
onto the uniform vector û, and the remaining systematic interaction direction σ̃ ¼ σ − hσiu; for small enough δ a new regime with
instability direction dominated by systematic interactions (“σ-driven”) appears.
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concentrated onto a few dominant species. Figure 3 sum-
marizes this example by showing the complete spinodal
line in each regime. To demonstrate the localization of the
instability direction onto the few dominant species, we
also show the inverse participation ratio (IPR) along the
spinodal. The IPR is defined as

P
α v

4
α and so of OðM−1Þ

for delocalized instabilities, while it reachesOð1Þ when the
instability is concentrated on a few species.
Here again one observes composition imbalance ampli-

fication in the CD regime: if purely entropic effects were at
play, the components of the instability direction v should
be distributed according to pðyÞ. This would yield a much
lower IPR [OðM−1Þ] than we find [Oð1Þ], cf. Fig. 3. The
effect again requires s > 0, i.e., complexity in the under-
lying interactions.
Finally, we illustrate in Fig. 3(c) how the presence of

systematic interactions creates further competition between
different forms of demixing. We consider second virial
coefficients of the form ϵαγ ¼ −bþ sηαγ − σασγ , with an
additional systematic term parametrized by an interaction
strength σα associated with each species, related to e.g.,
particle size or chemical composition. We write hσi and
Varσ for the mean and variance of the σα and introduce the
parameter δ ¼ s̃=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varσ þ s̃2

p
measuring the relative

strength of the random and systematic interactions. As
density is increased, for sufficiently small δ, the systematic
interaction now dominates the instability, cf. Fig. 3(c). The
inclusion of any finite number of similar systematic
interactions into our framework is straightforward, thus
allowing us [37] to extend existing models [14,42].
To conclude, we have provided a framework for under-

standing phase ordering instabilities in complex mixtures of
arbitrary composition, which allows volume exclusion
effects to be included as well as additional systematic
interactions that would be expected in, e.g., polymeric
mixtures [43,44] or colloids with charge or size poly-
dispersity [30]. We have obtained an exact equation for the
spinodal line in the limit of many components for typical
mixtures with complex interactions [12]. In simple yet
paradigmatic examples we showed that a small number of
higher-density mixture components can strongly control
the nature of instabilities through a surprising interplay
between entropic effects and interaction complexity, result-
ing in a strong composition imbalance amplification. This
new form of instability is our main physical insight and is a
possible explanation for the strong composition depend-
ence of phase behavior in biological experiments [18–20].
For systems above the spinodal but below the binodal

line, phase separation proceeds via nucleation and growth.
Even for uniform composition, determining the distinct
composition of the new phase is highly nontrivial [7,8,30],
even more so the appropriate surface tension [45].
Incorporating additionally the effects of non-uniform
system composition is an important task for the future
using, e.g., expansions around the critical point [8,42].

Our approach can also be extended to understand the
composition dependence of the number of negative eigen-
values inside the spinodal region, which has been conjec-
tured [11] to control the number of phases formed. Since in
many biological mixtures different components are present
in different amounts, we expect instabilities to phase
separation in such systems to be generically dictated by
the components with the highest concentration. Our results
thus point to a new route for biological systems to control
patterns of phase separation by fine-tuning mixture com-
position imbalances.
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