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Anomalous Diffusion in the Long-Range Haken-Strobl-Reineker Model
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We analyze the propagation of excitons in a d-dimensional lattice with power-law hopping « 1/r* in the
presence of dephasing, described by a generalized Haken-Strobl-Reineker model. We show that in the
strong dephasing (quantum Zeno) regime the dynamics is described by a classical master equation for an
exclusion process with long jumps. In this limit, we analytically compute the spatial distribution, whose
shape changes at a critical value of the decay exponent a., = (d + 2)/2. The exciton always diffuses
anomalously: a superdiffusive motion is associated to a Lévy stable distribution with long-range algebraic
tails for @ < a,, while for @ > a, the distribution corresponds to a surprising mixed Gaussian profile with
long-range algebraic tails, leading to the coexistence of short-range diffusion and long-range Lévy flights.
In the many-exciton case, we demonstrate that, starting from a domain-wall exciton profile, algebraic tails
appear in the distributions for any «, which affects thermalization: the longer the hopping range, the faster
equilibrium is reached. Our results are directly relevant to experiments with cold trapped ions, Rydberg
atoms, and supramolecular dye aggregates. They provide a way to realize an exclusion process with long

jumps experimentally.

DOI: 10.1103/PhysRevLett.131.053401

Introduction.—Energy transport is of fundamental
importance in biological, chemical, and physical systems.
In light-harvesting setups, for example, solar energy is
converted into excitons that are transported to a reaction
center or to the interface between two different semi-
conductors, which often relies on long-range dipolar
couplings between the excitons [1-3]. Transport then
results from a competition between coherent hopping that
tends to delocalize the wave functions and local couplings
to vibrational, motional degrees of freedom and disorder
potentials, which lead to the localization of carriers [4-7],
limiting the conversion efficiency of optoelectronic
devices [8]. Theory has mostly focused on short-range
couplings among quantum emitters, as they allow simple
analytical approaches. For instance, the interplay between
short-range hopping and local dephasing, which can be
induced by, e.g., thermal noise or vibrational coupling [9],
is captured by the Haken—Strobl-Reineker (HSR) model:
for large enough dephasing, a transition from ballistic
to diffusive motion occurs at time 7~ 1/y [10-12], with
y the local dephasing rate. Diffusion taking place for
t> 1/y is standard, i.e., an initially localized exciton
spreads as a Gaussian distribution exp(—r?/4Dt), with a
diffusion coefficient D = 2J%/y (J is the nearest-neighbor
hopping rate). While the HSR model with nearest-neighbor
hopping has been extensively analyzed and even solved
exactly [10-14], the interplay of power-law long-range
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hopping and dephasing is more challenging and has not
been analytically treated. Power-law hopping stems from
the ~1/7* dipolar coupling in molecular aggregates [1-3]
or nanocrystals [15-17], for instance, where large dephas-
ing is naturally present [18-21]. More general power-
law-type couplings with arbitrary spatial decay can be
engineered in artificial systems such as cold trapped
ions [22,23] or Rydberg gases [24-26].

In this Letter, we investigate the HSR model with
coupling between quantum emitters that decays with
distance r as a power law ~1/r% with variable power «
and for a generic dimension d. In the presence of strong
dephasing—in the quantum Zeno regime [27]—we map the
system to a classical master equation (CME) that captures
the long-time dynamics 7 > 1/y, which we solve exactly
by analytical and numerical means.

We find that excitons always diffuse anomalously:
in the single-exciton limit, the CME is the one of a
discrete random walk with long jumps, or discrete Lévy
flight [28-30], and for any finite @ the exciton density
profile always decays algebraically at long distances, in
contrast to the standard diffusion obtained from the HSR
model with nearest-neighbor hopping. The interaction
range a determines whether the variance of the distribution
converges or not: based on this, we define the critical
exponent a. = (d +2)/2. For a < a,, the dynamics is
superdiffusive and the exciton density at sufficiently long

© 2023 American Physical Society
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FIG. 1. Single-exciton regime for d = 1: time evolution of an
exciton initially located at site 0. The exciton density profile n;(z)
is characterized by a power law (PL) at long distance and a
Gaussian (G) at short distance (a). The boundary between the two
regions (red dashed line for x# = 1 and green dashed-dotted line
for xt = 3) corresponds to &,, [see Eq. (10)]. The quantum to
classical crossover is illustrated through the time evolution of the
exciton variance (b), obtained by numerically solving Eq. (1) for
a =3 and y = 10J. Red solid line, exact solution Eq. (3); black
dashed line, classical approximation for yz > 1 [Eq. (4)]. A pure
power-law density profile for a =1 <a, (c) and mixed
Gaussian power law for a = 2 > a,, (d) are obtained by numeri-
cally solving Eq. (7) for N = 1000 and y = 10J. Solid lines,
approximation Eq. (10); thick red dashed line, Gaussian term in
Eq. (10b); thin dashed lines, &, ,. The diffusion enhancement with

respect to the case @ — oo [n}o)(t)] is shown in the inset.

distance is always a Lévy stable distribution [29-32]
characterized by a long-range algebraic tail ~1/r>*. For
a > a. and small enough time, the exciton density is also
solely characterized by an algebraic tail, while at long time
it exhibits a surprising mixed profile corresponding to a
Gaussian distribution at short distance and an algebraic tail
at large distance [Fig. 1(a)]. The Gaussian part of the
distribution mimics the standard diffusion in the HSR
model. However, remarkably, also this Gaussian contribu-
tion is nonstandard as the diffusion coefficient depends on
a and is enhanced by the long-range character of the
hopping. We show that this finding is relevant to long-range
exciton diffusion in light-harvesting systems such as nano-
crystal quantum dots, where discrepancies between experi-
mental observations and theory have been reported.

We find that in the case of many excitons our model
is equivalent to a long-jump symmetric exclusion
process [33-35], with a Markov matrix identical to the

Hamiltonian of a long-range ferromagnetic Heisenberg
model. Long-range hopping enhances exciton propagation
so that equilibrium is reached faster as a is decreased.
We capture the equilibration dynamics analytically via a
continuous diffusion equation with fractional Laplacian
that qualitatively reproduces the numerical results for all a.

Excitons are modeled as spin-1/2 operators S. We start
with the single-exciton case and study the dynamics in the
presence of dephasing governed by the HSR quantum
master equation

p =it p > (Lot -3 ey} ) < 2. (1)

In our case, the coherent dynamics is described by the
power-law hopping Hamiltonian

ZZ (S5 S, + 5757, 2)

J r;é0

with p the density matrix, j € Z¢ the position in a
;and L; = LjT = SJ? the local
dephasing operators, in the Lindblad formalism [36,37].
For d = 1 and when a single exciton is initially present on a
given site, it is known that the variance of the exciton
evolves in time as [10]

d-dimensional lattice, r =

2172
r

W= Gpy =237

r

(yt+em-1), (3)

with H, = (G[S; HS/,,|G) and |G) the ground state with

all the spins down. The short- and long-time approxima-
tions of Eq. (3) read

S, rPH2? for yr < 1

2y, W

t foryt>1,

and reveal a crossover in the dynamics: while a coherent
quantum dynamics dominates for a short time, a classical
diffusivelike behavior emerges for 7> 1/y. This is
illustrated in Fig. 1(b), where the exciton variance is
obtained by numerically solving the quantum master
Eq. (1) for different system sizes N, and compared to
the analytical solutions Egs. (3) and (4). The crossover from
ballistic to diffusive regime is clearly visible. Interestingly,
the transition to the classical regime always occurs at
t ~ 1/y, independently of N and a [38]. This is because in
Eq. (4), the same multiplicative factor >, r>H? governs
both the short- and late-time behaviors, so the crossover
timescale is independent of the details of the Hamiltonian.
In Fig. 1(b) we see that for y¢ 2 10, the quantum dissipative
evolution is indistinguishable from the long-time asymp-
totics in Eq. (4).

{7 = 6P %{
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Importantly, Eq. (3) implies that the late-time diffusive-
like regime is always reached, for any dephasing strength y.
This can also be seen from the quantum master Eq. (1).
Indeed, for any dephasing, we observe numerically that for
large system size and long time (z > 1/y) the coherences in
the single-particle density matrix, G;,, = Tr[ij*S;,}, with
J # m, become negligible with respect to the population
density n; = G; ;. However, in the limit of weak dephasing,
this effect cannot simply be explained from perturbation
theory in y, as the long-time dynamics is determined by a

nonperturbative branch of eigenmodes of the Liouvillian L
[Eq. (1)] [38]. An analogous effect has been observed in the
case of nearest-neighbor hopping with dephasing and more
sophisticated techniques should be used [14]. We leave this
for future work. Next we turn to the strong dephasing limit,
which can be handled analytically more easily.

Strong dephasing: Mapping to classical Markov
process.—Following Refs. [42,43], we use a second- order
perturbative analysis, deriving an effective Liouvillian Lost
in the limit y > J (for similar treatments of the strong
dissipative limit, see also [44,45] for soft-core bosons and
nearest-neighbor hopping, or [46,47] for atom losses
instead of dephasing). We split the Liouvillian Eq. (1) into

two contributions: a term Lop = y >i(SipS; —p/4), and a
perturbation £,p = —i[H., p]. We find [38] that the effective

dynamics p = L.zp is governed by a CME for the
probability distribution

=Y (6IRl6")p(c). (5)

o

plo) =

with |6) the eigenstates of the Sf operators, and p(e) the

probability distribution defined by the diagonal entries of
the density matrix p = >, p(6)|6)(c|. The generator of
the CME [Eq. (5)] is that of an exclusion process with long
jumps, which turns out to be identical to the following
Hamiltonian of a long-range ferromagnetic Heisenberg
model:

2‘]2 + Q- + Z Q2 1
R=-) 58S, + 85 85,) + 855855, - 4] (6)
]#07” 4

A similar observation was made in Refs. [42,43] for strictly
short-range models, whose strong-dephasing limit corre-
sponds to a ferromagnetic Heisenberg model with short-
range couplings; here, we extend this result to long-range
hopping. We note that, interestingly, the case a =d = 1
in Eq. (6) corresponds to the Haldane-Shastry Hamiltonian
[48], a famous quantum integrable model. For any exciton
number, the associated exclusion process should then be
exactly solvable by Bethe ansatz techniques, which we will
investigate in a future work.

Anomalous diffusion of single exciton.—We first focus
on the classical dynamics dictated by Eq. (5) for the case of

a single exciton. Equation (6) provides the evolution of the
population density

iy = 3 =z (0 = ). (7)

r#0

with the effective Zeno-like rate x = 2J%/y. An alternative
derivation of Eq. (7) is obtained by adiabatically eliminat-
ing the coherences of the single-exciton density matrix
Gjm [10,27,38]. Notice that Eq. (7) is well defined in the
thermodynamic limit only if @ > d/2 so that ), rY2 s
finite. In order to solve Eq. (7) for an exciton initially at the
origin, nj(t = 0) = &;y, we introduce the characteristic
function K(g.r) = >;n;(1)e?, where g € R?. Using
Eq. (7), we find that the characteristic function at time ¢
then reads

K(q7 t) = e[Aza.d(Q)—AZa.d(o)]f’ (8)
with the initial condition K(q,0) =1, and A,,,(q) =
KD o r~2@¢~4T Equation (8) provides the time evolution
of the mean position (j) = —iV,K(0,7) =0 and of the
variance (|j|*) = —A,K(0,t) = 2D,t. The diffusion coef-
ficient D, = § Ay, 4(0) provides a first insight into the
character of the dynamics for different a (however, see also
discussion below): diffusivelike spreading of excitons takes
place when D, converges in the thermodynamic limit,
which is ensured when a > ., [38]. This corresponds to
the quantum master equation solution in the regime yt > 1,
shown in Eq. (4) and Fig. 1(b). On the other hand, for
a < a,, D, diverges and the dynamics is superdiffusive.
Equation (8) further allows one to determine the exciton
density profile n;(¢) for all a and times . Since the long-
distance behavior of n;(¢) is determined by the singularity
of K(q,t) when g = |q| — 0, we analyze A,, 4(¢) in that
limit. We find Ay, (q) ~ Ay g(0) — Cog®* ™ if a < a,
and Ay, 4(q) % Az a(0) — [Azq2.4(0)/ 2]¢* = Coqg**? if
a > ag [38], with C, = —k¥/2)24720T(d/2) — a] /T (a).
The expression of C, depends on the boundary conditions:
here we have assumed translational invariance. Inserting
these expressions into Eq. (8), the characteristic function
finally reads

_Ca an—dt

( ’ ) D 2 C 2a—
q
q—>0 ad le aq dl

For a < a, this is the characteristic function of a Lévy
stable distribution [29-32], which is characterized by a
long-range algebraic tail. Such a distribution corresponds to
large but infrequent steps, the so-called rare events or big
jumps relevant to a large variety of phenomena including
motion of cold atoms in laser cooling, transport in turbulent
flow, and neural transmission [49]. For @ > «a,, instead, the
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characteristic function has a peculiar mixed nature: it is the
product of a Gaussian and of the Lévy flight factor.

From the inverse Fourier transform of K (g, t) we obtain
the population n;(f). For a < a,, the asymptotic behavior
nj(t) depends on j as

ni(t) = xt/|j*".

= (10a)

while for @ > a we obtain the following mixed Gaussian
and power-law behavior with increasing |j|:

exp(=|jI*/4Dqt) i<
n: t) ~ { (4ﬂDat)d/2 |J| ~ é(l.t (10b)
kt/|j* 7> &
which is one of the main results of this work.

In Eq. (10b), &,, is the length scale at which the
behavior crosses over from Gaussian to power law. For
large enough time, &,, is well approximated by &,, ~
\/4D,tlog[4an=¥?k~' D (4D,t)*~%] [38]. The exact
expression of £,, exhibits a minimum as a function of
a, and a discontinuity at & = a, [Fig. 1(a)]. For large , &, ,
increases with a as &, ; ~ /4D talog a, and we ultimately
recover a standard diffusive (Gaussian) behavior for
a — oo. For a —» af, D, diverges and therefore &,, does
too. For small enough time, the power-law behavior takes
over for all a. We emphasize that since &, ; grows with time,
the Gaussian dynamics ultimately dominates at long times
for @ > a,, and thus we expect the algebraic tail to
particularly affect transient phenomena.

This behavior is illustrated in Figs. 1(c) and 1(d) for
d = 1, where we show a numerical solution of the CME
[Eq. (7)] together with the asymptotic behavior Eq. (10).
For a < a, the distribution is only characterized by a
power-law decay with amplitude growing linearly with
time and independent of the lattice dimension d [Fig. 1(c)].
The scaling with the distance 1/]j]>* turns out to be the
same as the hopping rate. While the decay of the distri-
bution still goes as ~1/|j|>* at long distances for a > a,,
diffusion dominates at short distances showing a Gaussian
profile [Fig. 1(d)], but with an enhanced diffusion coef-
ficient D, as compared to the nearest-neighbor case (inset).
In the usual dipolar coupling case a = d = 3, for instance,
we find that D,, is enhanced by a factor 2.8 as compared
to standard diffusion with nearest-neighbor hopping.
Interestingly, we find that those power-law tails have a
profound effect on the dynamics in the presence of strong
dephasing for all a, which is surprising for @ > a, where a
simple diffusive behavior is expected from short-range
models [14]. In the following, we illustrate this effect for
the case of many excitons following a quench.

Many excitons: Speedup of relaxation.—We consider the
dynamics in the many-exciton sector of Eq. (S5)onad =1
lattice, starting from a “domain-wall” initial condition,

where the leftmost N /2 sites are all occupied, while the
other sites are empty, in analogy with a Joule expansion.
We analyze the occupation profile at time ¢, i.e.,
n;(t) = Tr[p(z)S}S7], where p(z) is the density matrix
solving Eq. (5). Both for a < a., and for a > a, a flat
equilibrium solution is reached at large ¢ [38], such
that 72 = lim,_,n;(t) = 0.5 V j. Interestingly here, the
equilibrium is reached for any hopping range @, which
is in contrast to the purely quantum case, where long-
range interactions can break ergodicity in the absence of
disorder [50-52].

For short time x7 < N2%, the distribution away from the
origin is dominated by single exciton hopping events, and
we find that the profile has power-law tails [38]

0
n;(t) o<Kt/ (j+r)2dr=kt/j,  (11)
-N/2

as shown in Fig. 2(a). As a consequence, the exciton
spreads faster as a is decreased. To quantify how fast the
equilibrium profile is reached, we compute the normalized
chi-squared y*(r)/N = Y ;[n;(t) — i]*/(N#i) between the
profile at time ¢ and the equilibrium one. Figure 2(b) shows
that the equilibrium regime is reached exponentially in time
for any a, y*(t)/N  exp(—t/7). Note that this scaling can
be recovered by analyzing the gap of the Liouvillian,
Eq. (5), which follows from the spinon dispersion of
the ferromagnetic Heisenberg model [53]. We observe that
the half-time of the exponential increases with a power
of the system size N as

Density n;(kt = 0.5) Deviation x?(t)/N

N (b)
1071 E o -
:0\'; o .
1072 0\\1\\.\ O
Oa=1 =
10~ 3 \ ~
(| o= 2 O\\x ‘
0 *Fma=3 =,
1 1 1

00 01 02 03
Time xt/N?

Distance j

FIG. 2. Speedup of the relaxation dynamics for d = 1. Starting
from a domain-wall exciton profile, the occupation profile n;(z) is
computed numerically from Eq. (5) for N = 100 and xt = 0.5 (a),
and exhibits power-law tails showing that equilibrium is reached
faster as « is decreased. The continuous line corresponds to
nearest-neighbor hopping, and the dashed lines to the approxi-
mate solution Eq. (11). (b) Time evolution of the deviation from
equilibrium y2(z) for different @ and N. The circles and squares
are for N = 100 and N = 1000, respectively. The dashed lines
are the best fit & exp(—1t/7), with 7 given by Eq. (12).
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NP
24”b,

20—1 a<ay

with /3:{2 . (12)

a> Qg

T =

for some constant b,, while 7 = (N?log N/2x%b,) in the
critical case a = a,, = 3/2. Notice that the scaling
[Eq. (12)] is precisely what is expected from the continuous
diffusion equation with (fractional) Laplacian,

on(x,1)

PP b A 2n(x,1). (13)

Indeed, the solution to this evolution equation with an
initial domain-wall density profile has the Fourier
decomposition n(x,1) =3+3,,.en ¢ (t)cos(zmx/N) with
coefficients decaying as c,,(t) o« exp(—b,(mn/N)Pt),
thus y2(7) o N[n(x,1) — 1/2]*  exp(=22°b,t/NP).

The fact that the large-scale evolution of our system
should be captured by a continuous diffusion equation with
fractional Laplacian [Eq. (13)] follows from the form of the
generator of the CME [Eq. (6)], which is SU(2) symmetric.
Indeed, exploiting the SU(2) symmetry, one can switch
from one “magnetization sector” to another, i.e., from one
exciton number to another, without changing its spectrum.
This suggests that the equation governing the evolution of
the density profile for many excitons at large scales should
be the same as for a single exciton. In particular, the
constant b, in Eq. (12) is expected to match the diffusion
constant of a single exciton, i.e., b, = D, for a > a, and
b, = C, for a < a. From the data in Fig. 2, we find the
numerical values b,/k ~1.93, 1.62, 1.1 fora =1, 2, 3, to
be compared with the analytical result C,/x = 3.14,
D,/x = 1.64, D;/kx = 1.08. The agreement is very good
for a > a; however, the values differ in the long-range
case a < a.. This discrepancy is due to the different
boundary conditions between the numerics in Fig. 2 (open
boundary conditions) and in the analytical derivation of C,
(which assumes translational invariance, i.e., periodic
boundary conditions). We also emphasize that f decreases
with a for a < a,,, which implies that the equilibrium is
reached faster (for large N) as the interaction range
increases.

Outlook.—Our results provide a way to experimentally
realize an exclusion process with long jumps [33-35],
and are highly relevant to nanocrystal quantum dots that
are attracting more and more interest for solar cell
applications [20]. In particular, discrepancies between
the exciton diffusion length measured experimentally
and the values predicted by standard diffusion theory
applied to Forster energy transfer (¢ = 3) have been
recently reported [15,39]. We argue in the Supplemental
Material [38] that such discrepancies would typically be
reduced by a factor of ~2 upon properly including the long-
range character of the hopping in the diffusion coefficient,
which is not the case in standard diffusion models assuming
nearest-neighbor hopping [8]. Our model is also relevant to

molecular aggregates that play an important role in photo-
synthetic complexes and optoelectronic devices [54].
Dye monomers interacting via dipole-dipole coupling
(¢ = 3) can indeed form highly ordered assemblies [55].
Supramolecular chemistry offers the possibility to control
the mutual arrangement of monomers to achieve a nearest-
neighbor hopping J < 3 THz, while the typical dephasing
rate can exceed 14 THz at room temperature [18,19]. Our
model could also be realized with ions in linear Paul traps,
with J &~ 100-1000 Hz and the possibility to tune the
hopping range within 0 < a <3 [23,56,57]. Controlled
dephasing can be realized via detuned lasers that induce
time-dependent ac-Stark shifts [58], allowing to reach
the large dephasing regime with y > 10J [27]. A similar
implementation could also be achieved with Rydberg
atoms [59], where the y > J regime can be reached for
large atom densities.
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