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Collisional growth of droplets, such as occurring in warm clouds, is known to be significantly enhanced
by turbulence. Whether particles collide depends on their flow history, in particular on their encounters with
highly intermittent small-scale turbulent structures, which despite their rarity can dominate the overall
collision rate. Here, we develop a quantitative criterion for sling events based on the velocity gradient
history along particle paths. We show by a combination of theory and simulations that the problem reduces
to a one-dimensional localization problem as encountered in condensed matter physics. The reduction
demonstrates that the creation of slings is controlled by the minimal real eigenvalue of the velocity gradient
tensor. We use fully resolved turbulence simulations to confirm our predictions and study their Stokes and
Reynolds number dependence. We also discuss extrapolations to the parameter range relevant for typical
cloud droplets, showing that sling events at high Reynolds numbers are enhanced by an order of magnitude
for small Stokes numbers. Thus, intermittency could be a significant ingredient in the collisional growth of
rain droplets.
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Until today, predicting the onset of precipitation based
on cloud conditions remains a challenge [1]. A main issue
is the famous “bottleneck problem”—i.e., to explain the
broadening of narrow droplet size distributions produced
by initial condensation of vapor on aerosol particles. The
broadening is necessary to pass to the stage of rain
formation where droplets collide via differential settling
and coalesce to form large rain drops [2–7]. Already more
than half a century ago it was proposed that cloud
turbulence may contribute to rain formation by bringing
similar-sized droplets together [8]. Today it is well estab-
lished that as the droplets grow they pass through a range of
sizes, from about 15 to 50 μm in radius, where cloud
turbulence plays a significant role [2–7].
In clouds, the Reynolds number is very high [4,9]. It may

reach Reλ ∼ 104, which means that we have to deal with a
hallmark feature of developed turbulence: strong intermit-
tency. Hence, even microscopic droplets (≲20 μm) with a
short response time occasionally encounter extreme events
of strong vorticity or strain that evolve on a comparable,
“resonant” timescale. This includes regions with strong

compression in one direction. Those entrain the droplet and
then disappear due to a finite lifetime, creating droplets that
move along the original compression direction so fast that
they detach from the flow. This leads to the formation of one-
dimensional “droplet shocks” that overturn, generating
regions where droplet trajectories intersect at different
speeds [10–15]. As compared with smooth regions, where
close droplets have similar velocities, this leads to significant
enhancement in the collision rate [16], known as the “sling
effect.” Thus, it may foster rain formation. In fact, the rate at
which sling events occur along particle trajectories is a key
ingredient to the collision kernel [10,16,17]. For the sling
effect to occur, turbulent velocity gradients must exceed a
threshold [10] and persist for some time to have an effect. The
random nature of persistence times of Navier-Stokes turbu-
lence has not been taken into account so far, cf. [10,11,17].
Moreover, precise estimates of the sling rate as a function of
the Reynolds and Stokes numbers are currently elusive [18].
Since the largest Reynolds number Reλ attainable in

today’s numerical simulations is much smaller than those in
clouds, a major open task is to develop quantitative criteria
to predict the rate at which sling events occur and to
extrapolate them to Reynolds-number ranges relevant in
clouds.
In this Letter, we derive such a criterion and provide a

prediction for the Reλ dependence of the sling rate by
combining theory, recent rigorous results on the high
Reynolds-number limit [19], and fully resolved turbulence
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simulations. Following the physical picture of one-
dimensional shocks, we demonstrate that the problem
of the occurrence of the sling events can be effectively
reduced to a one-dimensional problem, which coincides
with that of a 1D Anderson localization problem [20].
Reductions to one-dimensional models of the sling effect
have been previously studied in [21–23]. We here dem-
onstrate and numerically validate the reduction by iden-
tifying the random potential of the one-dimensional
Schrödinger equation as given by the minimal real
eigenvalue of the turbulent velocity gradient tensor. In
the limit of small Stokes numbers St → 0 and for a
Gaussian random flow, sling events can be captured by
an optimal fluctuation [21–23]. In a turbulent flow, we find
that at St ≳ 0.1 the sling rate is determined by awhole range
of characteristic values and durations of anomalously large
compression.
We model droplets as inertial particles, which allows

separating the effects of turbulence from more complex
settings including thermodynamics and hydrodynamic
interactions [4,24,25]. Already in this simple setting, the
physics of particle collisions is quite rich. When the inertia
of a particle is very small and its velocity relaxation to the
ambient flow is fast, collision rates can be predicted in the
framework of the Saffman-Turner theory, which neglects
inertia. Particles are then tracers of a smooth air flow, so the
trajectories of their centers never intersect. Collisions occur
when finite-sized particles come so close that they geo-
metrically overlap [8]. Particle inertia introduces funda-
mentally new effects such as centrifugal forces. The
particles can still mostly be considered as tracers, however
in an effective flow that is compressible and differs from the
air flow [26,27]. Compressibility leads to preferential
concentration [2,28–31], i.e., particles distribute over a
multifractal attractor set in real space [32,33]. However, for
particles encountering strong velocity gradients the effec-
tive tracer description fails and particles can collide due to
the sling effect, i.e., the intersection of trajectories of nearby
particles.
In our approach, the position x and velocity v of each

particle obey [34]

_xðtÞ ¼ vðtÞ; τ_vðtÞ ¼ uðxðtÞ; tÞ þ vg − vðtÞ: ð1Þ

The equations describe the relaxation of the particle
velocity to the sum of the local turbulent velocity uðx; tÞ
and the gravitational settling velocity in still air vg with the
Stokes time τ. The system can be characterized by three
dimensionless parameters: the Stokes number St ¼ τ

ffiffiffiffiffiffiffi
ϵ=ν

p
,

where ϵ is the mean energy dissipation rate and ν is the
kinematic viscosity, the Froude number Fr ¼ ϵ3=4=ðgν1=4Þ,
where g denotes the gravitational acceleration, and the
Taylor-microscale Reynolds number Reλ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=ðνϵÞp

u2,
where u is the rms velocity component. All these

parameters influence the collisions strongly (Reλ via the
intermittency of turbulence), creating a complex problem.
For the parameter range in St and Fr considered in the

following, the sling effect is concentrated in rare spatio-
temporal regions that cause coexistence of three, or
more, streams of particles (“folds”) whose lifetime is of
order τ [10]. Outside of such regions, one can then
introduce a three-dimensional “particle flow” vðx; tÞ so
that vðtÞ ¼ vðxðtÞ; tÞ, i.e., the particle’s velocity is uniquely
defined by its position. If the flow exists, it has to obey

τð∂tvþ v ·∇vÞ ¼ uþ vg − v ð2Þ

to agree with Eqs. (1). If the evolution by this partial
differential equation generates a single-valued vðx; tÞ, the
assumption is self-consistent. Conversely, if the solution
becomes multivalued at some time, which implies that
some of the flow derivatives blow up at that time, then
vðx; tÞ does not exist in the blowup region. This reduces the
problem to the study of the generation of finite-time
blowups of velocity gradients by Eq. (2). One can see
from Eq. (2) that the particle velocity gradient PikðtÞ≡∇kviðxðtÞ; tÞ evolves according to [10]

τð _Pþ P2Þ ¼ A − P; ð3Þ

where AikðtÞ≡∇kuiðxðtÞ; tÞ is the fluid velocity gradient.
Blowups happen if the history of gradients AðtÞ along the
particle’s path xðtÞ produces jPτj≳ 1. The P2 term then
starts to dominate in Eq. (3), producing a finite-time
singularity. Crucially, the study of blowups in the matrix
equation, Eq. (3), can be reduced to the study of blowups in
a scalar equation, which reflects the picture of one-
dimensional shocks. Note that similar scalar equations
have been studied in [10,21–23]. While the reasoning
towards the scalar equation presented below shares simi-
larities to the one in [22,23], those works considered a
Gaussian flow where the antisymmetric contribution of the
velocity gradient tensor to the sling dynamics turns out to
be negligible for St → 0. In a turbulent flow, however, the
sling dynamics are sensitive to vorticity, and hence, we
account for the full velocity gradient tensor.
In turbulence, we observe empirically that a rare blowup

event consists roughly of two stages. Initially, PðtÞ has a
typical value with jPτj ≪ 1 that approximately can be set
to zero in considering growth to jPτj ∼ 1. Then it starts to
grow according to Pτ ¼ R

t
0 expð−ðt − t0Þ=τÞAðt0Þdt0 due to

the trajectory encountering a rare large A, which is
persistent on the scale of τ. We take A as quasiconstant
since significant oscillations would create ineffective
growth of P, leading to a much smaller probability of
generating a sling event. Accordingly, the matrix P grows
proportionally to A, and hence commutes with it. As a
result, the system can be diagonalized and the eigenvalues
follow the same equation as the matrix. Once it reaches a
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value P ∼ 1=τ, Eq. (3) reduces to _P ≈ −P2, i.e., the
evolution equation that generates a finite-time blowup of
the minimal real eigenvalue σðtÞ of P. As a result, we obtain

τð _σ þ σ2Þ ¼ a − σ; ð4Þ

where aðtÞ is the minimal real eigenvalue of the full
velocity gradient tensor A, which provides a qualitatively
valid description of the whole blowup process; see
Supplemental Material (SM) [36] for a detailed discussion.
We can quantitatively check the validity of Eq. (4) with

simulations by comparing the solutions of the full matrix
equation, Eq. (3), to the one-dimensional approximation,
Eq. (4). To this end, we obtained particle trajectories along
with their full velocity gradient history from pseudospec-
tral Navier-Stokes simulations [39] covering a Reynolds-
number range up to Reλ ≈ 500 and taking Fr → ∞, i.e.,
neglecting gravity; see SM [36] for more details on the
parameters of our simulations.
In Fig. 1 (top), we illustrate the direct correspondence

between blowup events in the full three-dimensional
matrix dynamics and the one-dimensional approximation
for a sample trajectory. We detect blowups as crossings

of integer multiples of π by the finite angle variable
cot α≡ σ þ ð2τÞ−1, which avoids dealing with infinities.
Figure 1 (bottom) illustrates this for the sample trajectory
shown in Fig. 1 (top). Based on this, for all Reynolds
numbers under consideration, we find that Eq. (4) captures
blowup events in about 95% of cases for small Stokes
numbers up to St ¼ 0.3 whereas this percentage de-
creases with increasing Stokes numbers; see inset in
Fig. 1 (bottom).
Having established the validity of a one-dimensional

description, we can derive a quantitative criterion to predict
blowups. The angle α is well-known in 1D localization
problems [20] as it is related to the logarithmic derivative of
the wave function ψ , which obeys the one-dimensional
stationary Schrödinger equation

−
d2ψ
dt2

þ a
τ
ψ ¼ −

ψ

4τ2
;

_ψ

ψ
≡ σ þ 1

2τ
¼ cot α: ð5Þ

Here, a=τ is the random “potential,” −1=ð4τ2Þ is the
“energy,” and t plays the role of the spatial coordinate.
The blowups of σ coincide with zeros of ψ . Most of the
time the amplitude of the potential is much smaller than that
of the energy and constitutes a small perturbation. This type
of motion is quasiclassical and can be described by [40]

ψðtÞ ∼ exp ðR t kðsÞdsÞffiffiffiffiffiffiffiffi
kðtÞp ; kðtÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4τ2
þ aðtÞ

τ

r
; ð6Þ

where we keep only the exponentially growing solution,
discarding the transients. This solution does not have zeros.
One can see by inserting Eq. (6) into Eq. (5) that its validity
demands that j _aj ≪ τk3. This condition is violated near the
turning points in the quasiclassical region of the potential,
defined by a ¼ −1=ð4τÞ where the right-hand side is small.
The value a ¼ −1=ð4τÞ was already identified as a critical
value in one-dimensional dynamics [21]. The zeros of ψ
(blowups) occur in the classically allowed region where the
energy −ð4τ2Þ−1 is larger than the potential a=τ and the
wave function oscillates. In order to construct a globally
valid solution that includes the classically allowed regions,
we study rare excursions of aðtÞ to values smaller than
−1=ð4τÞ. These excursions are typically well-separated in
time sowe can concentrate on the effect of one excursion that
is associated with a minimum of aðtÞ that is smaller than
−1=ð4τÞ. To obtain an analytical criterion, we perform a
quadratic expansion near the minimum, which we set at
t ¼ 0. This leads to the Weber equation [41]

−
d2ψ
dt2

þ Δ
D2

t2ψ ¼ Δψ ;
a
τ
þ 1

4τ2
≈ −Δþ Δ

D2
t2; ð7Þ

where we defined Δτ as the depth of excursions of aðtÞ
below the threshold −1=ð4τÞ and D as (half) the duration
of such excursions. The inset in Fig. 1 shows such an
excursion and the corresponding parabolic approximation.
By solving the equation, we can construct a globally

FIG. 1. Sling events along an individual trajectory in a flow
with Reλ ≈ 200. The top panel shows the minimal real eigenvalue
a of the sampled velocity gradient, the minimal real eigenvalue λP
of the particle velocity gradient, which is obtained by solving the
full matrix problem, Eq. (3), and its one-dimensional proxy σ,
which is obtained by solving Eq. (4). Sling events correspond to
the divergence of σ to negative infinity. The inset shows an
excursion of a below the critical value of −1=ð4τÞ (gray dashed
line) with duration 2D and depth Δτ. Here, the green dashed line
corresponds to the parabolic approximation discussed in the main
text. The bottom panel shows the corresponding one-dimensional
angle dynamics. Here, the sling events correspond to α crossing
multiples of π. For the given trajectory with St ¼ 0.3, the one-
dimensional dynamics captures the occurrence of the sling events
well. This is quantified in the inset, which shows the percentage
of the sling events that are captured by the one-dimensional
approximation, Eq. (4), compared to the full three-dimensional
dynamics, Eq. (3), as a function of the Stokes number at
Reλ ≈ 200.
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valid approximation for ψ ; see the SM [36]. The solution
demonstrates that only the quasiclassical regions with
a < −1=ð4τÞ in between the turning points trigger blowups.
The existence of the zero demands that

ffiffiffiffi
Δ

p
D > 1: ð8Þ

To create a blowup, jaðtÞj must therefore not only
become very large but also act for a sufficient time.
Furthermore, if the product is also smaller than 3, ψ has
only one zero, and accordingly, the excursion produces
only one blowup. However, if it is between 3 and 5 then two
blowups occur in a row, as the solution for ψ shows [36].
We observed both one- and two-blowup events at the
considered range of Stokes numbers. The probability of
three-blowup events, which would happen if the product
were higher than 5, was found to be negligible for small St.
To compare this criterion to data from our direct

numerical simulations (DNS), we determined the duration
of the excursions and their depths from the time series of
the minimal real eigenvalue aðtÞ of the velocity gradient
and solve the one-dimensional dynamics, Eq. (4). As Fig. 2
shows, our criterion, Eq. (8), indeed separates well excur-
sions that lead to at least one sling event from those that do
not. Remarkably, it even performs well for Stokes numbers
as high as St ¼ 0.7 where the above theory, which assumes
a small probability of excursions, is not expected to work.
Unfortunately, despite that Eq. (8) describes blowups of
Eq. (4) at St ¼ 0.7 accurately, the correspondence between
full matrix dynamics and one-dimensional approach is
already weak; see inset in Fig. 1. Equation (8) describes
accurately about 80% of blowups of Eq. (3) at St ¼ 0.5,
which we propose as a heuristic upper limit of the theory.
Thus, it covers the Stokes-number range of typical droplet
sizes in clouds [3,4,42] where turbulence is most relevant.
Based on these findings, we can make statements about

the sling rate as a function of the Reynolds number. The
sling rate F can be obtained as

F ¼ fPð
ffiffiffiffi
Δ

p
D > 1Þ; ð9Þ

i.e., the rate f of excursions of aðtÞ below −1=ð4τÞ times
the conditional probability that the excursion obeys the
criterion, Eq. (8), given that it reaches below −1=ð4τÞ.
Using the observed f, D, and Δ along trajectories from our
DNS, we demonstrate the validity of the above equation in
Fig. 3 as a function of the Stokes and Reynolds number.
Across the range of Stokes and Reynolds numbers inves-
tigated here, we find excellent quantitative agreement.
To turn Eq. (9) into a prediction for the sling rate F,

which can also be extrapolated to higher Reynolds num-
bers, we need to characterize the rate of excursions f, the
probability of excursions leading to sling events, and their
dependence on Reλ and St. The excursion rate is the
fraction of time spent below the threshold value divided
by the average duration of the individual excursions:

f ¼ 1

2hDi
Z

−ð4τÞ−1

−∞
pðaÞda; ð10Þ

wherepðaÞ is the probability density function (PDF) of aðtÞ.
The integral above is the probability of excursions.We expect
it to increasewith the Reynolds number due to intermittency.
In contrast, hDi, which is (half) the average duration of
excursions, should be approximately Reynolds number
independent (but dependent on the Stokes number). For
the average duration and its Reynolds number independence,
we make a phenomenological argument. The inverse of the

FIG. 2. Scatter plot of depth and duration of excursions of
the sampled minimal eigenvalue of the velocity gradient for a
Reynolds number of Reλ ≈ 300 and different Stokes numbers.
The data points are plotted in red if a sling event can be identified
in the corresponding one-dimensional dynamics, Eq. (4), and
blue otherwise. The criterion, Eq. (8) (blue line), separates sling
events from nonsling events.

FIG. 3. Sling rate as a function of the Stokes and Reynolds
number. The black dashed line in the top panels corresponds to the
sling rate obtained from DNS data using the one-dimensional
description; the blue line is the rhs of Eq. (9), evaluated by
sampling the excursion rate and the probability that those fulfill the
criterion from DNS. The red line corresponds to the prediction of
the sling rate as a function of the Stokes and Reynolds number.
Here, the error bars are 50% and 90% confidence intervals that are
obtained by a bootstrap over the fit parameter ranges. (a) The
Stokes number varies at a Reynolds number of Reλ ≈ 300. (b) The
Stokes number is set to St ¼ 0.1 andwevary theReynolds number.
(c) Extrapolated prediction of the sling rate as a function of St
and Reλ. The white dots mark the DNS datasets used for the
extrapolation.
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threshold value −1=ð4τÞ defines a timescale that is propor-
tional to St and independent of Reλ. We expect the character-
istic timescale for excursions to behave similarly and find
hDi ≈ 2.52 StτK , see SM [36], where τK denotes the
Kolmogorov timescale.
To evaluate the integral, we note that for large negative

fluctuations of aðtÞ, νa2ðtÞ should be approximately
proportional to the local dissipation rate. Therefore, we
anticipate that the relevant left tail of pðaÞ is directly related
to the right tail of the PDF of the dissipation rate, which was
observed to be log-normal in very good approximation
[19]. The log-normal approximation should therefore also
work well for pðaÞ. One can validate this by using large-
deviation theory and our DNS results, where Reλ is the
corresponding large parameter. Because of the log-normal
approximation for pðaÞ, the integral in Eq. (10) can be
evaluated analytically and features an explicit dependence
on Reλ and St; for more details, we refer to the SM [36].
Finally, we turn to the probability Pð ffiffiffiffi

Δ
p

D > 1Þ. For
reasons similar to those for hDi, we expect it to have only a
weak Reynolds number dependence [36]. This is confirmed
by our DNS data. To fix the Stokes number dependence, it
is useful to observe that Pð ffiffiffiffi

Δ
p

D > 1Þ is well-defined for
any St and study its behavior at 0 < St < ∞. In the limit
St → 0, this probability goes to zero, since the average
duration tends to zero for St → 0 requiring infinitely deep
excursions. In the limit St → ∞, it is a finite number that
gives the probability that an excursion of a below zero
obeys Eq. (8). Since Pð ffiffiffiffi

Δ
p

D > 1Þ is expected to grow with
St monotonously, this suggests that it can be captured by a
sigmoid function with two parameters controlling its
amplitude and steepness. This is confirmed in the SM [36].
Above, we described how to characterize all the relevant

terms in Eq. (9). The result is a quantitative description of
the sling rate and its dependence on Reλ and St (see SM
[36] for an explicit formula). Equipped with this, we can fit
our results as a function of the Reynolds and Stokes
numbers. In Fig. 3, we show that this fit reproduces the
observed sling rates in good approximation. Importantly,
these fits allow an extrapolation of the results to higher
Reynolds numbers as relevant in clouds. The extrapolation
of our prediction in Fig. 3 shows that the effect of high
Reynolds numbers becomes appreciable for lower Stokes
numbers. For St ¼ 0.1 and Reλ ¼ 104, our extrapolation
predicts FτK ≈ 2 × 10−4, an increase of roughly an order of
magnitude compared to the value at Reλ ≈ 300. The
stronger Reynolds number dependence of the sling effect
for small Stokes numbers might cause it to become a
dominant mechanism of droplet growth in clouds also for
small droplets. A precise prediction, however, about the
collisions for a given sling rate requires future research
about the timescale and spatial extent of sling events and
their respective dependence on Reλ.
In summary, we introduced a combined theoretical and

computational approach to quantifying the sling rate that

can be extrapolated to large Reλ. This enables predictions
at high Reλ of clouds, inaccessible to simulations in the
near future, for typical cloud droplets (< 20 μm). We
confirmed the theory (valid also with gravity) through
simulations of sling dynamics in turbulence, which
qualitatively hold down to Fr ∼ 1. Future studies are to
include gravity computationally and provide the full
formula for the collision kernel of the cloud droplets
theoretically.
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