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We probe the fundamental underpinnings of range resolution in coherent remote sensing. We use a novel
class of self-referential interference functions to show that we can greatly improve upon currently accepted
bounds for range resolution. We consider the range resolution problem from the perspective of single-
parameter estimation of amplitude versus the traditional temporally resolved paradigm. We define two
figures of merit: (i) the minimum resolvable distance between two depths and (ii) for temporally
subresolved peaks, the depth resolution between the objects. We experimentally demonstrate that our
system can resolve two depths greater than 100× the inverse bandwidth and measure the distance between
two objects to approximately 20 μm (35 000 times smaller than the Rayleigh-resolved limit) for temporally
subresolved objects using frequencies less than 120 MHz radio waves.
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Range resolution [1–6] is the ability to determine the
distance between two objects along the same line-of-sight
when performing remote sensing. The prevailing thought is
that radar range resolution is inextricably linked to the
inverse bandwidth of a pulse [5,6] or to the wavelength of
the electromagnetic wave owing to the coherent nature of
the interfering wavefronts. We quote, “Wave theory indi-
cates that the best vertical resolution that can be achieved is
one-quarter of the dominant wavelength [7]. Within that
vertical distance any reflections will interfere in a con-
structive manner and result in a single, observed reflection”
[8]. The desire for better range resolution has driven
scientists and engineers to ever-higher frequencies for radar
and lidar [9–12]. However, this comes at a severe cost
because transmission through and reflection from various
material media is critically tied to frequency [8,13–16]. We
dramatically improve upon these widely accepted limits of
range resolution using a novel class of self-referenced
functions to demonstrate several orders of magnitude
improvement in range resolution beyond known limits.
For transform-limited pulses, two radar targets are

considered range resolved when the range resolution
distance dr obeys the inequality

dr ≥
cτ
2
; ð1Þ

where c is the speed of light, τ is the pulse width, and 2
comes from the round-trip of the pulse [5,6]. Phase or
frequency encoding are commonly employed to realize
high time-bandwidth product pulses, which when
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FIG. 1. Free-space (a) and guided-wave (b) and (c) ranging
experimental schematics. Using parameter estimation techniques
on interference-class waveforms, we estimate the distance be-
tween two scattering depths from a target which would otherwise
be temporally subresolved.
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combined with match-filtered pulse compression, lead to
high temporal resolution. Therefore, a more general range
resolution for a pulse is set by the inverse bandwidth [5,6].
Going beyond these limits has been historically difficult.
Wong and Elefthiardes used superoscillations to reduce
ranging uncertainty by 36% [17]. Recently, Komissarov
et al. used partially coherent radar in an attempt to decouple
range resolution from the signal bandwidth [18] achieving a
factor of 10 improvement. We classify the current state of
the art as a “temporally resolved” paradigm.
Here, we introduce a new “amplitude resolved” para-

digm using self-referenced interference-class functions as
shown in Fig. 1. An interference-class pulse is sent to a
remote object. Multiple scattering depths along the same
line of sight result in the interference of temporally shifted
versions of the waveform. The resultant waveform is
measured by the receiver. In theory, by using parameter
estimation, we can determine range, distance between
objects, relative scattering amplitudes, etc. We expect that
amplitude-resolution ranging methods have been unex-
plored because of the inability to distinguish between loss
and subresolved interference peaks.
Our system relies on parameter estimation from the

interference between coherent pulses. A fundamentally
different parameter estimation has also been used to over-
come the spatial Rayleigh resolution limit of incoherent
sources using mode sorting [19–23], allowing for funda-
mental definitions of spatial resolution [24–26]. Of note,
Ansari et al used two incoherent optical pulses and mode
decomposition to achieve supertemporal resolution [27].
In designing our functions, we employ two behaviors.

First, a region of the function must be very sensitive to
interference requiring extended and steep temporal gra-
dients. Second, a zero-gradient region within the function,
which is insensitive to the interference, is used as an
amplitude reference. In this manner, as long as all portions
of the pulse experience the same attenuation (or amplifi-
cation) and there is a flat spectral response in a medium or
upon reflection, the range resolution properties of the pulse
are preserved.
We consider three types of pulse functions as shown in

Fig. 2(a). The dashed orange line shows a specially
designed interference-class, bandlimited pulse. The second
interference class function is shown in solid green line,
which we denoted as a “triangle” function. The dotted blue
line shows a standard sinc2 pulse, which is not an
interference-class function, but is only used as a means
of comparison of a Rayleigh criterion for temporal pulse
resolution. The bandlimit for the sinc2 and the custom
function, in the image is the same. The corresponding fast
Fourier transforms are shown in Fig. 2(b).
For the first type of self-referenced pulses, we use

bandlimited function theory (e.g., used in superoscillations
[28–32]) to generate our specially designed functions.
While it is likely that similar behavior could be achieved

with many different types bandlimited functions, we use
the formalism of Šoda and Kempf [32]. We generate
our tailored and bandlimited functions by exploiting the
product of a bandlimited “canvas” cðtÞ function and arbi-
trary (e.g., Taylor) polynomials fnðtÞ:

gðtÞ ≔ fnðtÞcmðtÞ; ð2Þ

where we use

cmðtÞ ¼ sinc

�
Ωt
m

�
m

ð3Þ

and

fnðtÞ ¼
Xn−1
k¼0

aktk: ð4Þ

For m > n this is a square-integrable function with band-
limit set by Ω. See Supplemental Material for more
information [33]. We note that the specific polynomial
function used herein is not unique—more generalized,
optimized functions that have the features we describe
here will be pursued in future work.
For the second type of self-referenced functions, we

introduce an idealized line-segment function we call a

FIG. 2. Pulses and fast Fourier transforms. Panel (a) shows the
functions used in the Letter. Panel (b) shows their Fourier
transforms. Panel (c) shows the interfered waveforms from the
coherent interference of two equal-amplitude pulses.
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“triangle pulse” TrðtÞ, shown in solid green in Fig. 2(a).
The triangle pulse is not bandlimited, so we consider
approximations to the bandwidth based on the Fourier
transform. Nevertheless, this function is better for meas-
uring the minimum distance between two objects (range
resolved objects) owing to the linearity of S over the full
interference range.
Our third type of function is not an interference-class

function, but is used simply to define a temporally resolved
function. Similar to the Rayleigh criterion [34], when the
peak of one pulse is separated by a distance greater than
first minimum of a second pulse, the pulses are considered
to be resolved. A classic example is the sinc2,

c2ðtÞ ¼ sinc

�
Ωt
2

�
2

: ð5Þ

For a bandlimited pulse, the minimally Rayleigh-resolved
temporal shift tR (the time analog of resolvability in space)
is given by tR ¼ 2π=Ω. How deeply we can superresolve
the targets is quantified by the ratio

rs ¼ td=tR; ð6Þ

where td is the temporal delay between the two returning
pulses. Since rs is both a function of the delay td and the
bandwidth tR ¼ 2π=Ω, for the work herein it is more
precise to change the bandlimit to test the fundamental
properties of the relative shift in the system rather than
changing the relative pulse delay.
We define a signal S akin to balanced interferometric

detection used to measure transverse deflections [35],
namely,

S ¼ Acmax − Acmin

Almax − Almin
; ð7Þ

where Acmax, Acmin are the maximum and minimum
amplitude of the function in the steep center region,
respectively and Almax, Almin are the maximum and mini-
mum of the flat temporal lobes.
Consider the ranging experiments shown in Fig. 1. In

Fig. 1(a), waveforms are sent to a two-depth target. Upon
reflection, the two reflected waveforms interfere and are
sent to the receiver. The resultant waveform is measured
and processed to estimate the distance between the two
depths of the target.
To better test the limits of this technique, we use low-

noise guided-wave experiments as shown in panels 1(b)
and 1(c). Figure 1(b) shows a guided-wave equivalent to the
free-space radar. However, there are unequal amplitudes
from the scattered waves measured at the receiver based
on the splitting ratios of the tee junction. To create
equal-amplitude interference, we used the experiment
shown in Fig. 2(c), which is the radio wave equivalent

of the Michelson interferometer. In Fig. 1(c), the delay
cable is connected to both channels 1 and 2. Channel 1
measures the interfered waveform and channel 2 measures
the input (non-interfered) waveform. Both input channels
on the scope are set at 1 MΩ to achieve the desired re-
flections and measurement. The experiments in Figs. 2(b)
and 2(c) utilize high precision frequency tunability to
achieve ultrasmall relative pulse shifts rs.
The functions are generated numerically, consisting of

4000 points and a duration of 40 tR units. These signals
were uploaded to an arbitrary waveform generator (AWG).
The bandlimit of the system is set by the repetition rate of
the arbitrary waveform generator. For example, a repetition
rate of 1 MHz results in a 40 MHz bandlimit for the
bandlimited pulses.
To perform the ranging experiments as shown in

Fig. 1(c), the arbitrary waveform generator sends the signal
down the cable. The gðtÞ pulse is sent to channel 1 of the
oscilloscope and is teed to another cable which then adds a
one-way temporal measured delay of tc ¼ 4.4 ns (the
measured delay is 3.8 ns when not connected to channel
2 and the measured cable length is lc ¼ 72 cm) implying
that the pulse delay is td ¼ 2tc ¼ 8.8 ns. The reflected
signal from channel 2 interferes in channel 1 with the
original displaced signal the gðtÞ function. When using the
bandlimited function gðtÞ, for example, channel 1 then
measures gðtÞ þ gðtþ 2tcÞ and similarly for the other
functions.
Figure 2(c) shows the resultant interference waveform in

channel 1 for the three different types of pulses used herein
for ts ¼ 0.5tR. There are several important features of this
graph that should be noted. First, the c2ðtÞ interference
pattern is not resolved, as expected, since ts ¼ 0.5tR.
Second, the interference regions in the center of the gðtÞ
(peaks have changed value) and triangle functions TrðtÞ
(interference plateaus) have changed dramatically. Third,
the heights of the side lobes are still roughly constant for
both interference-class functions.
We consider two important figures of merit for this range

resolution system: (i) the minimum distance to amplitude-
resolve two objects and (ii) the distance resolution between
objects when the objects are amplitude resolved but still
temporally subresolved (i.e., rs < 1).
The triangle function is designed to amplitude resolve

two objects with depths that are closely spaced along the
same line of sight. Typically, in radar, the spectral band-
width is given by the width of the spectrum at the 3 dB
down point. However, owing to the irregular spectrum of
the triangle pulse we use a conservative estimate based on
where most of the power is found. Using the bandwidth
from the Fourier transform as shown in Fig. 2(b), we can
see that most of the power lies below 20% of the bandlimit
for the bandlimited functions using the same pulse repeti-
tion rate. As noted above, the bandlimited frequency was
40× the repetition rate. From this observation, we define a
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conservative bandwidth of the triangle function to be 8×
the pulse repetition rate.
The resolving power of the triangle function can be

determined from Fig. 3. Here, we used the 72 cm delay
cable disconnected from channel 2 and only connected to
channel 1 yielding a 7.6 ns round-trip delay time. We
change the bandwidth of the triangle pulse until we can no
longer distinguish between the S curve with and without a
cable. Here, we see that at approximately 1 MHz band-
width, it is possible to distinguish the signal with and
without the delay cable. This corresponds to rs ≈ 0.008 or
better than 100 times the inverse bandwidth.
To further demonstrate the power of this technique, we

removed the 72 cm cable and used only the extra path length
of a bnc T junction, which has about 1.3 cm path length. We
used a 2.5 GSa=s triangle function with 10 samples per time
unit tR (401 total points as opposed to 4000 described above)
and measured the interference signal on an 800 MHz
oscilloscope. The estimated bandwidth of the signal, based
on the Fourier transform, was approximately 100 MHz, but
with some small amount of frequency content up to
500 MHz. With and without the T junction, the value of
S was 0.5573� 0.0002 and 0.5511� 0.0004, respectively,
or a separation of 15 standard deviations. This implies sub-
mm resolution.We then added amale-to-male bnc connector
that added another couple centimeters and the value dropped
to 0.5285� 0.0001.
The second important figure of merit for range resolution

is the ability to determine the distance between two objects
for temporally subresolved pulses. Figure 4 shows the
signal S vs rs (the ratio of the round-trip cable delay to the
Rayleigh criterion) using the bandlimited function gðtÞ.
It can be seen in Fig. 4 that the theory and experiment
agree well.
The slope of S tells us the sensitivity of the system to

changes in the relative temporal shift of the two functions.
The S function for the bandlimited pulse is roughly
quadratic in the region of zero shift and becomes linear
after about rs ¼ 0.5 or half the Rayleigh resolved time.
We want to know how well this system can determine the

relative time between two shifts rs1 and rs2. For a fixed
cable length,

Δrs ¼ 2tc
ΔΩ
2π

; ð8Þ

where Δrs ¼ rs2 − rs1 and ΔΩ=2π is the smallest resolv-
able change in the bandwidth of the pulse.
In the inset of Fig. 4, it shows the change in the signal of

a small incremental frequency shift. Using the 72 cm cable
with tc ¼ 4.4 ns delay and a 2 MHz repetition rate
(Ω=2π ¼ 80 MHz bandlimit) resulted in approximately
ts ¼ 0.69 shift. The bandwidth of the pulses was changed
from 79.960 to 80 MHz in increments of 8.0 kHz. Each
trace was averaged 512 times and each setting was
measured 10 times with 15 to 30 sec between each
measurement. Assuming a signal to noise ratio of 1, we
can resolve 80 MHz bandwidth changes down to about
3.2 kHz. These data imply Δrs ¼ 2.8 × 10−5. The inferred
depth resolution of our system is then Δx ¼ vctRΔrs=2≈
20 μm. Thus, for a target with two equal-amplitude,
temporally subresolved reflected pulses, we can measure
the relative distance between them down to 35 000 times
below the Rayleigh limit and several orders of magnitude
below the timing resolution of the oscilloscope.
While the primary emphasis of this paper concerns the

simplest case of equal-amplitude reflections like those
obtained using the setup in Fig. 1(c), in realistic applications,
target reflection amplitude will typically be unequal, like
those generated in Fig. 1(b). In the Supplemental Material
[33], we show a two-parameter signal that involves both a
temporal shift and disparate amplitudes and disparate
amplitudes based.
We note several important comments. (i) These experi-

ments were done using low frequency radio wavelengths.
However, they are equally valid in all parts of the electro-
magnetic spectrum. (ii) As demonstrated preliminarily, the

FIG. 3. The signal S is plotted against bandwidth of the tri-
angle function with (interference) and without (no interference)
a delay cable.

FIG. 4. Signal S vs time shift. The signal S from Eq. (7) is
computed and measured as a function of the relative shift of
two gðtÞ functions.
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system can be generalized to account for disparate reflec-
tion amplitudes and multiple layers by creating more exotic
functions and signal analysis. (iii) It is straightforward to
convert time resolution to space resolution by transversely
scanning the receiver in Fig. 1(a) and solving the inverse
problem opening up high resolution imaging.
In summary, we have demonstrated both theoretically

and experimentally that it is possible to obtain range
resolution far better than the Rayleigh criterion or the
inverse bandwidth. We employed the coherent aspects of
radio wave transmission and detection to measure sensitive
interference patterns. In the future work, wewill explore the
fundamental limits of this technique, as well as apply this
method to more realistic ranging tasks in the field.
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