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We study the nonequilibrium dynamics of dipoles confined in multiple stacked two-dimensional layers
realizing a long-range interacting quantum spin 1=2 XXX model. We demonstrate that strong in-plane
interactions can protect a manifold of collective layer dynamics. This then allows us to map the many-body
spin dynamics to bosonic models. In a bilayer configuration we show how to engineer the paradigmatic
two-mode squeezing Hamiltonian known from quantum optics, resulting in exponential production of
entangled pairs and generation of metrologically useful entanglement from initially prepared product states.
In multilayer configurations we engineer a bosonic variant of the Kitaev model displaying chiral
propagation along the layer direction. Our study illustrates how the control over interactions, lattice
geometry, and state preparation in interacting dipolar systems uniquely afforded by AMO platforms such as
Rydberg and magnetic atoms, polar molecules, or trapped ions allows for the control over the temporal and
spatial propagation of correlations for applications in quantum sensing and quantum simulation.
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The individual particle control offered by quantum gas
microscopes [1] and optical tweezers [2], and the impres-
sive advances in spectroscopic methods [3] complemented
by the capability of experiments to trap and manipulate a
broad range of atomic, molecular, and optical systems
featuring diverse types of interactions (from contact [4,5] to
dipolar [6–13] to all-to-all [14–19]) are opening untapped
opportunities for quantum simulation [20–22], metro-
logy [23], and computation [24–26]. In these systems it
is now possible to explore the propagation and growth of
quantum entanglement and correlations [27], which is
crucial for demonstrating their quantum advantage.
One of the most basic mechanisms for entanglement

growth, which is also at the very heart of foundational
questions in quantum mechanics [28,29], is the creation of
entangled states consisting of pairs of correlated particles in
the guise of two-mode squeezed (TMS) states [30–32].
These states were originally understood in quantum optics
in the context of parametric amplification, but have
been shown to be relevant to a wide range of pheno-
mena including the Schwinger effect in high energy
physics [33,34], the Unruh thermal radiation in general
relativity [35], mode-changing collisions in spinor con-
densates [36–39], and thermofield double states in the
holographic correspondence relating a quantum-field
theory to a gravitational theory in one higher dimen-
sion [40,41].
In this Letter, we explore various ways to produce

correlated pairs during the nonequilibrium many-body

dynamics of long-range interacting spin-1=2 arrays,
realizable in polar molecules [6–8], magnetic atoms [42],
or Rydberg arrays [43–46], prepared in a stack of two-
dimensional layers. Across these platforms single-site [47],
as well as layer selective control and state preparation [48],
and high filling fractions in tweezer arrays [45,46,49]
have been demonstrated. Here, we use strong in-plane
Heisenberg interactions to lock the spin of each layer into a
collective spin, with magnitude set by the number of
particles in each layer, and show that by preparing different
initial orientations of the collective spins (enabled by layer-
selectivity), interlayer interactions [48] can be used to
engineer distinct types of pair production processes.
One of them is the paradigmatic two-mode squeezing

Hamiltonian [30–32] known for its capability to generate
metrologically useful states. Originally encapsulated by the
Einstein, Podolsky, and Rosen (EPR) paradox [28,29],
two-mode squeezing occurs when two separate ensembles
A and B are correlated such that the relative fluctuations
between the sum and difference of two quadratures can
be determined below the Heisenberg uncertainty cons-
traint [50]. In this work A and B are bosonic excitations in
different spatially separated layers generated exponentially
fast through long-range dipolar interactions between the
particles allowing fast scalable entanglement generation
in large systems. Pioneering work on spatially distributed
entanglement has been accomplished using atom-
light interactions in photonic systems [51–53], and
hot atomic vapors [54,55], as well as in Bose-Einstein
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condensates [56,57], and more generally in quantum net-
works [58–62]. However, the possibility of using long-
range interactions to directly correlate spatially separated
arrays without the detrimental degradation of coherence
from motional effects or photon loss can offer significant
opportunities for quantum metrology, in particular in terms
of scalability and speed of entanglement generation.
Furthermore, by preparing an initial state with states

cyclically staggered along three perpendicular Bloch
vector directions we show it is possible to engineer a
bosonic variety of the Kitaev model [63] which shows
remarkable properties such as phase-dependent chirality,
drastic sensitivity to boundary conditions and rich dynami-
cal behaviors [64]. While there have been proposals to
generate bosonic Kitaev models in coupled cavities subject
to parametric driving [64], their implementation in long
lived molecular or atomic states interacting via long range
interactions can offer important advantages for their prepa-
ration, detection and storage.
Model.—We consider spins interacting via long-range

interactions in two or more two-dimensional layers as
shown in Fig. 1(a), prepared, for example, via a deep 3D
optical lattice. We assume distinct in-plane lattice spacing
alat and layer spacing aZ. We restrict dynamics to two
internal states representing a spin 1=2 degree of freedom
with dynamics determined by the XXX Hamiltonian

ĤXXZ ¼ 1=2
X
i≠j

Vij

�
1

2
ðŝþi ŝ−j þ ŝ−i ŝ

þ
j Þ þ ŝzi ŝ

z
j

�
; ð1Þ

where i, j are three-dimensional positions ðiX; iY; iZÞ and
iX, iY run along the positions in a given two-dimensional
layer of size L × L indexed by iZ. The spin operators
ŝαi ¼ σ̂αi =2 are given in terms of the Pauli matrices σ̂x;y;z

that act on the spin at site i. For specificity we consider
dipolar interactions of the form Vij ¼ Vddðri − rjÞ with

VddðrÞ ¼ ðCdd=r3Þð1 − 3Ẑ2Þ parametrized by a dipolar
coupling strength Cdd. The Hamiltonian contains both
intralayer as well as interlayer Heisenberg interactions,
the relative strength of which can be tuned by changing the
ratio aZ=alat.
We consider initial states for which all spins in a layer i

are prepared in the same state and form a fully polarized
state with the collective spin S⃗i ¼

P
iX;iY s⃗iX;iY ;i pointing in

a layer-dependent direction hS⃗ii ¼ N=2n⃗i, where N ¼ L2

at unit filling, as illustrated for alternating anti-aligned layer
spins n⃗i ¼ ð−1Þiẑ in Fig. 1(a). Any such state is an
eigenstate of the intralayer interactions, and, thus, of the
full Hamiltonian in the large layer separation limit. The
capability to layer-selectively prepare and control such
states has been experimentally demonstrated [48].
The intralayer interactions then reduce to Vav

i;iS⃗i · S⃗i, with
the layer-averaged interactions Vav

ij ¼ 1=N2
P

iX;iY ;jX;jY

VðiX;iY ;iÞ;ðjX;jY ;jÞ. This S⃗i · S⃗i term creates an energy

cost for states with hS⃗2i i < N=2ðN=2þ 1Þ compared to
permutationally symmetric states of maximal spin-length
hS⃗2i i ¼ N=2ðN=2þ 1Þ, suppressing transitions out of the
collective manifold [65–69]. We emphasize that the spe-
cific spatial dependence of the interactions is not material at
short times as long as intraplane versus interplane inter-
actions are tunable. At later times the spatial range of the
interactions and the geometry will dictate the timescale for
which the collective state assumption remains valid.
Within the collective manifold the dynamics is

described by

Ĥlayer ¼ 1=2
X
i≠j

Vav
ij

�
1

2
ðŜþi Ŝ−j þ H:c:Þ þ Ŝzi Ŝ

z
j

�
; ð2Þ

where we have omitted the constant contribution from the
in-plane interactions in the fully symmetric manifold. The
natural scale for the time evolution is set by the layer-
averaged interlayer interaction, which for convenience we
define as V ¼ Vav

i;iþ1.
Bilayer.—We first study the case of a bilayer configu-

ration with initially antialigned layer spins, hS⃗1ðt ¼ 0Þi ¼
−hS⃗0ðt ¼ 0Þi ¼ N=2ẑ, as shown in Fig. 1(b).
We simulate the quantum dynamics of the full dipolar

spin model using the discrete truncated Wigner approxi-
mation (dTWA) [70–75]. In the inset of Fig. 2 we show the
time evolution of the total layer spin length hŜ2i i for a range
of layer spacings aZ=alat. While for closely spaced layers
the dynamics quickly leaves the fully collective manifold
resulting in rapid decay, for sufficiently large spacings we
observe a transition to robust collective behavior with the
spin-length remaining maximal throughout the dynamics.
This is readily explained by the relative increase of the in-
plane interactions, which gap protect the permutationally
symmetric manifold in each layer, compared to the

FIG. 1. Illustration of spin 1=2 dipoles in multilayers and
mapping to bosonic pair creation. (a) Dipoles in stacked 2D
layers of a 3D optical lattice are prepared layer selectively in
(distinct) coherent spin states illustrated by the Bloch spheres.
They interact via long-range (dipolar) interactions within and
between layers. (b) Strong in-plane interactions Ŝi · Ŝi (illustrated
as red ellipse) couple spins within a layer resulting in collective
behavior. Interlayer dipolar spin exchange (Ŝþi Ŝ

−
j ) maps to pair

creation of bosonic collective excitations.
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interplane interactions, which allow excitations out of this
manifold, with increasing layer distance.
As a first result we thus observe that for an appropriate

ratio of aZ=alat (or generically for sufficiently strong
intraplane and sufficiently homogeneous interlayer inter-
actions) the dynamics of the full model indeed closely
follows the collective model, allowing the simulation of 1D
Heisenberg chains with large (tunable) spin.
Mapping to two-mode squeezing.—Exploiting the col-

lectiveness of the dynamics, we use a standard Holstein-
Primakoff (HP) transformation [76] as Sz1 ¼ S − â†a, Sþ1 ¼ffiffiffiffiffiffi
2S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðâ†â=2SÞ

p
â, S−1 ¼ ðSþ1 Þ†, and Sz0 ¼ −Sþ b̂†b,

Sþ0 ¼ ffiffiffiffiffiffi
2S

p
b̂†

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðb̂†b̂=2SÞ

q
, S−0 ¼ ðSþ0 Þ† with S ¼ N=2

and â and b̂ bosonic operators. To quadratic order in the â
and b̂ operators we obtain

Hpair ¼ SVððâ†b̂† þ â b̂Þ þ ðâ†âþ b̂†b̂ÞÞ; ð3Þ

where Sþ0 S
−
1 þ S−0 S

þ
1 maps to pair creation 2Sðâ†b̂† þ â b̂Þ,

while Sz0S
z
1 maps to −S2 þ Sðâ†âþ b̂†b̂Þ. To cancel this

Ising induced term we apply an additional staggered fieldP
ið−1ÞihSzi with h ¼ −SV obtaining the pure two-mode

squeezing Hamiltonian. Then, the dynamics corresponds to
the resonant creation of correlated pairs of bosonic exci-
tations in both layers. This mapping and the pair creation
due to dipolar interlayer spin exchange in the collective
spin manifold is illustrated in Fig. 1(b).
Exponential pair creation.—A first prediction of

this mapping is the exponential creation of bosonic pairs

of excitations Npair ¼ ðâ†âþ b̂†b̂Þ ¼ N − Sz1 þ Sz0 as
NpairðtÞ ¼ 2sinh2ðSVt=ℏÞ [30–32]. In Fig. 2 we demon-
strate that the dynamics of the full dipolar bilayer based on
dTWA simulations also shows exponential creation of
pairs. In fact, it closely follows the prediction of the
two-mode squeezing Hamiltonian (dashed gray line) as
long asNpair ≲ 0.1N, beyond which the Holstein-Primakoff
approximation is invalid, and higher order corrections
become relevant [77]. This exponential creation can be
directly observed in experiment by measuring the popula-
tion difference Sz1 − Sz0 between the layers.
Squeezed quadratures.—Because of the correlated cre-

ation of pairs in two modes, the Hamiltonian [Eq. (3)]
generates squeezed states in hybrid quadratures [30–32].
Translating these well-known results from the bosonic
operators into our original spin operators we find that Sx0 þ
Sy1 and Sy0 − Sx1 correspond to squeezed quadratures, and
Sx0 − Sy1 and Sy0 þ Sx1 correspond to the antisqueezed quad-
ratures. Consequently, the variance of these hybrid oper-
ators is predicted to evolve as Var½O�� ¼ N=2e�2SVt=ℏ,
where we use � to refer to the antisqueezed or squeezed
quadratures. Measuring this variance and observing the
squeezing requires measuring spin correlators between the

layers of the form Sα0S
β
1, which via layer-selective pulses

these can be reduced to measurements of Sz0S
z
1, or,

equivalently, population correlations between the layers.
Based on the full dynamics of the dipolar bilayer we

confirm this prediction in Fig. 3, which shows the expo-
nential decrease of the variance of the squeezed quadratures
for a range of layer spacings (antisqueezed quadratures not
shown behave accordingly). We observe that the minimal
squeezing achievable relies on a sufficiently large layer
separation to ensure we stay in the fully collective

FIG. 2. Exponential pair-creation and dynamical phase
transition (DPT) in a dipolar bilayer. Main panel: Exponential
growth of bosonic excitations, Npair ¼ N − Sz1 þ Sz0, versus
time compared to the two-mode squeezing prediction Npair ¼
2sinh2ðSVt=ℏÞ (gray dashed). Bilayer with aZ=alat ¼ 12 in an
initially antialigned spin state, Sz1ð0Þ ¼ −Sz0ð0Þ ¼ N=2 with
L ¼ 10, 20, 40 (N ¼ 100, 400, 1600 per layer). Inset: DPT to
collective regime. Spin-length hŜ2i=N2 versus time for different
layer spacings aZ=alat ¼ 2, 4, 8, 12 displaying the transition to
collective behavior for L ¼ 40 (N ¼ 1600).

FIG. 3. Exponential two-mode squeezing. Main panel: Time
evolution of the squeezed variances for different layer spacings,
compared to the two-mode-squeezing prediction Var½O� ¼
N=2e�2SVt=ℏ (gray dashed) for L ¼ 40 (N ¼ 1600 per layer).
Bloch spheres using the appropriate combinations of the layer-
spin operators illustrating squeezed and antisqueezed variances.
Inset: N dependence of the minimal variance achieved
(aZ=alat ¼ 12) demonstrating N−1=2-scaling (gray dashed).
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manifold. If that is the case, we observe excellent agree-
ment up to a time at which Npair ∼

ffiffiffiffi
N

p
, where corrections

to the quadratic Hamiltonian become relevant [77]. As a
consequence, the minimal achievable squeezing scales as
N−1=2 with respect to the total number of spins as shown in
the inset of Fig. 3. These generated states directly allow
quantum-enhanced sensing using recently devised Ramsey
protocols only requiring measurements of the collective
spin variables and collective spin rotations of the individual
layers [78]. We also find the squeezing to be robust to finite
filling of the lattices [77]. This is an important observation
since only tweezers arrays have demonstrated the capability
to operate at unit filling [49], while current optical lattice
setups are still limited to operate at moderate filling
fraction [47].
Bosonic Kitaev model and chiral spin transport.—We

next extend our discussion to multiple layers, and exploit
the capability to prepare more complex initial states. We
consider a noncoplanar spiral state where we take the layer
spin directions to be n⃗i ¼ x̂, ŷ, and ẑ in order and repeating
periodically along the layers [Fig. 4(a)].
We then rotate the local spin basis in each layer to be

aligned with the initially prepared spin direction via Sj ¼
U†

j S̃jUj with Uj ¼ eij2π=3ðŜ
x
jþŜyjþŜzjÞ=

ffiffi
3

p
. In this rotated

frame, the XXX Hamiltonian can be projected onto the
fully symmetric state in each layer. If we also restrict

the interactions to nearest-layer interactions, it can be
mapped to

Ĥ ¼ V
X
i

ðU†
i S̃iUiÞ · ðU†

j S̃jUjÞ ð4Þ

¼ V
X
i

ðS̃xi S̃ziþ1 þ S̃yi S̃
x
iþ1 þ S̃zi S̃

y
iþ1Þ: ð5Þ

We then perform a unitary transformation to remove a

global rotation of all spins via UðtÞ ¼ e−itV=ℏ
P

i
ðŜxiþŜyiþŜzi Þ,

and finally use a Holstein-Primakoff transformation ([77])
to obtain up to quadratic order

Ĥ ≈ SV
X
j

ðiâjâ†jþ1 − iâ†j â
†
jþ1 þ H:c:Þ; ð6Þ

where âj is a bosonic creation operator acting on the time
and layer-dependent vacuum state. This Hamiltonian is the
bosonic version of the famous Kitaev model first intro-
duced in Ref. [64]. It can be expressed in terms of
Hermitian quadrature operators, x̂j ¼ ðâj þ â†jÞ=

ffiffiffi
2

p
, p̂†

j ¼
ðâj − â†jÞ=ði

ffiffiffi
2

p Þ as Ĥ ¼ −2SV
P

j p̂jx̂jþ1, whose equa-

tions of motion are fully decoupled ˙̂xi ¼ −2SV=ℏx̂iþ1, and
˙̂pi ¼ 2SV=ℏp̂i−1, and therefore show perfect chiral trans-
port: the x̂ quadratures are only coupled to x̂ quadratures to
the right and the p̂ quadratures are only coupled to p̂
quadratures to the left.
We can observe the chiral nature of the excitations in the

dynamics of the spin operators. To gain some intuition we
first consider the evolution of the spin-operators which
perturbatively evolve as Ŝαi ðtÞ ≈ Ŝαi þ ðit=ℏÞ½H; Ŝαi � ¼
Ŝαi þ ðiVt=ℏÞϵγαβðŜγi−1 þ Ŝγiþ1ÞŜβi . For a site i initially
pointing along z, this reduces to Ŝαi ðtÞ ≈ Ŝαi þ ðiVt=ℏÞ
ðϵyαzŜyi−1 þ ϵxαzŜxiþ1ÞŜzi . Thus, we see that the x component
at site i couples to the y component at site i − 1, and the y
component at site i couples to the x component at site iþ 1.
This behavior, when understood in the properly rotated
initial frame introduced above, maps to y quadratures only
coupling to y quadratures to the right, and x quadratures
only coupling to x quadratures to the left, featuring the
anticipated chiral behavior.
For the full dipolar spin dynamics there is not a simple

global unitary transformation to eliminate the mean field
dynamics. Therefore, to cleanly observe the chiral response
we require a frame-independent quantity. This can be
achieved by computing the spin Green’s function, defined
as Gαβ

ij ðtÞ ¼ ih½Sαi ðt ¼ 0Þ; Sβj ðtÞ�i that measures the effect
of a perturbation in spin component α at t ¼ 0 on the time-
evolved operator along spin-component β at site j and
time t. Its singular values measure the strength of response
and the components of the left eigenvectors provide
information about the spin projection that generated the
response. Both are insensitive to the global spin orientation

FIG. 4. Chirality of spin transport in a multi-layer system of
dipoles. (a) Layers are prepared in a noncoplanar spiral state with
the collective layer spin pointing along x̂; ŷ; ẑ repeating periodi-
cally (gray arrows). The central layer also shows the local x (red,
into plane) and y (blue) direction. (b) Largest singular value λmax
(measuring the strength of the chiral response to a perturbation)
of the spin Green’s function Gαβ

ic;j
ðtÞ ¼ ih½Sαicðt ¼ 0Þ; Sβj ðtÞ�i at

fixed times as indicated in the legend versus distance j. Color bar
(jvxj2 − jvyj2) indicates the direction of the corresponding left
eigenvector v showing the spin direction of the perturbation that
induced the chiral dynamics. System with L ¼ 10 (N ¼ 100
molecules per layer) with 12 total layers.
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generated by the MF dynamics. In Fig. 4(b) we show the
largest singular value (measuring the strength of response)
as a function of distance from the central layer ic (which
initially points along z). The color scale shows the spin
direction of the corresponding left eigenvector which is
pointing (almost) purely along x (red) to the right (j > ic),
while it is (almost) purely along y (blue) to the left (j < ic).
Thus, correlations that propagate to the right originate from
Sxicðt ¼ 0Þ, while correlations that propagate to the left
originate from Syicðt ¼ 0Þ, demonstrating genuine chiral
behavior. We also compare the full dipolar spin model to
the analytical solution of the bosonic model and observe
good quantitative agreement between both solutions up to
times where boundary effects become relevant [77].
Outlook.—In summary, our work demonstrates the large

space of opportunities, uniquely enabled by the capability
to spatially select, prepare, and measure quantum states, to
study novel nonequilibrium phenomena and to control the
growth and propagation of quantum correlations with
applications in quantum sensing and simulation. While
here we focused on the limit of Heisenberg in-plane
interactions that favor spin alignment within layers, and
thus homogeneous excitations predominantly in the fully
symmetric manifold within the layers, by using a more
general type of intralayer spin Hamiltonians enriched by
the anisotropic nature of the dipolar interactions, one
should be able to generate spatially dependent and aniso-
tropic excitations featuring rich nonequilibrium universal
behaviors [81]. Furthermore, the use of time-reversal
protocols should enable measurements of out-of-time-order
correlations [82] to better quantify correlation growth,
or to realize SU(1,1) interferometry [38]. The phenom-
enology discussed here might be even further enriched
utilizing dipoles with a larger internal state space, e.g.,
multiple rotational states of molecules or larger spin
magnetic atoms.
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