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We study quantum phase transitions of three-dimensional disordered systems in the chiral classes (AIII
and BDI) with and without weak topological indices. We show that the systems with a nontrivial weak
topological index universally exhibit an emergent thermodynamic phase where wave functions are
delocalized along one spatial direction but exponentially localized in the other two spatial directions, which
we call the quasilocalized phase. Our extensive numerical study clarifies that the critical exponent of the
Anderson transition between the metallic and quasilocalized phases, as well as that between the
quasilocalized and localized phases, are different from that with no weak topological index, signaling
the new universality classes induced by topology. The quasilocalized phase and concomitant topological
Anderson transition manifest themselves in the anisotropic transport phenomena of disordered weak
topological insulators and nodal-line semimetals, which exhibit the metallic behavior in one direction but
the insulating behavior in the other directions.
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Introduction.—The last decades have seen remarkable
discoveries of topological materials [1–3]. The inter-
play of disorder and topology leads to new types of
quantum phase transitions, including the quantum Hall
plateau transitions [4–13]. The universality classes of the
disorder-driven metal-insulator transitions, known as the
Anderson transitions, are characterized by the critical
exponents and scaling functions, which are commonly
believed to be determined solely by symmetry and spatial
dimensions [14]. Many theories investigated whether top-
ology can change the universality classes of the Anderson
transitions [15–34]. Still, the role of topology in the
Anderson transitions has been elusive.
Prime examples of three-dimensional (3D) topological

materials include nodal-line semimetals characterized
by the weak topological invariant [42–45]. Several
recent experiments realized nodal-line semimetals in solid
states [46–48], as well as synthetic materials of ultracold
atoms [49] and photonic [50,51] and phononic [52]
systems. Despite the significant interest in the physics of
nodal-line semimetals [53–57], their unique transport
signatures have remained largely unexplored.
In this Letter, we elucidate that the weak topological

indices induce a novel thermodynamic phase in 3D dis-
ordered systems, including topological nodal-line semi-
metals, in the chiral classes. There, 3D wave functions
are delocalized along one spatial direction and exponen-
tially localized along the other two spatial directions—
quasilocalized phase [Fig. 1(a)]. From extensive numerical

calculations, we evaluate correlation-length critical expo-
nents of the Anderson transitions among the metallic,
quasilocalized, and localized phases [Fig. 1(a)] and find
that they are distinct from the critical exponent in topo-
logically trivial systems [Fig. 1(b)], signaling new
universality classes induced by the topological indices.
Notably, our quasilocalized phase and concomitant topo-
logical Anderson transition are of direct experimental
relevance in the anisotropic transport that exhibits the
metallic behavior in one direction but the insulating
behavior in the other directions. While such anisotropic
transport has played an important role in condensed matter
physics [58–65], our results provide its new universal

FIG. 1. Phase diagrams of 3D disordered Hamiltonians in the
chiral symmetry classes (a) with and (b) without the weak
topological index νz. The critical exponents ν and localization
lengths ξz; ξ⊥ð⊥ ¼ x; yÞ along different directions are shown for
different phases. The nontrivial critical exponents ν ¼ 0.82�
0.02 and ν ¼ 1.09� 0.03 are obtained for class BDI.
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mechanism induced by the interplay of disorder and
topology.
Lyapunov exponents and topological indices.—We study

disorder-induced quantum phase transitions of 3D chiral-
symmetric Hamiltonians H. The localization properties
along the μ direction (μ ¼ x, y, z) are efficiently captured
by the Lyapunov exponents (LEs) along the μ direction in
the limit L → ∞, which are eigenvalues of [66,67]

lim
Lμ→∞

log ðM†MÞ 1
2Lμ : ð1Þ

Here, M ≡MLμ
MLμ−1 � � �M1 is the product of transfer

matrices along the μ direction. The smallest positive LE
gives the inverse of the localization length along the μ
direction [68]. In the limit L → ∞, the LEs of H form
several continuous spectra [69]. If the spectra do not
include zero, the wave function is localized along the μ
direction. By contrast, if the spectra include zero, the
localization length diverges, which means the delocaliza-
tion of the wave function. The finite (infinite) localization
length leads to the vanishing (nonvanishing) conductance
in the same direction, as shown in the Supplemental
Material [34].
Symmetries of Hamiltonians give constraints on the

spectrum of the LEs. For example, because of the
Hermiticity of H, the LEs come in opposite-sign pairs.
Moreover, in the presence of chiral symmetry, H can be
brought into the block off diagonal structure,

H ¼
�

0 h

h† 0

�
; ð2Þ

where the off diagonal part h is assumed to be a square
matrix. Because of chiral symmetry, the LEs ofH reduce to
the LEs of h and h†, which come in opposite-sign pairs, as
shown in the Supplemental Material [34]. Consequently,
we only need to calculate the product of the transfer
matrices of h.
We demonstrate that a weak topological index νμ

imposes another constraint on the spectrum of the LEs
and plays a vital role in the emergence of the quasilocalized
phase in disordered chiral-symmetric systems. To introduce
νμ along the μ direction in the presence of disorder, let us
insert a magnetic flux ϕμ through a closed loop along the μ
direction. Then, the weak topological index νμ is given by
the winding of det hðϕμÞ in Eq. (2) under an adiabatic
insertion of a unit flux [70–72]:

νμ ≡ i
L2

Z
2π

0

dϕμ

2π
∂ϕμ

Trflog½hðϕμÞ�g; ð3Þ

where L2 is the system size within the two directions
perpendicular to the μ direction. Here, νμ is not necessarily
quantized and takes an arbitrary real number. Notably, the

weak topological index νμ and LEs of h are related to each
other by [34,73]

νμ ¼
1

2L2
ðNþ;μ − N−;μÞ; ð4Þ

where Nþ;μ and N−;μ are the numbers of positive and
negative LEs of h along the μ direction, respectively.
Suppose H has a mobility gap around E ¼ 0 and its

zero-energy state is characterized by the weak topological
indices νx ¼ νy ¼ 0, νz ¼ 1. From Eq. (4), a finite gap
exists between the smallest positive LE and the largest
negative LE such that Nþ;z − N−;z ¼ 2L2. By contrast,
when disorder is strong enough, the zero-energy state is in a
topologically trivial localized phase with Nþ;z ¼ N−;z.
Between the two localized phases, L2 positive LEs of h
cross zero, and νz continuously changes from 1 to 0 with
respect to the disorder strength, where the localization
length ξz along the z direction always diverges. Within this
finite range with divergent ξz, the zero-energy state under-
goes the Anderson transitions along the x and y directions,
and thus a quasilocalized phase with divergent ξz and finite
ξx and ξy emerges. Below, we clarify its nature, obtain the
critical exponents of the Anderson transitions among the
metallic, quasilocalized, and localized phases, and dem-
onstrate the existence of new universality classes.
Model.—As a prototypical example, we study a two-

orbital tight-binding model on a 3D cubic lattice [57]:

H ¼
X

r¼ðrx;ry;rzÞ

�
ϵrc

†
rσzcr þ

�X
μ¼x;y

ðt⊥c†rþeμσzcrÞ

− itkc
†
rþezσycr þ t0kc

†
rþezσzcr þ H:c:

��
: ð5Þ

Here, cr is a two-component annihilation operator at the
cubic lattice site r, σμ (μ ¼ x, y, z) are Pauli matrices, t⊥, tk,
t0k are real-valued parameters, and ϵr is a random potential

that distributes uniformly in ½−W=2;W=2�. We assume
t⊥; tk > 0 for simplicity. This Hamiltonian respects
time-reversal symmetry H ¼ H� and chiral symmetry
H ¼ −σxHσx, and hence belongs to class BDI [3,14,74].
In addition, the ensemble of Hamiltonians is statistically
invariant under the combination of time reversal and
reflection with respect to the xy plane, which requires
Nþ;x ¼ N−;x, Nþ;y ¼ N−;y and νx ¼ νy ¼ 0, as shown in
the Supplemental Material [34], while νz can be nonzero.
In the clean limit, the Hamiltonian has an energy gap
around E ¼ 0 with νz ¼ 1 for 4t⊥ < 2jt0kj. For 4t⊥ > 2jt0kj,
by contrast, the zero-energy state forms a nodal line in
momentum space, resulting in 0 < νz < 1. In the follow-
ing, we focus on the nodal-line-semimetal phase for
tk ¼ t0k ¼ 1=2, t⊥ ¼ 1 and study the Anderson transitions

of the zero modes along all the directions. Still, we
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stress that the weak topological invariant νμ, rather than a
nodal line itself, is the main ingredient for the quasilocal-
ized phase.
Localization length ξz.—Figure 2 shows the distribution

of LEs γ of h in Eq. (2) for the nodal-line-semimetal model
H in Eq. (5) along the z direction in the quasi-1D geometry
L × L × Lz. The distribution consists of two separate
spectra, each of which contains L2 LEs. The upper
spectrum is always γ ¼ þ∞ [34] and irrelevant to the

Anderson transitions. For W ≤ WðzÞ
c ≈ 29, the lower spec-

trum includes zero γ ¼ 0. Every positive LE in the lower

spectrum for W < WðzÞ
c crosses zero when we increase W.

At each crossing point, N−;z changes by 1. For L → ∞, the
crossing points become dense, and νz ¼ 1 − N−;z=L2

changes continuously with W. For W > WðzÞ
c , all the

LEs in the lower spectrum are negative (i.e., N−;z ¼ L2),
and the system is in a localized phase with no weak

topological index νz ¼ 0. AtW ¼ WðzÞ
c , the maximal LE in

the lower spectrum crosses zero. Notably, WðzÞ
c for L → ∞

cannot be determined by fitting ξz=L with a standard
scaling function [e.g., see Eq. (7)] because ξz with finite

L diverges at some W < WðzÞ
c . Instead, we map the non-

Hermitian matrix h into a well-localized Hermitian matrix
by a similarity transformation [34,75], where the localiza-
tion length obeys a scaling form in the strong disorder
limit [76]. Then, we obtain the scaling form of the largest
LE γmaxðW;LÞ,

γmaxðW;LÞ ¼ a=Lþ γmaxðW;L ¼ ∞Þ: ð6Þ

We numerically verify this scaling and determine the

critical disorder strength WðzÞ
c ¼ 29.45� 0.05 (inset of

Fig. 2).
Localization length ξx, ξy.—The statistical symmetries

mentioned above require LEs of h along the x and y
directions to come in opposite-sign pairs. Thus, the
localization length ξx along the x direction is always
finite in the quasi-1D geometry with finite L. As shown
in Fig. 3, the normalized localization length ΛxðW;LÞ≡
ξxðW;LÞ=L shows scale-invariant behavior at a certain

disorder strength WðxÞ
c well below W ¼ WðzÞ

c , indicating a

quantum phase transition at W ¼ WðxÞ
c < WðzÞ

c . To deter-

mine WðxÞ
c and the critical exponent ν, we use a finite-size

scaling function and its polynomial expansion [68,77]. The
scaling function for ΛxðW;LÞ is Taylor expanded with
respect to the relevant scaling variable ϕðwÞ and the least
irrelevant scaling variable c up to the nth order and first
order, respectively,

ΛxðW;LÞ ¼
Xn
i¼0

X1
j¼0

ai;jðϕðwÞL1=νÞiðcL−yÞj; ð7Þ

with w≡ ðW −WðxÞ
c Þ=WðxÞ

c and the scaling dimension −y
(< 0) of the least irrelevant scaling variable around a
saddle-point fixed point. The fitting is carried out by the

FIG. 2. 2L2 Lyapunov exponents (LEs) of the right-upper part h
of the 3D nodal-line-semimetal model H along the z direction
with the quasi-1D geometry L × L × Lz (L ¼ 18, Lz ¼ 2 × 106),
plotted as a function of the disorder strength W. The color scale
stands for the density ρðγÞ of the LEs with the normalizationR
ρðγÞdγ ¼ 1. The LEs of H are composed of the LEs of h and

h†. Inset: the largest LE γmaxðW;LÞ among the smaller L2 LEs as
a function of W in the limit L → ∞, obtained by a finite-size
scaling fit. The error bars are smaller than the marks. The plot

crosses zero linearly at WðzÞ
c ¼ 29.45� 0.05; ξz ∼ ðW −WðzÞ

c Þ−ν0
with ν0 ¼ 1 for W > WðzÞ

c .
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FIG. 3. Normalized localization length Λx ≡ ξx=L along the x
direction as a function of the disorder strength W in the nodal-
line-semimetal model in Eq. (5) with the quasi-1D geometry
L × L × Lx. The black points are the raw data with the error bars.

The solid lines for different L and the dashed vertical line WðxÞ
c

with the error bars are the results of the fitting according to Eq. (7)

with n ¼ 3. The dashed lineWðzÞ
c is evaluated by the fitting of the

Lyapunov exponent along the z direction by Eq. (6). Inset: single-
parameter scaling function of Λx. Λcorrected is Λx subtracted by a
contribution of the irrelevant scaling variable c in Eq. (7), and ϕ is
the relevant scaling variable.
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χ2 fitting method, and the confidence error bars for the
optimal parameters are determined by the Monte Carlo
method, as detailed in the Supplemental Material [34].
The first row in Table I shows the fitting results,

where WðxÞ
c ¼ 27.24� 0.05 is significantly smaller than

WðzÞ
c ¼ 29.45� 0.05, and the critical exponent at WðxÞ

c is
evaluated as ν ¼ 0.82� 0.02. The two different critical
disorder strengths illustrate the emergence of the three
distinct phases as a function of the disorder strength W

[Fig. 1(a)]. For W < WðxÞ
c , the localization lengths diverge

along all directions (metallic phase). For W > WðzÞ
c , the

localization lengths are finite along all directions

(Anderson insulator phase). For WðxÞ
c < W < WðzÞ

c , the
localization lengths are finite along the x and y directions
but diverge along the z direction (quasilocalized phase),
and νz continuously changes as W changes. Our extensive
numerical calculations show that the quasilocalized phase
with divergent ξz but finite ξx, ξy universally appears
between metallic and localized phases in different
models with nonzero νz, as shown in the Supplemental

Material [34]. The consistent critical exponent atW ¼ WðxÞ
c

was also obtained in Ref. [57], while a different critical
exponent was obtained in Ref. [78] even in the same class.
In this Letter, we elucidate that this difference originates
from the emergence of the quasilocalized phase, which was
not identified previously.
Quasilocalized phase.—Now, we clarify the nature

of the quasilocalized phase induced by the weak topo-
logical index νμ. Let ΦðrÞ ¼ hrjΦi be a normalized wave
function. The wavefunction interacts with an effective
disorder potential Veff ¼ hΦjVjΦi ¼ P

r VðrÞjΦðrÞj2,
whose strength is given by hV2

effi ¼ W2P2 with the inverse
participation ratio P2 ≡P

r jΦðrÞj4. Here, h…i denotes the
disorder average: hVðrÞVðr0Þi ¼ W2δr;r0 . As long as W is
finite, the following argument is applicable to general VðrÞ,
including the box disorder in ½−W=2;W=2� used for the

numerical calculations. Let us introduce the integrated
weight of the wave function in the zth layer by jϕðzÞj2 ¼P

x;y jΦðrÞj2 and also the one-dimensional inverse partici-
pation ratio Pz

2 ≡
P

z jϕðzÞj4. Px
2, P

y
2 can be defined in the

same manner. Pμ
2 measures the localization property of

ΦðrÞ along the μ direction, giving an upper bound of P2:
P2 ≤ Pμ

2ðμ ¼ x; y; zÞ [34]. If the wave function is extended
along the z direction (i.e., Pz

2 ∼ L−1
z [14]), P2 and hV2

effi
should vanish for Lz → ∞, and ΦðrÞ must be extended
along all the directions. If Pz

2 is finite even for Lz → ∞, by
contrast, Px

2 and Py
2 should also be finite for Lx; Ly → ∞.

Otherwise,ΦðrÞ is extended within all the directions, which
contradicts finite Pz

2. In the intermediate phase discussed
above, we find that ξx is finite, but ξz diverges. While finite
ξx means finite P2 and P

z
2, divergent ξz with finite P

z
2 means

that the wave function ΦðrÞ must be quasilocalized along
the z direction. Thus, the wave function in the intermediate
phase is localized within the xy plane and delocalized only
along the z direction—quasilocalized phase. Here, ΦðrÞ
along the z direction shares the same localization properties
as wave functions of 1D chiral-symmetric systems at a
topological phase transition, where the 1D topological
index changes [14,70,71,79–81]. The 3D system in the
intermediate phase is effectively decoupled into 1D wires
because of finite ξx;y.
The emergence of the quasilocalized phase in 3D

systems is a consequence of finite P1D
2 at the topo-

logical phase transition of 1D chiral-symmetric systems.
Generally, when a d0-dimensional wave function ΦðRÞ in
R≡ ðr; sÞ with r ¼ ðr1;…; rdÞ and s ¼ ðs1;…; sd0−dÞ
(d < d0) is made out of coupled d-dimensional wave
functions ψðrÞ at a critical point, ΦðRÞ is more extended
than ψðrÞ along the r direction because of the interlayer
coupling, as shown in the Supplemental Material [34].
Thus, the effective disorder strength for the
d0-dimensional wave function ΦðRÞ is bounded by the

d-dimensional inverse participation ratio PψðrÞ
2 of ψðrÞ.

When the wave function ψðrÞ has finite PψðrÞ
2 at the critical

point, the effective disorder strength can be finite, and
ΦðRÞ can be either extended or localized within the s

direction. On the other hand, when PψðrÞ
2 is zero at the

critical point, e.g., 2D critical wave functions at the
quantum Hall plateau transition, the effective disorder
strength is zero, and the d0-dimensional wave function
should always be extended in both r and s directions.
Notably, the 1D topological phase transitions in all the
three chiral classes are characterized by finite P2 [14]. In
the following, we demonstrate the quasilocalized phases
also in the 3D chiral unitary class, which is consistent with
the above argument.
Model without time-reversal symmetry.—We add a time-

reversal-breaking but chiral-symmetric disorder ΔH to the
model H in Eq. (5):

TABLE I. Critical disorder strength WðμÞ
c and critical exponent

ν for the 3D chiral classes, obtained by the polynomial fitting of
the normalized localization length Λμ ≡ ξμ=L along the μ
direction (μ ¼ x, y, z) around critical points of different models
with the quasi-one-dimensional geometry L × L × Lμ. In the
column “Topo,” “✓” shows the nonzero weak topological index
νz around the critical point, and “✗” shows zero topological
indices in all the directions. The square brackets denote the 95%
confidence interval.

Class Topo μ WðμÞ
c ν

BDI ✓ x 27.241[27.194,27.303] 0.820[0.783,0.846]
AIII ✓ x 9.143[9.125,9.168] 0.824[0.776,0.862]
BDI ✗ z 23.220[23.167,23.293] 1.089[1.005,1.128]
BDI ✗ x 23.170[23.098,23.279] 1.042[0.943,1.099]
AIII ✗ z 8.091[8.074,8.096] 1.024[0.973,1.070]
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H1 ¼ Hþ ΔH; ΔH ¼
X
r

ϵ0rc
†
rσycr; ð8Þ

with the random potential ϵ0r, where ðϵr; ϵ0rÞ ¼
ðVr cos θr; Vr sin θrÞ, and θr and Vr distribute uniformly
in the range of ½0; 2πÞ and ½0;W�, respectively. This model
only respects chiral symmetry and belongs to class AIII, in
which the weak topological indices are defined in the same
manner. It shows a similar phase diagram as in the previous

model in class BDI with WðzÞ
c ¼ 9.8� 0.1 and WðxÞ

c ¼
9.14� 0.01 (see Fig. 1 and Table I). The critical exponents
are the same as those in the models in class BDI, which
suggests possible superuniversality in 3D systems in the
chiral classes with the topological indices.
Models with trivial topological indices.—To further

clarify the role of the topological indices, we also study
a topologically trivial model in class BDI with statistical
symmetries. The statistical symmetry of time reversal
combined with reflection with respect to the xz or yz
plane makes all three topological indices vanish, as shown
in the Supplemental Material [34]. In addition, LEs of h
along any direction come in opposite-sign pairs, and the
localization lengths along the x and y directions are the
same. On increasing the disorder strength, the model
undergoes the Anderson transition, where the normalized
localization lengths Λx and Λz along the x and z directions
both show scale-invariant behaviors. The critical disorder
strengths and critical exponents determined fromΛx and Λz
are consistent with each other (see Table I), which suggests
that the scale-invariant behavior of Λx and Λz comes
from the same quantum phase transition [Fig. 1(b)]. The
evaluated critical exponent ν ¼ 1.089½1.005; 1.128� is dif-
ferent from ν at W ¼ WðxÞ

c of the topological model, and
consistent with ν of the topologically trivial models
in Ref. [78]. We also evaluate the critical exponent in
the chiral unitary class without weak topological indices as
ν ¼ 1.024½0.973; 1.070� (Table I), which is different from ν
of the topological models in the same symmetry class and
consistent with Refs. [33,78].
Summary and discussion.—In this Letter, we show that

in 3D systems in the chiral classes, the weak topological
indices induce a disorder-driven quasilocalized phase
where wave functions are delocalized only along one
direction and localized along the other two directions.
The critical exponents of the Anderson transitions among
metal, quasilocalized, and localized phases are all different
(Fig. 1). We believe that these conclusions hold also in the
chiral symplectic class (class CII). Our quasilocalized
phase leads to the anisotropic transport phenomena of
topological nodal-line semimetals [43–52], where the
conductance along the direction with the divergent locali-
zation length takes finite values with larger fluctuations,
while it vanishes along the other directions in the thermo-
dynamic limit, as shown in the Supplemental Material [34].
The quasilocalized phase may potentially find practical

applications such as quantum devices that control the
direction of currents.
Our results are also relevant to non-Hermitian

physics [82–84], where the interplay between disorder
and dissipation has recently acquired renewed interest.
In fact, all the disorder-driven phases and phase transitions
in this Letter are characterized by the LEs of the off
diagonal part h in Eq. (2), which can be considered as a
non-Hermitian Hamiltonian [33]. Anisotropy of H corre-
sponds to nonreciprocity of h and leads to transport
phenomena unique to open systems.
3D chiral-symmetric systems also host a strong topo-

logical index [1–3]. By a similar numerical study, we find
that the strong index does not lead to the quasilocalized
phases, not influencing the universality classes of the
Anderson transitions [85]. It also remains to be explored
whether the quasilocalized phase appears and whether the
topological indices change the universality classes of the
Anderson transitions in 2D systems, as well as nodal-line
semimetals protected by spatial symmetry.
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