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Solid-state single-photon emitters (SPEs) are quantum light sources that combine atomlike optical
properties with solid-state integration and fabrication capabilities. SPEs are hindered by spectral diffusion,
where the emitter’s surrounding environment induces random energy fluctuations. Timescales of spectral
diffusion span nanoseconds to minutes and require probing single emitters to remove ensemble averaging.
Photon correlation Fourier spectroscopy (PCFS) can be used to measure time-resolved single emitter line
shapes, but is hindered by poor signal-to-noise ratio in the measured correlation functions at early times due
to low photon counts. Here, we develop a framework to simulate PCFS correlation functions directly from
diffusing spectra that match well with experimental data for single colloidal quantum dots. We use these
simulated datasets to train a deep ensemble autoencoder machine learning model that outputs accurate,
noiseless, and probabilistic reconstructions of the noisy correlations. Using this model, we obtain
reconstructed time-resolved single dot emission line shapes at timescales as low as 10 ns, which are
otherwise completely obscured by noise. This enables PCFS to extract optical coherence times on the same
timescales as Hong-Ou-Mandel two-photon interference, but with the advantage of providing spectral
information in addition to estimates of photon indistinguishability. Our machine learning approach is
broadly applicable to different photon correlation spectroscopy techniques and SPE systems, offering an
enhanced tool for probing single emitter line shapes on previously inaccessible timescales.
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Introduction.—Single-photon emitters (SPEs) are the
fundamental resource of quantum photonic technologies
like quantum communication [1], quantum sensing [2], and
quantum computation [3,4]. Solid-state SPEs are particu-
larly attractive systems to achieve this because they
combine atomlike optical properties with solid-state fab-
rication technology and are simple to integrate into cavities.
Solid-state SPEs are prone to spectral diffusion, whereby
the stochastic environment surrounding the emitter can
cause random fluctuations of energy levels [5,6]. For
example, in colloidal semiconductor quantum dots (QDs),
one well-known mechanism by which this occurs is the
quantum-confined Stark effect, where localized charges
near the dot surface or in trap states interact with the
delocalized exciton states of the QD core [7]. Spectral
diffusion is known to be a limiting mechanism of photon
indistinguishability in epitaxial QDs [8–11], and also
broadens the linewidths of defects in diamonds [12] and
2D materials like hexagonal boron nitride [13,14].
The timescales of the fluctuations that give rise to

spectral diffusion can range from subnanoseconds to
minutes. Because of limited photon counts from single
emitters, the timescale for accumulating enough photons to
achieve a sufficiently high signal-to-noise ratio is typically
on the order of 100 ms. Below these timescales, photon

correlation techniques are typically required, where fast
spectral fluctuations can be converted into intensity fluc-
tuations that are resolved with subnanosecond timing using
single-photon detectors [8,12].
In a specialized implementation of this technique called

photon correlation Fourier spectroscopy (PCFS) [15], the
photon stream is passed through an unbalanced Michelson
interferometer followed by two single-photon detectors. A
schematic of this optical setup is shown in Fig. 1(a). As the
path length difference δ between the two interferometer
arms is scanned, photon intensity correlation functions
gð2Þðτ; δÞ are collected. The photon timing in τ provides
temporal resolution, whereas the Fourier transform of
scanning the interferometer across δ provides energetic
resolution.
In PCFS, gð2Þðτ; δÞ is related to the time-dependent

spectrum of the emitter by [15]

gð2Þðτ; δÞ ¼ 1 − 1

2
cosð2ω0Vτ=cÞF ½pðζ; τÞ�; ð1Þ

where ω0 is the central frequency of the emitter, V is the
scanning frequency of the interferometer retroreflector, c is
the speed of light, F indicates a Fourier transform, and
pðζ; τÞ is the spectral correlation of the emitter—which is
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the autocorrelation of the emission spectrum sðωÞ at time τ.
The PCFS gð2Þðτ; δÞ therefore directly encodes time-
dependent spectral information of an SPE, with arbitrary
temporal and spectral resolution theoretically limited only
by total path length δ, the number of stage positions, and
the detector timing resolution. In reality, the correlations
become extremely noisy at early τ because so few photons
are collected in these narrow time bins. A single PCFS
experiment can require hours, depending on the number of
stage positions used and the brightness of the emitter,
making these experiments time-consuming or, worse,
impossible for SPEs with limited photostability.
One way to alleviate this signal-to-noise ratio issue is

fitting or signal reconstruction. Analytical forms of
gð2Þðτ; δÞ for emitters undergoing different types of spectral
diffusion exist [15], but they are limited, and require
a priori assignment of a model to the data, which given
high levels of noise and uncertainty will impart bias onto
the fit. In contrast, machine learning (ML) approaches can
obviate explicit model selection by instead incorporating a
variety of models into the training data. ML models have
been used to classify quantum emitters based on sparse gð2Þ
data [16], to distinguish light sources with low mean
photon numbers [17], and to perform reconstructions in
quantum state tomography [18].
Recently, we developed an MLmodel that could perform

signal reconstruction of few-shot pulsed gð2ÞðτÞ data [19].
By combining several denoising autoencoders in a deep
ensemble and employing adversarial training, our adversa-
rial autoencoder ensemble (AAE) model [Fig. 1(b)] could
produce probabilistic, denoised reconstructions with sim-
ilar accuracies and lower variance than maximum like-
lihood estimation [20] and Levenberg-Marquardt fitting
algorithms. Here, we extend our machine learning AAE
model to gð2Þðτ; δÞ functions from PCFS experiments of
single colloidal QDs [Fig. 1(c)]. All methods and codes for
data generation and model training can be found in
Ref. [21] [see also Supplemental Material (SM) [22] ].
Generating correlations from diffusing spectra.—The

connections between spectrum sðωÞ, spectral correlation
pðζ; τÞ, interferogram Iðδ; τÞ, and finally the correlation

functions gð2Þðτ; δÞ are illustrated in Fig. 2. First, we
generate sðωÞ, in this case a triplet of Lorentzian peaks.
For this work, we assumed narrow (μeV) linewidths to
simulate SPEs at cryogenic temperatures, but the results are
general to all emission line shapes and temperatures.
Next, sðωÞ is convolved with a τ-dependent diffusion

process that models the broadening of the peak. For
colloidal QDs, the one-dimensional Wiener model is often
used:

pdðζ; τÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2πα2τ
p exp

�−ζ2
2α2τ

�
; ð2Þ

This formula gives a Gaussian whose full width at half
maximum (FWHM) increase as τ0.5, where α is the spectral
diffusivity coefficient, and determines the timescale over
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FIG. 2. (a) Simulated homogeneous spectrum sðωÞ of an
emitter with three emissive states convolved with a Wiener
diffusing Gaussian to form the spectral correlation pðζ; τÞ.
(b) Fourier transform of pðζ; τÞ along ζ gives the corresponding
interferograms Iðδ; τÞ. (c) gð2Þðτ; δÞ functions drawn from Iðδ; τÞ.
(d) A noiseless simulated gð2Þ (Sim.) with noise added through
Poisson sampling, compared with experimental data (offset for
clarity).
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FIG. 1. (a) Schematics of a PCFS setup and (b) architecture of the AAE network. (c) Representative correlation functions with ML
reconstructions and standard deviations (�σ).
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which the spectrum is predisposed to diffuse [27]. When
sðωÞ is convolved with pdðζ; τÞ to form the total spectral
correlation pðζ; τÞ, absolute energy is lost. The axis ζ is
therefore the energy differences between photon pairs. A
triplet sðωÞ will lead to a septet in pðζ; τÞ, as shown in
Fig. 2(a).
Fourier transformation of pðζ; τÞ along the ζ axis turns

energy difference into distance δ and forms the correspond-
ing interferograms Iðδ; τÞ [Fig. 2(b)]. Here, we can observe
that Iðδ; τÞ built from longer τ—corresponding to more
spectrally diffused and broader pðζ; τÞ—decay more
sharply, due to the lower coherence lengths.
From the full two-dimensional array of Iðδ; τÞ, the

gð2Þðτ; δÞ functions are then readily calculated using
Eq. (1). Examples of gð2Þðτ; δÞ for various values of δ
are shown in Fig. 2(c). To probe dynamics across many
decades of time, the time bins are made such that they grow
exponentially larger with τ, with specified precision (num-
ber of bins) and time bounds [28]. To simulate noise, we
perform exponentially weighted Poisson sampling at each
time bin. Details of this process are given in the SM [22].
The Poisson sampled, simulated correlations show strong
resemblance to experimental data [Fig. 2(d)] and are
suitable as inputs to train our neural network models.
Modified models for spectral diffusion.—Beyler et al.

explored continuous versus discrete spectral diffusion
mechanisms in CdSe=CdS QDs, showing that whereas
continuous diffusion is modeled by a Wiener process for
Brownian motion, a spectrum diffusing according to a
discrete Gaussian random walk—as is often observed for
colloidal dots at 4 K—requires a Poisson model [27]:

F ½pðζ; τÞ� ¼ expf−rτ½1 − expð−2π2σ2sδ2Þ�g; ð3Þ
where r is the jump kinetic rate constant and σs is the
linewidth of the diffusing subpopulation. An example of
Poisson diffusion using Eq. (3) is shown in Fig. 3(a).
When using these models to simulate gð2Þðτ; δÞ, it became
apparent that regardless of the parameters used, the
correlations would always trend to reach 1, and never an
intermediate value [Fig. 3(b)]. This originates from the fact
that the models allow unlimited broadening of pðζ; τÞ with
τ. In experimental correlation functions, we observed that
correlations could plateau at intermediate values below 1,
indicating that spectral diffusion occurs, but does not
completely randomize the correlations (see Fig. S2 in
SM [22]).
We introduced parameters such that pðζ; τÞ could not

broaden infinitely, but instead reach a maximum value of σ.
We also varied the power of τ in order to control the power
law governing the timescale of the diffusion. For the
Wiener model, the modified equation takes the form of

pdðζ;τÞ¼
1ffiffiffiffiffi
πξ

p exp

� −ζ2
ð σ
1þe−ξÞ

�
; ξ¼ 2α2τp; ð4Þ

where a sigmoid function in the exponential denominator
saturates the linewidth and p controls the power of τ.
Similarly, we modify the Poisson model as

F ½pðζ;τÞ�

¼ exp
�
−σ=

�
1þ

�
λ

σ

�−1�
½1−expð−2π2σ2sδ2Þ�

�
; λ¼ rτp:

ð5Þ

The resulting pðζ; τÞ distributions more closely resemble
those we observe experimentally [Fig. 3(a)]. Moreover, the
corresponding gð2Þðτ; δÞ can plateau to values below 1, and
control of the power law allows for a more gradual increase
of the correlations that match experimental observations
[Fig. 3(b)]. When comparing pðζ; τÞ for the modified and
unmodified models with σ ≫ Γ, where Γ is the linewidth of
peaks in sðωÞ, we can observe that both distributions
broaden identically, indicating that our modifications have
not altered the original physics of the diffusion models (see
Figs. S3 and S4 in SM [22]).
Machine learned reconstructions of gð2Þðτ; δÞ.—To gen-

erate training data, we combined different models of sðωÞ
and pdðζ; τÞ to achieve the greatest variance in our
simulated correlation functions. For spectra, we used 1–3
Lorentzian peaks, which are often observed for CsPbBr3
perovskite nanocrystals [29,30]. We also used Lorentzian
singlets or doublets with acoustic sidebands to simulate
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FIG. 3. (a) pðζ; τÞ for a triplet undergoing Poisson diffusion
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spectra observed in CdSe=CdS or InP=ZnSe quantum dot
systems [31,32]. See SM for example spectra [22]. For
diffusion models, we used the modified Wiener and
Poisson models as described above. Parameters for sðωÞ
and pðζ; τÞ were randomly selected from within user-
defined bounds (Tables S1 and S2 in SM [22]) to generate
PCFS interferograms. We simulated 1000 separate PCFS
interferograms, each comprising 100 stage positions, for a
total of 100 000 gð2Þðτ; δÞ functions. We additionally
performed data augmentation, by combining 25 000 ran-
dom combinations of gð2Þðτ; δÞ from different PCFS experi-
ments, in order to account for systems that may undergo
hybrid forms of diffusion (see SM). Poisson sampling of
the data was performed during training to help prevent
overfitting. An example of a small training dataset of
gð2Þðτ; δÞ functions is shown in Fig. S6 [22].
As in our previous work [19], our AAE model is a deep

ensemble of denoising autoencoders [33,34]. Previously,
we made use of encoders composed of multilayer percep-
trons (MLPs, fully connected layers), and an MLP decoder.
For these PCFS gð2Þðτ; δÞ functions, adapting the network
to have convolutional encoder and decoder layers gave the
better accuracy and the smoothest reconstructions.
Convolutional layers are significantly more parameter
efficient than MLPs, affording a lightweight model with
a total of 902 K trainable parameters. Details about model
training, loss versus number of epochs, hyperparameters,
and a comparison between MLP and convolutional net-
works are given in the SM (see Figs. S7–S10 [22]).
Predictions from the trained AAE for simulated and

experimental gð2Þðτ; δÞ functions are shown in Fig. 4, and
several more predictions are provided in Fig. S12 [22]. For

experimental data, we collected PCFS correlation functions
from single CsPbBr3 quantum dots cooled to 4 K (exper-
imental details given in SM [22]). The model produces
smooth, noiseless, and probabilistic outputs across all τ.
The model mean prediction (μ) closely follows the true
underlying function, and only starts to deviate at early τ
where the noise is highest. In nearly all cases, μ is still
within �σ, demonstrating the accuracy of the model’s
reconstructions. As desired, uncertainty scales with τ: at
early times with fewer photons per bin, �σ is larger, while
the converse is true for later τ. Predictions for interpolated
experimental gð2Þðτ; δÞ functions are shown in Fig. 4(a)
(bottom), where the same observations hold true. Clearly,
the AAE is able to produce high-fidelity predictions from
experimental inputs after being trained solely on our
simulated datasets. We can use these reconstructed
gð2Þðτ; δÞ functions to build Iðδ; τÞ and Fourier transform
into pðζ; τÞ to obtain time-dependent line shapes.
Coherence times on nanoscale timescales.—We now

have access to a denoised Iðδ; τÞ at early τ. We can reinforce
the physicality of the reconstructed Iðδ; τÞ by subsequently
fitting it at a given τ. This fitting approach allows for a
straightforward estimation of the linewidth ΓðτÞ, which is
related to the optical coherence time T2ðτÞ by the relation
T2ðτÞ ¼ ΓðτÞ=2π. For SPEs, maximizing T2 is crucial to
achieving indistinguishable single-photon emission in the
transform limit of T2 ¼ 2T1, where T1 is the emitter’s
radiative lifetime. CsPbBr3 nanocrystals have recently
gained intense interest as SPEs due to their exceptionally
short T1 below 200 ps [30] and T2ðτÞ up to 78 ps, with
corresponding linewidths of 17 μeV [29]. These values
were reported from PCFS experiments with τ < 100 μs,
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where T2ðτÞ at earlier τ was inaccessible due to noise. In the
context of quantum light generation, nanosecond to few-
microsecond timescales are important temporal windows
within which to probe spectral diffusion: photons from
SPEs are typically generated at megahertz rates, and
interference of two consecutively generated photons (i.e.,
the Hong-Ou-Mandel effect [35,36]) requires them to be
indistinguishable, therefore having undergone no spectral
diffusion [37].
With the AAE-reconstructed Iðδ; τÞ, we can now extract

T2ðτÞ on these timescales. A fit of Iðδ; τÞ at τ ¼ 10 ns is
shown in Fig. 5(a). Because of the much higher signal-to-
noise ratio at later τ, we can reliably fit Iðδ; τÞ on these
timescales. We can use these fitted parameters as prior
knowledge for fitting at earlier (noisier) τ, assuming only
ΓðτÞ changes with τ. Fits of the interferogram at τ ¼ 101 −
107 ns are shown Fig. S14 [22], and a plot of the fitted ΓðτÞ
and T2ðτÞ versus τ is shown in Fig. 5(c), where we clearly
observe T2ðτÞ continues to increase as τ decreases, reaching
up to 217 ps for τ ¼ 10 ns. Assuming a T1 of ∼200 ps for
this dot, we estimate T2=2T1 ¼ 0.54 on these timescales.
We have recently obtained Hong-Ou-Mandel (HOM) two-
photon interference visibilities up to ∼0.55 for these same
CsPbBr3 nanocrystals [38], which affirms the validity of
our modeling. Our AAE reconstructions have allowed
us to observe that significant spectral diffusion occurs
between 10 ns and 0.1 ms, decreasing T2ðτÞ by more than
a factor of 4.
Conclusions.—Our machine learning augmentation to

PCFS allows it to access the same nanosecond timescales as
HOM correlation functions, but with significant advantages.

Firstly, PCFS measures the entire time-resolved lineshape,
including phonon sidebands, so there is no need to isolate
the zero-phonon line with spectral filtering—the emitter
linewidth and coherent fraction are measured directly.
Secondly, the emitted photons need not be indistinguish-
able, since PCFS measures the interference of single
photons with themselves, rather than two-photon interfer-
ence. While most previous work using PCFS investigated
spectral diffusion on longer timescales, our advance elevates
it to a tool that can be used to study the quantum light-
emitting properties of novel solid-state SPEs.
This work furthers our ability to model spectral diffusion

in solid-state SPEs and offers a pipeline for converting
these models into simulated, noise-added gð2Þðτ; δÞ func-
tions to train denoising neural network models. Photon
correlation spectroscopy is among the most powerful and
flexible tools for characterizing solid-state SPEs. With the
deep learning model developed herein, probing nanosecond
timescales is now possible in PCFS experiments and can be
used to characterize solid-state SPEs toward realizing
quantum photonic technologies.
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