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Inspired from electronic systems, topological photonics aims to engineer new optical devices with robust
properties. In many cases, the ideas from topological phases protected by internal symmetries in fermionic
systems are extended to those protected by crystalline symmetries. One such popular photonic crystal
model was proposed byWu and Hu in 2015 for realizing a bosonicZ2 topological crystalline insulator with
robust topological edge states, which led to intense theoretical and experimental studies. However, a
rigorous relationship between the bulk topology and edge properties for this model, which is central to
evaluating its advantage over traditional photonic designs, has never been established. In this Letter, we
revisit the expanded and shrunken honeycomb lattice structures proposed byWu and Hu and show that they
are topologically trivial in the sense that symmetric, localized Wannier functions can be constructed. We
show that the Z and Z2 type classifications of the Wu-Hu model are equivalent to the C2T protected Euler
class and the second Stiefel-Whitney class, respectively, with the latter characterizing the full valence bands
of the Wu-Hu model, indicating only a higher order topological insulator. Additionally, we show that the
Wu-Hu interface states can be gapped by a uniform topology preserving C6 and T symmetric perturbation,
which demonstrates the trivial nature of the interface. Our result reveals that topology is not a necessary
condition for the reported helical edge states in many photonics systems and opens new possibilities for
interface engineering that may not be constrained by topological considerations.

DOI: 10.1103/PhysRevLett.131.053802

Topological photonics began with the seminal work by
Raghu and Haldane [1,2] where the idea of topology in the
electronic band structures were generalized to waves in
periodic media, leading the way for realizing topological
phenomena in artificial structures [3–5]. The early explo-
rations of topological photonics were focused on the
photonic Chern insulators where the time-reversal sym-
metry is explicitly broken [6,7]. With the discovery of
topological crystalline insulators (TCIs) [8], the topological
phases were significantly enriched beyond the tenfold way
classification of topological insulators and superconductors
[9] that opened new opportunities in engineering topologi-
cal phases in bosonic systems.
However, one has to be cautious when generalizing the

ideas from the early examples of topological phases,
especially to those that are protected by crystalline sym-
metries. For example, due to the fact that crystalline
symmetry is often broken at a physical boundary, some
TCIs only exhibit robust boundary states at certain crystal
orientations [8]. Moreover, with the discovery of novel
states such as fragile topological phases [10–13] and higher
order topological insulators [14,15], the notion of bulk-
boundary correspondence of codimension 1 may not have
any direct generalization to TCIs at all.
The topological photonic crystal proposed by Wu and

Hu [16], which we refer to as the Wu-Hu model, is an
elegant structure for realizing a proposed bosonic analog of

the fermionic Z2 topological insulator (TI) (Fig. 1). Hence
it is claimed to host symmetry protected edge states that
enable robust light transport free from backscattering. The
simplicity of the model triggered innumerous experimental
and theoretical studies after its discovery [17–37].
However, the exact bulk-boundary correspondence has
never been identified; therefore, the robustness of the edge
states and their relation to the bulk topology remain unclear.
Here, we revisit theWu-Hu model and analyze the nature of
its topology with a special emphasis on the edge properties.
We briefly review the original formalism of the Wu-Hu

model as the foundation of discussion. The tight-binding
model of an expanded or shrunken honeycomb lattice
provides a faithful description of the Wu-Hu model in
which the unit cell for a graphene lattice is enlarged to
include six atomic sites, and the couplings are divided into
intracell (t1) and intercell (t2) couplings [Fig. 1(a)]. When
t1 ¼ t2, a fourfold degeneracy appears at the Γ point, which
gives rise to a “double Dirac cone.” The cell-periodic part
of the degenerate Bloch functions have the symmetries of
jp�i and jd�i orbitals, and a gap opening and band
inversion can be achieved by tuning the relative magnitudes
of t1 and t2 [Figs. 1(c) and 1(e)].
At certain high symmetry momenta, a composite pseu-

dofermionic time-reversal symmetry T̃ 2 ¼ −1 was con-
structed and the Z2 topology was derived through the
analogy to the spinful case. For example, at the Γ point in
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the ðjpxi; jpyiÞ basis, the pseudo time-reversal operator is
given by

T̃ ¼ UK ¼ ½DE1
ðC6Þ þDE1

ðC2
6Þ�=

ffiffiffi

3
p

K ¼ −iσyK; ð1Þ
in which E1 is the irreducible representation (irrep) for
6mm10 (the little cogroup at Γ) furnished by ðjpxi; jpyiÞ
orbitals and DE1

ðC6Þ is the corresponding matrix repre-
sentation of C6; K is the bosonic time-reversal operator.
Equation (1) satisfies T̃ 2 ¼ −1 and thus protects Kramer’s
degeneracy at Γ point.
The Z2 index was obtained through the parity of spin-

Chern number for each pseudospin channel where the
jpþiðjp−iÞ and jdþiðjd−iÞ orbitals are assigned with
pseudospin up (down) [16,32]. The bulk-boundary corre-
spondence of the 2D spinful TI was directly applied in the
original proposal. The interface states between different
phases of Wu-Hu model were claimed to be gapless (with a
tiny gap due to the C6 breaking at the interface), immune
from backscattering and possess spin-momentum locking.
It is, however, not fully justified why Eq. (1) would

constrain the global algebraic classification of Bloch
functions and imply physical consequences exactly the

same as the time-reversal symmetry in spinful systems.
Here, we examine the topology of the Wu-Hu model using
topological quantum chemistry [38–42] and Wilson loop
methods [12,43,44], which are two important tools to
diagnose nontrivial topology with Wannier obstruction
when crystalline symmetry is involved. The Wannier
obstruction is important because it can be directly related
to the topological boundary states [45,46]. It has been
recently shown that for continuum experimental systems
the Wannier obstruction is a necessary condition for robust
interface states [47], which is of utmost importance.
In topological quantum chemistry, the symmetry proper-

ties of the Bloch functions of Wannier-representable bands
is equivalent to a direct sum of elementary band repre-
sentations (EBRs). Throughout the Brillouin zone, the
symmetry properties can be well described by the collec-
tion of irreducible representations (irreps) furnished by the
Bloch functions for the little groups at high symmetry
momenta. In Figs. 1(c) and 1(e), we calculate the irreps at
high symmetry momenta for both shrunken and expanded
phases in the Wu-Hu model and the relevant EBRs are
listed in Table I [48–51]. For the valence bands (VBs), we
obtain ðA1↑GÞ1a ⊕ ðE1↑GÞ1a for the shrunken case and
ðA1↑GÞ3c for the expanded case, respectively. The VBs for
both phases transform as a direct sum of EBRs, which
suggests the trivial nature of the bulk topology.
We also calculated the phase of the eigenvalues of the

Wilson loop operator, which is defined by the following
path ordered integral [43]:

WC ¼ P exp

�

i
I

C
AðkÞ · dk

�

; ð2Þ

where ½AðkÞ�mn ¼ ihumðkÞj∇kjunðkÞi is the non-Abelian
Berry connection for the full VBs. Figure 1(b) shows the
geometry of the Wilson loop, where the closed loop C is
defined by the reciprocal lattice vectorG1 and the spectra is
plotted as the loop moves along G2 [Figs. 1(d) and 1(f)].
For both phases of the Wu-Hu model, no winding is
observed, which also suggests that the whole VBs can
be smoothly deformed into a trivial atomic insulator.
Next, we briefly discuss the topological invariants for the

VBs of the Wu-Hu model. In the Supplemental Material
[52] we prove that the spin-Chern number and the Z2 index

FIG. 1. (a) A schematic of the Wu-Hu lattice. The shadowed
area indicates the hexagonal unit cell; t1 (t2) correspond to
intracell (intercell) couplings. When each site moves away from
(toward) the unit cell center, t1 < t2 (t1 > t2), it is referred to as
an expanded (shrunken) phase. (b) (top) 1a, 2b, 3c Wyckoff
positions of the unit cell color coded in black, dark gray, and light
gray, located at the center, vertices, and edges, respectively;
(bottom) Brillouin zone of a triangular lattice. (c),(d) The band
structure of an expanded phase and its corresponding Wilson
loop. (e),(f) The band structure of a shrunken phase and its
corresponding Wilson loop. Irreps are noted in the band diagrams
at each high symmetry point. Note in (c) and (e), Γ5 and Γ6 are
representations of d and p orbital states, respectively, therefore
showing the band inversion. In (d) and (f), both phases show
trivial Wilson loop without winding from −π to π.

TABLE I. The EBRs for space group P6mm10 (the symmetry
of the Wu-Hu model). The EBRs are induced representations of
localized orbitals and are labeled by ðρ↑GÞp in which p is the
Wyckoff position where the orbitals sit, ρ is the irrep furnished by
the orbitals, and G is the space group of the system.

Band representations ðA1↑GÞ1a ðE1↑GÞ1a ðA1↑GÞ3c
Γ Γ1 Γ6 Γ1 ⊕ Γ5

K K1 K3 K1 ⊕ K3

M M1 M3 ⊕ M4 M1 ⊕ M3 ⊕ M4
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defined for Wu-Hu model are equivalent to the Euler class
and the second Stiefel-Whitney class protected by C2T
symmetry [13,54–59]. In 2D systems with C2T symmetry,
two-band subspaces are classified by theZ type Euler class.
A nonzero Euler class forbids the construction of sym-
metric localized Wannier functions; however, this obstruc-
tion may be lifted by adding trivial bands. In this many-
band limit, the parity of the Euler class becomes the well
defined Z2 type second Stiefel-Whitney class ω2. The
expanded phase belongs to this category and is charac-
terized by a nontrivial ω2 ¼ 1, which indicates that the
Wannier functions cannot be localized at the center of the
unit cell. The associated physical consequence is a quan-
tized quadrupole moment and fractional corner charges; in
other words, ω2 ¼ 1 characterizes a higher order topo-
logical insulator [35,36,54,58–60].
In fact, it can be shown that the VBs for both phases of

Wu-Hu model are adiabatically connected to decoupled
atomic clusters by selectively turning off intracell or
intercell couplings (referred to as “strong binding limit”),
which agrees well with the above analysis. With all these
observations we conclude that both phases of the Wu-Hu
model are topologically trivial in terms of Wannier
obstruction; therefore, neither of the two phases are
responsible for the gapless interface states. This can be
demonstrated in the tight-binding calculation. Starting with
the gapless interface and adiabatically turning off the
couplings connecting two phases to form two open boun-
dary conditions (OBCs), the edge states would be in
general gapped and pushed toward the bulk bands. If the
interface or edge states are results from the nontrivial bulk
topology, we can keep track of them and they should be
localized exactly at the nontrivial half of the system.
However, depending on the edge configuration, the edge
states can be localized at different phases. The edge
inevitably breaks the integrity of at least one type of the
decoupled clusters in the strong binding limit, which is
referred as “cutting” through the corresponding Wannier
center in the following context. In Fig. 2, we show that for
the shrunken phase where the Wannier center sits at 1a
Wyckoff position, the gapped edge states appear when the
boundary cuts through 1a position; for the expanded case
where the Wannier center sits at 3c Wyckoff position, the
gapped edge states appear when the edge cuts through 3c
Wyckoff position. This observation strongly suggests that
the interface states are originated from the local defects in
contrast to the well-known topological boundary states
arising from the bulk Wannier obstruction [45,46].
Typically, the interface states are explained by the direct

generalization of the bulk-boundary correspondence of
the 2D spinful TI. However, the Kramer’s degeneracy in
1D Brillouin zone cannot be protected by the composite
pseudofermionic time-reversal operator in the Wu-Hu
model, thus invalidating the generalization. An alternate

interpretation explains the interface states as the Jackiw-
Rebbi soliton eigen solutions that arise from a local band
inversion [32]. However, since the Jackiw-Rebbi solutions
give one set of interface states for each pseudospin, spin
mixing can potentially gap out the interface states. And the
symmetry that protects the bulk topology in the Wu-Hu
model, namely C6 and T 2 ¼ 1, does not imply spin
conservation. Consider the Wu-Hu model in its quasiorbital
basis, where jp�i and jd�i orbitals sit at 1a Wyckoff
position of a triangular lattice. The spin flipping terms are
locally forbidden by C6 symmetry, but the following
nonlocal spin-flip channel is always allowed:

Δ ¼ ta†i;�aj;∓ þ H:c:; i ≠ j; ð3Þ

where i, j are labels of unit cells and � are labels for
pseudospins and H.c. stands for Hermitian conjugate.
Here, we explicitly show that the interface states can be

gapped considerably even by a C6 and T 2 ¼ 1 symmetric
perturbation that is uniform across the interface (Fig. 3).
The perturbation is added to ensure that when t1 ¼ t2, a
double Dirac cone appears at Γ point. The band inversion is
then achieved by tuning the relative magnitude of t1 and t2
(see Supplemental Material [52]). Therefore, the original
Wu-Hu Hamiltonian is explicitly included. Also, no gap
closing ever happened between the VBs and conduction
bands under the perturbation; thus, the topology is

FIG. 2. (a),(b) Demonstration of two distinct edge configura-
tions. Red (blue) sites correspond to the expanded (shrunken)
phase, and a complete hexagonal unit cell is marked in the figure.
In (a), the edge cuts through 3c Wyckoff position whereas in
(b) through 1a Wyckoff position. The hopping across the cut is
zero so that the expanded and shrunken regions are decoupled
and the dispersion is calculated individually for each region. (c),
(e) Energy dispersion in a strip geometry with edge configuration
shown in (a). The gapped edge states only show up in the
expanded phase. (d),(f) Energy dispersion with edge configura-
tion shown in (b). The gapped edge states only show up in the
shrunken phase.
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preserved. For a system with an interface, we write the
perturbed Hamiltonian as

H0 ¼ H0 þ ΔH; ð4Þ
in which H0 describes the unperturbed interface of the
Wu-Hu model and ΔH is the perturbation. The spectra of
interface states for H0 and H0 are shown in Fig. 3. For H0,
there exists a gap at zero energy that is hardly visible (as
observed in the Wu-Hu model [16]), whereas for H0, the
gap is comparable to the bulk band gap. Pseudospin
character of the interface states also shows clear mixing
for H0 compared to H0, which is consistent with the
argument that C6 symmetry does not imply spin conserva-
tion. All these observations strongly suggest that, aside
from C6 symmetry breaking, other mechanisms can open a
gap for the interface states, therefore showing the absence
of topological protection in the system clearly.
In addition, we compare the Wu-Hu interface and the

edge of 2D TIs protected by T 2 ¼ −1 to discuss the
relation between their properties and topology. The three
properties concerned here are spectral robustness, immun-
ity from backscattering, and spin-momentum locking. For
2D TIs, the spectrally robust edge states can be understood
by the topological equivalence between the edge spectrum
and the Wilson loop spectrum, which has a stable winding
protected by Wannier obstruction [45,46]. The immunity of
backscattering is then followed as a combined effect of
T 2 ¼ −1 and the presence of odd number of edge states
[61]. Lastly, instead of a unique topological phenomenon,
the spin-momentum locking is a prevalent feature in edge
modes with strong spin-orbit coupling. To conclude, only
spectral robustness is directly related to topology, and in
bosonic systems with T 2 ¼ 1, the immunity from back-
scattering cannot be expected. For the Wu-Hu interface,
this agrees well with the quantitative experimental
results [62].
From a practical perspective, these gapless, backscatter-

ing free, and spin-momentum-locked interface states are

what make the Wu-Hu model promising for photonic
applications. Here, we numerically demonstrate helical
edge states that solely stem from the trivial phase of
Wu-Hu model with OBCs that reproduce all the features
of the claimed “topological” Wu-Hu interface. Structures
applied and corresponding bulk band diagrams can be
found in the Supplemental Material [52].
We start with the trivial phase of the Wu-Hu model and

create edge states by cutting through the Wannier center of
the VBs, namely 1a Wyckoff position [Fig. 4(a)]. Being of
defect nature, the resulted edge states are highly tunable
that they can be tuned to be gapless by simply displacing
the sites at the edge. We first calculated the dispersion
spectrum of a strip geometry of this trivial edge [Figs. 4(a)
and 4(b)], with Bloch boundary condition applied in the
x direction and OBCs in the y direction (see Supplemental
Material [52] for detailed simulation setup including the
band dispersion and the eigenmodes at Γ point). Two
edge states emerge in the dispersion inside the bulk gap
[Fig. 4(b)], showing a dirac-cone-shaped crossing. Then
we performed a large scale simulation of the edge states
with a sharp bend excited with a circularly polarized
source [Fig. 4(c)]. The unidirectional propagation is clearly
observed along the sample edge (see Supplemental
Material [52] for the demonstration of the unidirectional
wave propagating modes), showing that topology is not
required for a helical photonic edge.
In conclusion, we re-examined the Wu-Hu model and

identified the algebraic nature of the topological invariants
and the associated physical consequences. We showed the
lack of robustness of its interface states against symmetry
preserving perturbations and explicitly constructed a trivial
defect edge that reproduces all the “topological” properties.
However, the following question remains interesting and
unanswered: for TCIs, whether, and to what extent, would
Wannier obstructions provide protection to the interface in
the domain wall configuration similar to the Wu-Hu model

FIG. 3. The dispersion of interface states where the pseudo-
spin component is color coded. (a) The interface states of an
unperturbed Wu-Hu interface. The dispersion is nearly linear and
the gap is not visible in the figure. (b) Perturbed Wu-Hu interface.
An apparent gap is opened with magnitude comparable to the
bulk band gap. The pseudospins are mixed showing lighter color.
a is the lattice constant.

FIG. 4. (a) The schematic of the strip geometry applied for the
edge states of a shrunken phase; atoms from bulk complete (edge
incomplete) unit cell are colored in light blue (dark blue). The
edge is created by cutting through the 1a position; then a slight
tuning is applied to the incomplete unit cells at the edge. The
direction of δx, δy is also noted. (b) Numerically calculated
interface dispersion, showing two in-gap linear modes. a is the
lattice constant. (c) Large scale simulation of the propagation of a
trivial edge state from a circularly polarized source. The open
boundary turning is marked in a white dashed line.
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where the bulk symmetry is partially restored by the
addition of a trivial phase? In fact, the existence of such
protection is an implicit assumption for the topological
interpretation of Wu-Hu interface. If this protection does
not exist even when one of the phases is stably obstructed,
the topological interpretation of Wu-Hu interface would fail
at the first step. Based on our arguments, one cannot
distinguish whether the trivial nature of the VBs or the
absence of topological protection itself is the fundamental
reason that is responsible for the gap opening. The rigorous
discussions of similar questions have only appeared
recently [47], and we hope our results as a case study
can provide some insights to future studies. For photonic
waveguide engineering applications, our results show that
there is no causal relation between the topology of the Wu-
Hu model and the desired properties at its interface. In fact,
perfect transmission at sharp bends can be achieved in
traditional photonic crystals and spin-momentum locking is
a prevalent feature for evanescent electromagnetic waves
[63]. The lack of bulk-edge correspondence in the Wu-Hu
model enables more flexible designs combining different
bulk structures without any symmetry consideration, which
may lead to novel applications such as photonic on-chip
logic and reconfigurable light routing.
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