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Determinant quantum Monte Carlo (DQMC) is a powerful numerical technique to study many-body
fermionic systems. In recent years, several classes of sign-free (SF) models have been discovered, where
the notorious sign problem can be circumvented. However, it is not clear what the inherent physical
characteristics and limitations of SF models are. In particular, which zero-temperature quantum phases of
matter are accessible within such models, and which are fundamentally inaccessible? Here, we show that a
model belonging to any of the known SF classes within DQMC cannot have a stable Fermi-liquid ground
state in spatial dimension d ≥ 2, unless the antiunitary symmetry that prevents the sign problem is
spontaneously broken (for which there are currently no known examples in SF models). For SF models
belonging to one of the symmetry classes (where the absence of the sign problem follows from a
combination of nonunitary symmetries of the fermionic action), any putative Fermi liquid fixed point
generically includes an attractive Cooper-like interaction that destabilizes it. In the recently discovered
lower-symmetry classes of SF models, the Fermi surface (FS) is generically unstable even at the level of the
quadratic action. Our results suggest a fundamental link between Fermi liquids and the fermion sign
problem. Interestingly, our results do not rule out a non-Fermi-liquid ground state with a FS in a sign-free
model.
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Introduction.—The importance of reliable and practical
simulations of strongly correlated fermionic systems can-
not be overstated. In recent decades, substantial progress
was made thanks to the development of the determinant
quantum Monte Carlo (DQMC) technique [1–6]. However,
this technique is often hindered by the sign problem [7,8],
associated with negative or complex amplitudes in the
quantum partition sum. The sign problem results in
inefficient simulations, generally scaling exponentially
with system size and inverse temperature [6,9] (although
interesting exceptions exist [10,11]).
Interestingly, certain classes of fermionic models do not

suffer from the sign problem [12–18], and hence can be
solved at polynomial cost. In thesemodels, the absence of the
sign problem is guaranteed by a combination of symmetries
of the fermionic action. Sign-free (SF) models were used to
simulate a plethora of interesting phenomena, including
fermionic quantum criticality [19–26] and unconventional
superconductivity [27–30]. These developments raise the
question of the physical properties and intrinsic limitations of
sign problem-free models [11,31–34]. In particular, which
quantum phases ofmatter can be accessedwithin SFmodels,
and which are fundamentally inaccessible?
In this Letter, we show that all the currently known classes

of sign problem-free models within DQMC cannot support a
stable Fermi-liquid (FL) ground state. This is shown by
demonstrating that any putative Fermi surface (FS) in a SF
model is generically unstable in the presence of interactions
at zero temperature. Depending on the model, the instability

may be toward a fully gapped superconducting or density
wave state, or toward a Dirac semimetal [35,36].
It is important to note that we cannot rule out a fine-tuned

SF model with a FS (e.g., a model of noninteracting
electrons). Our argument shows that in such cases, the FS
is unstable, in the sense that a generic, arbitrarily small
perturbation can destroy it [37]. In addition, a non-FL state
with a FS (of the type that arises, e.g., at certain quantum
critical points) is not ruled out.
Our main findings are summarized in Table I. In the

symmetric SF classes [18] the SF property is guaranteed
by the combination of two antiunitary time-reversal
symmetries (TRSs) of the fermionic action matrix.
A detailed description of the different SF classes is given

TABLE I. The known sign-free (SF) classes (see text for a
detailed description), and the origin of the Fermi surface (FS)
instability in each class. In the symmetry classes (Symm. SF),
there is an interaction-induced instability of the FS that opens a
gap through spontaneous symmetry breaking. In the lower-
symmetry classes (lower-symm. SF), the FS is not protected
(in general) by symmetry, and a gap generically opens even at the
single-particle level.

Kramers’ class
fT−

1 ; T
−
2 g ¼ 0

Majorana class
fT−

1 ; T
−
2 g ¼ 0

Symm. SF U(1) breaking Z2 breaking
Lower-symm. SF Single-particle gap Single-particle gap
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below. The product of the two TRSs defines a unitary
symmetry, which is either a U(1) or a Z2 symmetry,
depending on the class. Interactions generically lead to
spontaneous breaking of the unitary symmetry, gapping
out the FS. There are many known examples of these
phenomena (see the Supplemental Material [38]); our
Letter shows that these are general properties of SFmodels.
There are also lower-symmetry classes where the SF is due
to less strict conditions [15,16]. We show that in these
cases, generically, there is no FS even at the single-particle
level, since there is no symmetry to protect it. If a symmetry
that protects a FS is imposed, the FS is unstable in the
presence of interactions, as in the symmetric classes.
Sign-free DQMC.—DQMC is based on introducing a

bosonic field ϕ via a Hubbard-Stratonovich (HS) trans-
formation, deriving an effective action for ϕ by integrating
out the fermions, and averaging stochastically over ϕ. The
field ϕmediates the fermionic interaction [6]. Alternatively,
ϕ may represent a physical boson (such as a phonon). A
typical action has the form of S ¼ SF þ Sϕ þ SInt where SF
is the noninteracting fermionic action, Sϕ is the bosonic
action, and SInt is a Yukawa-like interaction. We assume
that Sϕ ∈ R. Upon integrating out the fermions, an effec-
tive bosonic action is obtained: S0ϕ ¼ Sϕ þ ln detMϕ,
where Mϕ is the (ϕ dependent) quadratic fermionic action
matrix, ψ̄Mϕψ ¼ SInt þ SF. The fermionic problem has
therefore been mapped to a classical statistical mechanical
problem in dþ 1 dimensions for the field ϕðr; τÞ.
However, it is not guaranteed that the statistical weights

in the partition sum can be treated as probabilities, since
they are not necessarily real and non-negative. This is
known as the sign problem. Models that satisfy S0ϕ ∈ R (or
equivalently detMϕ ≥ 0) for any configuration ϕðr; τÞ are
known as SF models.
A set of sufficient conditions is known to guarantee the

absence of the sign problem [18]. These conditions are most
conveniently stated using aMajorana representation, writing
the complex fermion field in terms of two real (Majorana)
fields: ψ ¼ 1

2
ðγ1 þ iγ2Þ. The fermionic bilinear action takes

the form γTM̃ϕγ where γ ¼ ðγ1;1;…γ1;N;…γ2;NÞ (for N
Dirac fermions) and M̃ϕ is a 2N × 2N skew-symmetric
matrix. In addition, a Majorana TRS, T, is defined as an
antiunitary operator that satisfies ½M̃ϕ; T� ¼ 0 for anyϕðr; τÞ.
In this framework, one can distinguish between two funda-
mental SF classes.
WithKramers’ class, M̃ϕ has twomutually anticommuting

TRSs, satisfying ðT−
1 Þ2 ¼ ðT−

2 Þ2 ¼ −1. Since ðiT1T2Þ2 ¼ 1,
models of this class have a conserved U(1) charge,
Q̂ ¼ γTiT1T2γ. They can therefore be represented by
Dirac fermions with a U(1) symmetry (γTM̃ϕγ → ψ̄Mϕψ).
By Kramers’ theorem, the eigenvalues of Mϕ come in
complex conjugate pairs.
With the Majorana class, M̃ϕ has two mutually anti-

commuting TRSs, satisfying ðT−
1 Þ2 ¼ −1, ðTþ

2 Þ2 ¼ 1.

Since U ¼ T−
1 T

þ
2 is a Z2 unitary symmetry, M̃ϕ can be

brought to the block diagonal form

M̃ϕ ¼
�
B 0

0 B�

�
ð1Þ

in the eigenbasis of U. Integrating out the fermions yields
pfðM̃ϕÞ ¼ pfðBÞpfðB�Þ ≥ 0 (where pfðBÞ is the Pfaffian of
the skew-symmetric matrix B). Models of this type may not
have a U(1) symmetry, but can still have a FS of the zero
energy Bogoliubov-like excitations, protected at the single-
particle level by the Z2 symmetry.
The conditions above can be somewhat relaxed [15,16].

In the so-called lower-symmetry classes, we keep the
requirement ½M̃ϕ; T�

2 � ¼ 0, but the second condition
becomes iK½T−

1 ; M̃ϕ� ≤ 0 (i.e, the left-hand side is a
negative semidefinite matrix), where K is complex con-
jugation. As before fT1; T2g ¼ 0. These requirements are
sufficient to guarantee detMϕ ≥ 0 [16]. The limiting case
where ½M̃ϕ; T−

1 � ¼ 0 corresponds to the symmetry classes
discussed above. In the case of a strict inequality, we have
two lower-symmetry SF classes: the Majorana class (Tþ

2 )
and the Kramers’ class (T−

2 ).
Fermi surface instability.—We consider a general, trans-

lationally invariant model in d ≥ 2 spatial dimension, that
belongs to one of the SF classes. The model includes
Majorana fermions interacting with a bosonic field via a
Yukawa coupling (note that any model of fermions with a
quartic interaction can be recast in this form via a HS
transformation). The lattice-scale, ultra-violet (UV) action
is given by

SUV ¼
Z

dkγ̄α;k
ðiωδα;α0 − hα;α0;kÞ

2
γα0;k þ Sϕ þ SInt; ð2Þ

where α denotes a general fermionic flavor such as spin or
Majorana flavor (γ1;2), and summation over repeated
indices is assumed. We have defined γ̄k ≡ γ−k, and used
the notation k ¼ fiω;kg, where k is the spatial momen-
tum. Sϕ is a bosonic action, and SInt is given by

SInt ¼
Z

dkdk0
1

2
λνα;α0;k;k0ϕ

ν
k;k0 γ̄α;kγα;k0 : ð3Þ

Here ν is the index of the auxiliary field and λ is the
coupling function (which depends on momenta, bosonic
index, and fermionic flavor). Note that the bosonic field ϕν

may also be complex, but Sϕ ∈ R as the model is SF. In
addition, we assume that our action corresponds to a
physical Hamiltonian, i.e., Eq. (2) corresponds to a
Hermitian Hamiltonian Ĥðγ̂; ϕ̂; π̂Þ, where ϕ̂; π̂ are canoni-
cally conjugate operators.
We use proof by contradiction, assuming that the ground

state is a FL, and showing that the putative FL phase is
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unstable. The proof proceeds in two steps: (1) obtaining the
low-energy FL effective action and (2) showing that the
SF requirement necessitates the existence of an instability
of the FS.
Step 1: We divide the fermionic modes into slow

modes residing within a thin shell of thickness 2Λ around
the FS (shaded region in Fig. 1), and fast modes residing
outside of the shell. The fast modes are integrated out,
obtaining the infrared effective theory (SIR) close to the FS.
Note that SIR is still quadratic in the fermions at this stage,
as we do not integrate over ϕ at this stage [38].
The infrared action is written as

SIR ¼
Z
jϵk;αj<Λ

dkγ̄α;k
ðiωδα;α0 −hα;α0;kÞ

2
γα0;kþS0ϕþS0Int ð4Þ

with

S0Int ¼
Z

dkdk0γ̄α;kΣα;α0;k;k0 ðϕÞγα0;k0 : ð5Þ

Here, ΣðϕÞ is the fermionic self-energy obtained from
integrating out the fast modes, including all λ dependent
terms (we suppress the indices of ϕν for brevity). S0ϕ is the
renormalized bosonic action. More details concerning the
diagrammatic representation of ΣðϕÞ and S0ϕ can be found
in the Supplementary Material [38]. Importantly, ϵk is the
“true” (renormalized) dispersion, given by the eigenvalues
of the matrix hα;α0;k þ hΣα;α0;k;kiS0ϕ (with ω ¼ 0 within the

self-energy). Hence, the exact FS is given by ϵk ¼ 0.
Next, we integrate out ϕ in order to obtain a purely

fermionic low-energy action. By our assumption, this
action has a FL form. We assume that we are not exactly
at a quantum critical point (QCP); at a QCP, singular
interactions between the low-energy fermions arise, violat-
ing the FL assumption.
In the resulting fermionic action Seffðγ; γ̄Þ, we are

interested only in the quartic terms, as in a FL, higher
order terms are irrelevant in the renormalization group
(RG) sense [41,42]. The quartic part of −Seffðγ; γ̄Þ is
written as

Γα;β;α0;β0
k1;k2;k01;k

0
2
γ̄α;k1 γ̄β;k2γβ0;k02γα0;k01δðfkgÞ; ð6Þ

where δðfkgÞ ¼ δk1þk2−k01−k
0
2
, and we can neglect the

dependence of Γ on both frequency and the momentum
perpendicular to the FS, since both dependencies are
irrelevant [41,42]. Using the cumulant expansion, we
can express Γ as

Γα;β;α0;β0
k1;k2;k0

1
;k0

2
¼ hΣα;α0;k1;k0

1
Σβ;β0;k2;k0

2
i
S0ϕ

− hΣα;α0;k1;k0
1
i
S0ϕ

× hΣβ;β0;k2;k0
2
i
S0ϕ
: ð7Þ

Note that, due to the SF property of the model, S0ϕ ∈ R
(see the Supplemental Material [38]).
Step 2: We now perform a stability analysis of the

putative FL fixed point. The analysis closely follows the
standard RG procedure for interacting fermions [41].
In the limit Λ → 0, forward scattering processes are exactly
marginal. Since the model is SF, it has at least one TRS, and
hence ϵk ¼ ϵ−k. Then, FS instabilities may arise in the
Cooper channel, corresponding to k1 ¼ −k2, k01 ¼ −k02. To
obtain a compact form of the RG equations, it is convenient
to define

Γ̃α;β;α0;β0
k;−k;k0;−k0 ≡ 1ffiffiffiffiffiffiffiffiffiffiffi

vkvk0
p Γα;β;α0;β0

k;−k;k0;−k0 ð8Þ

where vk ¼ j∇kϵkj. We treat Γ̃α;β;α0;β0
k;−k;k0;−k0 as a matrix Γ̃,

where the first (second) index corresponds to the set
fα; β; kg (fα0; β0; k0g). The Hermiticity of the effective
FL Hamiltonian implies that the matrix Γ̃ is Hermitian.
The one-loop RG equations for Γ̃ take the simple form

dΓ̃
dl

¼ 1

4π
Γ̃2; ð9Þ

where dl ¼ −dΛ=Λ is the infinitesimal scaling factor.
Diagonalizing Γ̃, we obtain a set of differential equations
for the eigenvalues (denoted by λi):

dλi
dl

¼ 1

4π
λ2i : ð10Þ

A positive λi (corresponding to attraction in a certain
channel) grows under RG, destroying the FL. Thus, a
stable FL phase requires that λi < 0 for all i. Conversely, if
there is at least one positive eigenvalue, there is no FS at
T ¼ 0. If λi ≤ 0 for all i, but there is at least one zero
eigenvalue, there can be a FS, but it is unstable to the
addition of an infinitesimal perturbation that makes one of
the eigenvalues positive (The latter case corresponds, e.g.,
to a noninteracting electron gas).
We now show that there exists a vector w⃗ for which

w⃗TΓ̃ w⃗ ≥ 0, and hence Γ̃ has at least one non-negative
eigenvalue, and the FL phase cannot be stable. As men-
tioned above, the model has at least one TRS. We write the

(a) (b)

FIG. 1. A schematic plot of the fast modes integration out for a
time-reversal symmetric model. The shaded region around the
Fermi surface (FS) represents the slow momenta while all the rest
of the Brillouin zone (fast modes) is integrated out. (a) The simple
case of circular FS. (b) A generic case in which ϵk ¼ ϵ−k.
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corresponding TRS operator as T ¼ OK, where O is an
orthogonal matrix (O is real since we are dealing with
Majorana fermions), and K denotes complex conjugation.
Under TRS, γα;k → Oαβγβ;−k. Setting wk;α;β ¼ Oαβδk;k0

with an arbitrarily chosen k0, and using the identity

X
α;α0

OαβΣα;α0
k0;k0

Oα0β0 ¼ ðΣβ;β0
−k0;−k0

Þ�; ð11Þ

which follows from the time-reversal invariance of the
fermionic action under T, we obtain

w⃗TΓ̃ w⃗ ¼ 1

vk0

X
β;β0

½hjΣβ;β0;−k0;−k0
j2iS0ϕ − hΣβ;β0;−k0;−k0

iS0ϕ
× hΣ�

β;β0;−k0;−k0
i
S0ϕ
� ≥ 0: ð12Þ

Thus, the putative FL phase is either intrinsically unstable,
or can be destabilized by adding an infinitesimal attractive
interaction. This is our main result.
It is worth examining the key elements required for our

proof. In essence, the TRS (which all presently known SF
classes require) ensures that the FS has a Cooper-like
instability, with states at opposite momenta being degen-
erate (see Fig. 2). In addition, the SF property guarantees
that the effective interaction is attractive in some channel
(although it may be repulsive in other channels). Therefore,
the FS cannot be stable. It is natural to expect a gapped,
spontaneously broken ground state as a result.
We further stress that we cannot rule out the possibility of a

non-FLmetalwith a FS.We also do not rule out amanifold of
codimension d − 2 or lower of zero energy excitations. SF
models can have a stable Dirac semimetal ground state in
d ¼ 2 [36,43–45], or a nodal line semimetal in d ≥ 3.
Importantly, within our proof, we have implicitly

assumed that TRS is not broken spontaneously [46].
If such spontaneous symmetry breaking had occurred,
the FS could be stable. Reference [31] conjectured, and
showed explicitly for some cases, that an antiunitary
symmetry cannot be spontaneously broken in a bosonic
SF model. We do not know of cases where TRS is

spontaneously broken in a SF model containing fermions;
whether such TRS breaking is fundamentally possible
remains to be seen.
The gapped phase.—While for all SF classes, the ground

state is not a stable FL, its exact nature is class dependent
and model dependent. However, in both symmetry classes,
it is natural to expect that as a result of the FS instability, the
unitary T1T2 symmetry is spontaneously broken, and the
FS is gapped out. In Kramers’ class, this typically results in
a superconducting ground state, as γTiT1T2γ is the gen-
erator of a U(1) symmetry. The angular momentum of the
order parameter is model specific, and both s-wave [47–53]
and nodal or nodeless d-wave [27,28,30] superconductivity
were found within SF DQMC. In the Majorana class, T1T2

is a unitary Z2 symmetry. Its spontaneous breaking results
in a twofold degenerate ground state. In certain physical
realizations, the symmetry broken phase may correspond to
a charge ordered state [13,15,49,52,54,55].
It is important to note that the spontaneous breaking of

T1T2 does not always occur; if the fermions form a band
insulator or aDirac semimetal, the symmetryunbrokenphase
may extend down toT ¼ 0.We provide detailed examples of
realizations in different symmetry SF classes and their
symmetry broken phases in the Supplemental Material [38].
In the lower-symmetrySFclasses, aswe only have a single

TRS and not a unitary symmetry, there is generically no FS
already at the level of the quadratic (noninteracting) part of
the action. The single-particle Hamiltonian is analogous to a
Bogoliubov-de Gennes Hamiltonian with TRS, where real
off diagonal pairing terms are allowed. Consequently, the
codimension of the zero energy modes is at most d − 2 (see
the Supplemental Material [38]). If we add a symmetry
(beyond those required by the SF property) that protects the
FS at the quadratic level (e.g., aU(1) orZ2 symmetry), the FS
is still generically unstable in the presence of interactions,
just as in the symmetry classes. This is because our proof
requires only a single TRS, which is present in the lower-
symmetry classes. We summarize our conclusions for all
currently known SF classes in Table I.
Comment regarding the Kohn-Luttinger mechanism.—

We have shown that SF models cannot have a stable FL
ground state, due to TRS and the presence of attraction in
the Cooper channel. In this context, it is important to
address the question of whether, conversely, non-SF
models with TRS can support a stable FS at T ¼ 0. It is
well known that under a wide range of circumstances, bare
repulsive interactions can lead to superconductivity at high
angular momentum channel. This is the Kohn-Luttinger
(KL) mechanism [56].
In general, however, the KL mechanism relies on the

bare repulsion being short-ranged, i.e., exponentially
decaying as a function of distance (see the Supplemental
Material [38] for details). The FS can be stabilized at T ¼ 0
by adding a small power-law repulsive interaction.
In contrast, our proof shows that in SF models, the FS

(a) (b)

FIG. 2. Schematic description of Cooper channel instability in
the sign-free classes. We demonstrate it for the simple case of two
flavors. (a) The time-reversal mapping between the two bands.
(b) The obtained nesting between the FSs.
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is generically unstable, even in the presence of arbitrary
long-ranged interactions.
Concluding remarks.—Our arguments apply to all SF

classes that are currently known within DQMC. However,
these observations naturally lead to the stronger conjecture
that a stable FL phase cannot be realized in any SFmodel. As
new classes of SF models are found, this conjecture will be
put to the test. For example, there are models [57] that do not
have a known SF DQMC formulation, but the sign problem
can be solved in a continuous time quantum Monte Carlo
[14,58–60] (or the “fermion bag” approach [61,62]). None of
these models have a FL ground state, as far as we know;
however, our proof does not formally encompass these cases.
In addition, we note that it is possible to get stable metallic
phases in “mixeddimensionality” systems [63,64],where the
interaction terms are subextensive. These lie beyond the
scope of our results since they are not fully translationally
invariant.
Looking ahead, it should be straightforward to extend our

results to include quenched disorder. In this case, we expect
SFmodels to obey a version ofAnderson’s theorem [65], i.e.,
disorder that preserves the SF property does not suppress the
superconducting instability at the mean-field level.
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