
Prethermal Time-Crystalline Spin Ice and Monopole Confinement in a Driven Magnet

Mingxi Yue 1 and Zi Cai 1,2,*

1Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control,
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

(Received 11 January 2023; revised 14 July 2023; accepted 18 July 2023; published 3 August 2023)

Studies of systems far from equilibrium open up new avenues for investigating exotic phases of matter.
A driven-dissipative frustrated spin system is examined in this study, and we suggest an out-of-equilibrium
nonmagnetic phase where the spins do not order but adhere to the ice rule in space and establish a long-
range crystalline order in time. In contrast to the conventional spin ice, the dynamics of monopoles is
confined due to the nonequilibrium feature of our model. Possible experimental realizations of our model
are discussed.
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Introduction.—Spin ice (SI) is an unusual magnet that
does not order even as the temperature tends toward zero
[1]. Here, geometrical frustration results in ground states
with extensive degeneracy yet local constraints known as
the ice rule. For example, in the rare-earth titanates such as
Dy2Ti2O7, the energy is minimized in those configurations
satisfying two spins pointing in and two out in each
tetrahedra of the pyrochlore lattice [2–4]. Despite its
simplicity, the ice rule is responsible for a wealth of
intriguing phenomena including zero-point entropy [5,6],
fractionalization [7,8], and the emergent gauge field [9,10].
Locally breaking the ice rule produces a pair of pointlike
defects—condensed matter analogs of monopoles [11]—
that can be separated into a large distance with a finite
energy cost. Most studies of this topic focused on the
equilibrium or near-equilibrium (relaxation [12,13] or
transport [14–16]) properties, while the SI physics in
far-from-equilibrium systems is elusive. Because the ice
rule is rooted in the energy minimization principle, while
nonequilibrium systems, especially driven systems, are
usually far from ground states.
Nonequilibrium systems present fresh opportunities for

investigating novel phases of matter absent in thermal
equilibrium. A prototypical example is the time-crystalline
phase, which spontaneously breaks the temporal transla-
tional symmetry [17–26]. Incorporating spatial degrees of
freedom leads to more complex nonequilibrium phases
with intriguing space-time structures [27–30]. As for
frustrated magnetic systems [31], the role of frustration
in a nonequilibrium magnet is still unclear despite great
efforts [32–36]. For example, one may wonder whether a
magnet driven far from the ground state can host an out-of-
equilibrium analog of the SI phase. If so, how does such a
nonequilibrium SI differ from its equilibrium counterpart?
Is it possible to define “excitations” above such a non-
equilibrium state that has already been highly excited?.

In this study, we attempt to answer these questions by
investigating a periodically driven classical spin system in a
checkerboard lattice. Dynamical simulations of classical
spin systems, unlike quantum many-body systems, do not
suffer from the notorious exponential wall problem, thus
allowing us to simulate 2D systems up to very large system
sizes. On the other hand, it has been realized that certain
intriguing features of nonequilibrium physics do not
crucially depend on the quantum or classical nature of
the systems [37], and discrete time crystal (DTC) or other
exotic orders have been investigated in classical periodi-
cally driven systems [36–41]. In terms of SI physics,
typically, a periodical driving will pump energy into the
system and is thus detrimental to the SI phase [42]. Here,
we demonstrate that the interplay between periodic driving
and frustration can lead to a nonequilibrium phase that
displays oscillating SI patterns in space, accompanied by a
DTC order in time. Furthermore, we show that the proper-
ties of this nonequilibrium SI phase significantly differs
from its equilibrium counterpart since the topological
excitation in this case is confined instead of deconfined
due to its intrinsic nonequilibrium features.
The model.—To examine the spin ice phase, we employ a

classical transverse Ising model in a checkerboard lattice,
whose Hamiltonian reads

Hice ¼
X

⊠

X

ij∈⊠
ΘðtÞszi szj þ Γ

X

i

sxi ; ð1Þ

where ⊠ indicates the plaquette in the checkerboard lattice
with the next-nearest-neighbor coupling [the gray plaquette
in Fig. 1(a)]. si ¼ ½sxi ; syi ; szi � is a classical vector with a
fixed length jsij ¼ 1. Γ is the strength of a time-
independent transverse field, which is important not only
for the realization of nontrivial spin dynamics (without Γ,
the spin dynamics is simply a precession around the z
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direction), but also for the confinement feature of the
monopole dynamics, as we will show in the following.
ΘðtÞ ¼ J þ J0 cosωt is a periodically varying interaction
strength, where ΘðtÞ being positive or negative indicates
antiferromagnetic (AF) or ferromagnetic (FM) coupling,
respectively. J0 andω represent the amplitude and frequency
of the driving. Here, we fix these Hamiltonian parameters.
However, we shall demonstrate in the SupplementalMaterial
that the key results of this work do not crucially depend on
this specific choice of parameters [43].
Typically, periodic driving will heat closed interacting

systems toward an infinite temperature state. To avoid this
featureless asymptotic state, we introduce dissipation into
our model by coupling each spin to a thermal bath, which
can be phenomenologically modeled via stochastic meth-
ods. In the presence of a thermal bath, the dynamics of spin
i can be described by a stochastic Landau-Lifshitz-Gilbert
equation [44]:

ṡi ¼ hiðtÞ × si − γsi × ½si × hiðtÞ�; ð2Þ

where γ is the dissipation strength, which is fixed as γ ¼ J
for the numerical convenience. Although this value is larger
than that in a conventional magnet, the long-time asymp-
totic state does not importantly depend on γ [43]. hiðtÞ ¼
h0
i ðtÞ þ ξiðtÞ, where h0

i ¼ −∇siHice ¼ ½Γ; 0;−ΘðtÞhszi i� is
the effective magnetic field on site i and hszi i ¼

P
j s

z
j

where the summation is over all six neighboring spins of
site i. ξiðtÞ is a 3D zero-mean random field representing
thermal fluctuations. The local bath satisfies hξαi ðtÞξβj ðt0Þiξ ¼
D2δαβδijδðt − t0Þ where α; β ¼ x, y, z, and D is the strength
of the noise. If the bath is in thermal equilibrium, γ and D
should satisfy D2 ¼ 2Tγ, where T is the temperature of the
bath. The stochastic differential equation can be numerically
solved by the standard Heun method with Stratonovich’s
discretization formula [45], in which we select the discrete
time step Δt ¼ 10−3J−1 (the convergence with smaller Δt
has been verified). The simulation is performed over an
L × L checkerboard lattice with periodic boundary condi-
tion, and we choose random initial states whose effect has

also been analyzed [43]. In the following, we will focus on
the long-time asymptotic dynamics of this model, whose
dynamical phase diagram is extremely rich [43]. Here, we
only consider the scenario when the system concurrently
displays SI patterns in space and DTC order in time, as
opposed to listing all the dynamical phases.
Time-crystalline spin ice.—We consider the case where

ΘðtÞ oscillates between the AF and FM couplings [this
condition, however, is not necessary for the TC-SI phase,
which can exist even when ΘðtÞ does not change its sign;
see the Supplemental Material [43] ], and the spin con-
figuration accordingly varies. The snapshots of fszig at
three typical time slices have been plotted in Fig. 2(a). At a
time slice ta ¼ 541.2T0 with AF coupling [T0 ¼ 1=J is the
period of ΘðtÞ, and szi ðtÞ has a 0.2T0 phase lag with respect
to ΘðtÞ], each szi reaches its maximum (jszi j ¼ 0.9994), and
fszig obeys the ice rule (

P
ij∈⊠ szi vanishes for all ⊠). The

fszig at the following FM time slice tb ¼ ta þ 0.5T0

[Θðt2Þ < 0] shows neither spin ice pattern nor FM order;
rather, it is a paramagnetic phase (PM) with magnetization

FIG. 1. (a) Schematic of a perfect spin ice configuration
(monopole vacuum) in a checkerboard lattice [blue (red) dots
indicate spin up (down)]. (b) Flipping one spin creates two
monopole excitations (dark ⊠) above vacuum. (c) Two monop-
oles are separated in space by flipping all the spins in the
associated Dirac string (the red line).

(a)

(b)

(c)

FIG. 2. (a) Snapshots of fszig at three typical time slices.
(b) Dynamics of the szi and sxi of spin on site i. (c) Equal-time
correlation function at an AF time slice t ¼ ta (left panel) exhibits
an algebraic decay SðrÞ ∼ r−α, with the exponent α ¼ 1.9ð2Þ
(right panel). The parameters are chosen as J0 ¼ 4J, ω ¼ 2πJ,
Γ ¼ 1.5J, γ ¼ J, D ¼ 0.01J, and L ¼ 30 (a 10 × 10 section is
plotted here).
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along the x direction [see Fig. 2(b)]. At the time slices
tc ¼ ta þ T0, the system Hamiltonian returns to the origi-
nal one ½HiceðtcÞ ¼ HiceðtaÞ� but fszig does not. Instead, all
of them are simultaneously reversed fszi ðtcÞg ¼ f−szi ðtaÞg;
thus, the ice rule is still preserved. fszig returns to its
original values after two periods of driving at td ¼ ta þ 2T0

[fszi ðtdÞ ¼ szi ðtaÞg], which indicates a spontaneous Z2 time
translational symmetry breaking (TTSB).
The origin of the DTC order can be understood as a

consequence of the periodically driven interaction. For a
pair of adjacent sites ij, if szi ðtÞ and szjðtÞ synchronize
as szi ¼ szj ∼ cos½ω0tþ ϕ�, the instantaneous interacting
energy HIðtÞ ∼ ΘðtÞ cos½2ω0tþ 2ϕ� with ΘðtÞ ∼ cosωt
can be expressed as HIðtÞ∼cos½δωt−2ϕ�þcos½Ωtþ2ϕ�
with δω ¼ ω − 2ω0 and Ω ¼ ωþ 2ω0. HIðtÞ oscillates
around zero except for the period doubling case
(ω0 ¼ ω=2), where HðtÞ ∼ cos 2ϕ (the fast oscillating term
cos½2ωtþ 2ϕ� is omitted). Therefore, HIðtÞ becomes
approximately time independent and takes its minimum
value at two degenerate points ϕ1 ¼ ðπ=2Þ and
ϕ2 ¼ ð3π=2Þ, which is responsible for the spontaneous
Z2 TTSB in the DTC. This intuitive picture also explains
the fact that only fszig exhibits period doubling, while fsxi g
does not [because the periodic driving is imposed on the
interactionΘðTÞszi szj instead of on the external field Γsxi ], as
shown in Fig. 2(b).
The equilibrium SI supports a Coulomb phase with an

algebraic decay of the spatial correlation function; one may
query whether this property holds for the TC-SI phase. To
answer this question, we calculate the equal-time correla-
tion function SðrÞ ¼ ð1=L2ÞPihsziðtaÞsziþrðtaÞi at an AF
time slice (t ¼ t1). Figure 2(c) indicates that along the
diagonal direction r ¼ ð1= ffiffiffi

2
p Þðr; rÞ with r ¼ jrj, SðrÞ

decays algebraically in distance SðrÞ ∼ r−α, with α ¼
1.9ð2Þ agreeing with the exponent predicted by the
Coulomb phase [10] (α ¼ d with d ¼ 2 the dimension
of the lattice). However, this agreement does not indicate
that the asymptotic state in our model adiabatically follows
the ground state of the Hice. First, the ice rule only holds at
time slices with AF coupling. For example, at a time slice
with FM coupling (e.g., t ¼ tb), the ground state ofHiceðtbÞ
is supposed to be an FM state along the z direction, while
our system actually exhibits a PM state. Furthermore, the
spontaneous TTSB is forbidden in thermal equilibrium due
to the no-go theorem [46,47]. Therefore, the asymptotic
state in our model is a genuine nonequilibrium state with
alternating SI and PM configurations in space and DTC
order in time.
Confined dynamics of monopoles.—In a conventional SI,

the elementary excitations can be introduced by flipping
one spin in a perfect SI configuration, which violates the ice
rule in the two adjacent ⊠. For a monopole “vacuum” (a
perfect SI configuration), flipping a spin is equal to creating
of a pair of monopoles, which can be separated by properly
flipping a chain of spins [the Dirac string [48] as shown in

Fig. 1(c)]. The energy required to separate two monopoles
in a conventional SI model with short-range coupling is
independent of their distance; therefore, the monopoles
herein are deconfined. Next, we will demonstrate how the
nonequilibrium features of our model qualitatively alter this
deconfined scenario of monopoles.
Even though the definition of “excitation” above an out-

of-equilibrium state is elusive, for our model, we adopt a
similar procedure of exciting the state by flipping one spin
and monitor its subsequential dynamics. For this purpose,
we first choose an AF time slice t1 when all szi reach their
maximum and the corresponding sz configuration obeys the
ice rule. Then we randomly pick a site (say, site i) and flip
its z component to obtain a configuration fszjð1Þg, then
study its subsequential dynamics fszjðtÞg and compare it to
the dynamics without spin flip fs̄zjðtÞg. At the AF time
slices tn ¼ t1 þ 2T0ðn − 1Þ, we defined δzjðnÞ ¼ szjðtnÞ −
s̄zjðtnÞ to measure the sz difference between the sz con-
figurations with and without spin flip. At t ¼ t1, only szi is
flipped, and thus, δzjð1Þ ¼ 0 except j ¼ i. Because of
dissipation, after sufficiently long time (tn > tN with tN
being the relaxation time), the system will reach a new SI
configuration. The difference configuration fδzjðNÞg plot-
ted in Fig. 3(a) shows that the flipped spins during this
process form a circle with an alternating þ and − structure.
Physically, flipping one spin produces two monopoles,
each of which can propagate from one ⊠ to another by
flipping the spin between them. A monopole is a topo-
logical fractionalized object that cannot be created or
annihilated by itself. As an alternative, monopoles can
only be annihilated in pairs when they collide during the
propagation, which will leave behind a new SI configura-
tion that differs from the original one by flipping all of
the spins along the trajectories the two monopoles went
through.
The monopole dynamics in the TC-SI phase seems

similar to a random walk in conventional SI, where the
monopoles are deconfined. However, we will show that it is
not the case. To this end, we study the dynamics after a
single spin flip under different noise trajectories and
calculate the statistical distribution PðLÞ of the circle
length L in the final states. As shown in Fig. 3(b), PðLÞ
decays exponentially with L, which implies a localized
feature of the monopole trajectories. On the contrary, in the
conventional SI, the monopoles are delocalized; thus, their
dynamics are similar to a random walk, which suggests an
algebraic decay of PðLÞ.
The striking difference between the TC SI and conven-

tional SI is due to the nonequilibrium feature of our system,
which keeps oscillating between the SI and PM phases
during evolution. Even though separating two monopoles
does not cost energy in the SI phase, it indeed requires
energy proportional to the distance between the monopoles
in the PM phase. To verify this point, we calculate the
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difference between the sx configurations with [fsxjðtÞg] and
without [fs̄xjðtÞg] the single spin flip: δxjðtÞ ¼ sxjðtÞ − s̄xjðtÞ.
As shown in Fig. 3(c), initially, since only the szi is flipped,
the sx configurations are the same [δxjðt1Þ ¼ 0]. We then
choose an intermediate-time slice t ¼ tM, when the inter-
action energy happens to vanish [ΘðtMÞ ¼ 0], and the two
monopoles have not annihilated. As shown in Fig. 3(c),
when two monopoles are separated in distance, the motion
of the monopoles will leave a string with nonvanishing
δxjðtMÞ along the trajectories they went through, which will
cost an energy proportional to the length of this string
[ΔEðtMÞ ¼

P
j∈string ΓδxjðtMÞ], resulting in the monopole

confinement.
One can also start the dynamics from an initial state with

a pair of well-separated monopoles attached by a Dirac
string [at t ¼ t1, we flip a string of spins as shown in
Fig. 1(c) and study the subsequential dynamics]. We
monitor the excess energy ΔEn ¼ hEðtnÞ − ĒðtnÞiξ, where
hiξ is the ensemble average over the thermal noise
trajectories, and EðtnÞ and ĒðtnÞ indicate the instantaneous

energy with and without the string spin flip. Figure 3(d)
shows that the relaxation is slower from an initial state with
a pair of monopoles with larger separation, and its inset
indicates that the average relaxation time hτiξ exponentially
diverges with the length of the Dirac string l. This
exponentially long lifetime of a Dirac string agrees with
the confinement-induced localization of the monopole
dynamics as analyzed above.
Instanton activated by the thermal fluctuation.—Besides

the confinement of the monopole dynamics, the TC-SI
phase is also distinct from its equilibrium counterpart due
to the presence of DTC order. One may wonder how the
monopoles affect the DTC order of the TC-SI phase. The
answer to this question is related to the stability of TC-SI
phase against thermal fluctuations, which excite monopoles
with a finite density. The Coulomb phase in equilibrium SI
does not break any symmetry and is not robust at finite
temperature. However, the TC-SI phase exhibits a sponta-
neous Z2 TTSB, while a discrete symmetry breaking phase
is typically assumed to be robust against weak thermal
fluctuations in 2D systems. For example, in a similar but
nonfrustrated model, the corresponding DTC phase is
indeed stable at low temperature [49]. The impact of
thermal fluctuation on the TC-SI phase will then be
discussed.
Unlike the conventional SI phase, once a spin in our

TC-SI phase is suddenly flipped at a typical AF time
slice, it does not only produce a pair of monopoles in
space, but it also results in a π-phase shift on top of
the periodic dynamics of this flipped spin, which corre-
sponds to tunneling from one “degenerate” DTC phase
(ϕ ¼ ðπ=2Þ) to the other (ϕ ¼ ð3π=2Þ). Such a fluc-
tuation-activated tunneling between the two Z2 symmetry
breaking states [see Fig. 4(a)] resembles the instanton
excitation in the field theory [50] and is a topological
defect in the temporal domain. These instanton excita-
tions, no matter how rare they are, are detrimental to the
DTC long-range order and result in an exponential decay
of szi , as shown in Fig. 4(b). Therefore, at any finite
temperature, the proposed TC SI is actually a prether-
malized phase; however, its lifetime can be extraordi-
narily long at a temperatures much lower than the
activated temperature of monopoles.
Experimental realizations of dynamically modulated

interactions.—One of the primary obstacles for experimental
realization of ourmodel is that it requires a periodical driving
imposed on the interaction rather than on the external field,
which seems unrealistic for solid-state magnets. However,
such a dynamically modulated magnetic interaction can be
achieved usingmagnetophononics, inwhich the electric field
of a laser is coupled to the phonon and the consequent
periodic atomic displacements could dynamically modulate
the magnetic exchange couplings between the spins [51,52].
This proposal has been realized experimentally in the AF
semiconductor α-MnTe [53]. Although the tunable coupling

(a)

(c)

(d)

(b)

FIG. 3. (a) The difference between sz configurations with and
without a single spin flip fδzi ðtÞg at time t ¼ t1 (initial state) and
t ¼ tN (final states). (b) The probability distribution in terms of
the circle length L in the final states. (c) The difference between
the sx configurations with and without a single spin flip fδxi ðtÞg at
time t ¼ t1 and t ¼ tM (intermediate state). (d) The energy
difference ΔEðtnÞ at the AF time slices tn ¼ t0 þ 2T0ðn − 1Þ
starting from different initial states, each of which contains one
Dirac string with different length l. The inset indicates the
average relaxation time hτiξ as a function of the length of the
Dirac string in the initial state. Other parameters are chosen
the same as in Fig. 2. (a)–(c) start from an initial state with a
single sz flip, and (d) from states with a Dirac string.
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regime therein is small and it is impossible to change the sign
of the interaction, we show that, for a slower driving (e.g.,
ω ¼ 0.5πJ) the TC SI can exist even when the coupling is
always AF (J0 < J) [43]. This periodically modulated
interaction is also accessible in synthetic quantum systems
such as trapped ions [54] and cavity QED systems [55],
where the magnetic interaction mediated by cavity can be
dynamically controlled by applying a periodic driving to the
cavity photons. Introducing quantum fluctuation might give
rise to interesting order-by-disorder phenomena in equilib-
rium [56–58], and a quantum generalization of our non-
equilibriummodel might provide new perspectives for the SI
physics.
Conclusion and outlook.—In summary, by studying a

driven-frustrated magnet, we reveal an intriguing confine-
ment mechanism, which is rooted in the nonequilibrium
feature of the system. We show that for a nonequilibrium
system driven far from the adiabatic limit, the instantaneous
states at different time slices (e.g., the SI and PM states in
our case) might not be independent of each other, instead;
they can build up temporal correlations and affect each
other. For instance, the PM states in our model effectively
mediate the monopole interactions in the SI states and make
them significantly differ from their equilibrium counter-
parts. This general picture behind the proposed confine-
ment mechanism is not restricted to the specific model in
this study but can apply to a wide class of nonequilibrium
classical and quantum systems which exhibit alternating

phases during the time evolution. As for the frustrated
quantum magnetism, a similar phase without spontaneous
symmetry breaking is the quantum spin liquid. One thus
may wonder whether it is possible to realize similar exotic
quantum phases of matter out of equilibrium [59], which
can simultaneously show spatial topological order and non-
trivial temporal (long-range or quasi-long-range) orders.
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