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MINERvA has measured the νμ-induced coherent πþ cross section simultaneously in hydrocarbon (CH),
graphite (C), iron (Fe), and lead (Pb) targets using neutrinos from 2 to 20 GeV. The measurements exceed
the predictions of the Rein-Sehgal and Berger-Sehgal PCAC based models at multi-GeV νμ energies and at
produced πþ energies and angles, Eπ > 1 GeV and θπ < 10°. Measurements of the cross-section ratios of
Fe and Pb relative to CH reveal the effective A scaling to increase from an approximate A1=3 scaling at few
GeV to an A2=3 scaling for Eν > 10 GeV.
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In neutrino-induced coherent pion production the nucle-
ons in the nucleus recoil in phase under the impact of an
incident neutrino. The nucleus remains in its initial quan-
tum state and recoils with an energy below the detection
threshold of most neutrino detectors. A π meson and a
lepton are created, both with relatively small angles with
respect to the incoming neutrino. Both charged (CC) and
neutral current (NC) interactions can occur, induced by a
neutrino or antineutrino of any flavor, according to
νl þ A → lþ π þ A, where νl is a neutrino of flavor l, A
is the nucleus, and l and π, a lepton and a pion of the proper
charge, respectively. The four-momentum transfer to the
nucleus,

jtj ¼ jðpν − pl − pπÞ2j

≈
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must be between jtminj ≃ ½ðQ2 þm2
πÞ=2Eπ�2 [1], and

jtmaxj ¼ 1=R2
N [2] for the interaction to happen, where

pν, pl, and pπ are the neutrino, lepton, and pion four-
momenta, respectively; pT and pL are the lepton’s or pion’s
transverse and longitudinal momenta, respectively; E is the
lepton’s or pion’s total energy, Q2 is the square of the four-
momentum transferred by the neutrino, mπ is the pion
mass, and RN is the nuclear radius.
Historically, most experiments [2–17] used the Rein-

Sehgal model (R-S) [18] to simulate coherent π production.
It is based on Adler’s partially conserved axial current
(PCAC) theorem [19], which relates the neutrino-nucleus
inelastic cross section to the pion-nucleus elastic cross
section, assuming the incoming neutrino and the outgoing
lepton are parallel (when Q2 ¼ 0), and neglecting the
lepton mass. The CC channel differential cross section is

d3σCCcoh
dQ2dydjtj
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where y ¼ ν=Eν ¼ ðEν − EμÞ=Eν ≈ Eπ=Eν, f2π is the
pion decay constant, Eν is the neutrino energy, and
dσπ

�A=djtj is the pion-nucleus elastic cross section. The
model extrapolates Eq. (2) to Q2 > 0 with a form factor
½m2

A=ðm2
A þQ2Þ�2, where mA ≈ 1 GeV is the axial-

vector mass.
CC coherent pion production is an important background

for CC quasielastic interactions in νμ-disappearance mea-
surements [20], when the πþ is misreconstructed as a
proton. It is also a significant fraction of MINERvA’s own
CC1πþ sample [21]. Both are very valuable for upcoming
neutrino oscillation analyses in the few-GeV region
[22,23].
By using jtj to isolate signal-like events, MINERvAwas

the first experiment to observe the CC coherent π� in that
energy region, using νμ and ν̄μ beams on a hydrocarbon

(CH) target [24,25]. These and two later publications
[26,27] used an improved version of the R-S model that
includes the lepton mass [28,29].
Prior to this work, all published results on coherent pion

production used a single target with mass number A ≤ 40
(A ≤ 80 for NC) [2–17,24–27]. Compared to the previous
MINERvAmeasurement, the present work uses data from a
more energetic and more intense beam [30], and from a
longer exposure, representing an increase of the protons on
target (POT), from ∼3 × 1020 to ∼10.5 × 1020. This Letter
presents measurements carried out simultaneously on four
different samples: hydrocarbon (CH), graphite (C), steel
(Fe), and lead (Pb). Absolute cross sections and ratios to
scintillator (CH) are reported for nuclei with a wide range
of A values: 12, 56, and 207.
These measurements are obtained using the NuMI beam

line at the Fermi National Accelerator Laboratory [31]
where 120-GeV protons colliding on a graphite target,
create hadrons that are focused using a pair of magnetic
horns, and sent to a decay pipe where they create a beam of
muon-neutrinos, with hEνi ∼ 6.0 GeV [30], made of
∼95% νμ, and ∼5% of ν̄μ, νe, and ν̄e [32]. The neutrino
beam is simulated with a GEANT4 model [33,34].
The MINERvA detector consists of an inner detector

made of an upstream “nuclear target” and a downstream
“tracker” region, and an outer detector composed of
electromagnetic (ECAL) and hadronic (HCAL) calorime-
ters [35]. The nuclear target region is ∼1.4 m long with five
different passive materials: solid C, Fe, and Pb; and liquid
He and H2O, all installed in seven targets. Following the
beam direction, solid targets are labeled from 1 to 5. Targets
1, 2, and 5 had segments of Fe and Pb, and thickness of
∼2.6 cm in targets 1 and 2, and ∼1.3 cm in target 5. Target
3 had C, Fe, and Pb segments, with thickness of∼7.6, ∼2.9,
and ∼2.6 cm, respectively. Target 4 was made of Pb with a
thickness of ∼0.8 cm. Eight planes of tracking plastic
scintillator (CH) were placed between the targets (only four
between targets 4 and 5). Different target positions and
thicknesses tried to equalize mass, acceptance, and particle
containment; maximize event rates, vertex and track
resolution; and minimize the energy threshold of particles
exiting the passive materials. The tracker region is ∼2.7 m
long and made of 120 scintillator planes. Planes consist of
127 triangular prism scintillator strips with 33-mm base,
17-mm height, and varying length to form a hexagonal
plane. Planes are rotated by 60° with respect to adjacent
ones, enabling three-dimensional reconstruction. The
detector’s single hit position resolution is ∼3 mm and
the time resolution is 3 ns [35]. The ECAL surrounds
the inner detector, and the HCAL surrounds the ECAL.
The former (latter) consists of planes of lead (iron) and
scintillator to contain and track electromagnetically
(strongly) interacting particles. Located 2 m downstream
of MINERvA, the MINOS near detector [36,37] served as a
magnetized spectrometer to determine muon charge and
momentum.
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The signal process is CC coherent interactions on C, Fe,
and Pb, induced by a νμ from 2 to 20 GeV. Events with pion
angle larger than 70° cannot be tracked and have zero
efficiency. Events in the nuclear target (tracker) region with
muon angle larger than 13° have an efficiency of ∼1%
(∼4%) due to MINOS acceptance. The percentage of
simulated signal events in these categories is ∼5% for
CH and C, and ∼2% for Fe and Pb.
Neutrino interactions are simulated using a modified

version of the GENIE event generator v2.12.6 [38,39]. The
signal’s cross section is given by the R-S model with the
lepton mass correction. Background processes (Fig. 1) in
increasing hadronic invariant mass W, are CC quasielastic
(QE), correlated pairs of nucleons (2p2h), resonant πþ
production (non-QE, W < 1.4 or RES), inelastic scattering
(1.4 < W < 2.0 or INE) and deep inelastic scattering
(W > 2.0 or DIS). Quasielastic scattering is simulated
using the Llewellyn-Smith model [40] with an axial-vector
form factor from a z expansion fit to deuterium data [41]
and a correction from the Valencia random phase approxi-
mation (RPA) [42]. The 2p2h process is simulated with the
Valencia model [43–45] and modified according to a “low
recoil” fit by MINERvA [46]. Resonant pion production
uses the Rein-Sehgal model [47] with its normalization
increased 15% based on fits from a deuterium data ana-
lysis [48], plus an additional ad hoc suppression for Q2 <
0.7 ½GeV=c�2 due to collective nuclear effects [49].
Inelastic interactions use a tuned model of discrete baryon
resonances [47], and the Bodek-Yang model for the
transition region to DIS, as well as nonresonant pion
production across the full W range [50], that was reduced
by 43% based on a tune to the same deuterium data [48].
These tunes to GENIE are labeled as the MINERvA tune
v4.4.1 [51].
Final state particles coming from the GENIE simulation

are propagated through the detector using a GEANT4

simulation of the detector’s geometry and material com-
position, light yield and energy deposition of the particles
in the scintillator, and their hadronic and electromagnetic
interactions [35]. The detector’s energy scale was estab-
lished by making sure that simulated through-going
muons agreed with data in both light yield and recon-
structed energy deposition. The detector’s simulated
response to different particles is validated in a test beam
measurement [52], and the effects of accidental acti-
vity, electronics charge, and time resolution were also
included [35].
Scintillator strips with deposited energy greater than

1 MeV are grouped per plane according to their position
and time, into “clusters.” These are grouped with clusters in
adjacent planes to form tracks. Backwards-projected tracks
find interaction vertices. Angles are measured between the
simulated beam direction and the direction of the track in its
first planes downstream of the vertex.
This analysis isolates events with two tracks from a

common vertex. The reconstructed momentum of the muon
candidate is the addition of the momentum determined by
range inside MINERvA plus its momentum determined by
range or curvature inside MINOS. The pion candidate has
to be fully contained inside MINERvA, so jtj can be
measured. The pion total energy is reconstructed calori-
metrically from all the energy not associated with the
muon, given the assumption Eν ≈ Eπ þ Eμ from Eq. (1),
where Eμ is the muon’s total energy.
The reconstructed interaction vertex is defined as the

upstream end of the muon track, and it is required to be
inside the fiducial volume under study. The CH fiducial
volume is 108 planes long (∼2.4 m) centered in the tracker
region with the area of a 0.85-m apothem hexagon [53].
The fiducial volume in the passive targets, is the area times
the thickness of the segment of interest. For the passive
materials, the vertex is projected into the z center of the
target, where the ðx; yÞ coordinate determines the segment
(material). Events from different targets but the same
material are combined into a single sample.
The reconstructed neutrino energy must be between 2

and 20 GeV to remove events with misreconstructed muon
energy [34]. To reject protons from quasielastic and
resonance production backgrounds, dE=dx-based χ2 com-
pared to pion and proton hypotheses of the pion candidate
track are built. A log likelihood ratio [54] between the
hypotheses removes (keeps) ∼70% (∼87%) of protons
(pions) according to the simulation.
The energy of the vertex region (Evtx), defined as a 200-

mm radius, 7-plane height cylinder centered at the inter-
action vertex, must be consistent with the energy deposited
by one minimum-ionizing charged pion and one muon. The
Evtx distribution of simulated signal events is fit to a
Gaussian function, and events within �1σ of the mean
are selected. Because of different target thickness, hEvtxi is
target dependent, varying from ∼60 to ∼95 MeV. This cut
removes (keeps) ∼86% (∼60%) of the background (signal).

FIG. 1. Reconstructed jtj distributions after Evtx cut and back-
ground tuning: CH, C, Fe, and Pb, in reading order. Regions in
between arrows are the sidebands for background tuning. Events
to the left of the lower-jtj arrow are selected.
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Because of their proximity to tracking scintillator planes,
the C, Fe, and Pb samples have contamination from events
occurring in the scintillator upstream and downstream of
the passive material. These events are considered back-
ground, and are tuned using the plastic regions between
passive targets as sidebands. There is an “upstream” and a
“downstream” plastic sideband for each passive material.
The tuned plastic backgrounds represent∼13%, ∼14%, and
∼21% of the C, Fe, and Pb selected samples, respectively.
After removing events with high Evtx, and subtracting

the plastic background, all samples in Fig. 1 show a signal
dominance at low jtj. For heavier nuclei, the signal shrinks
to a lower jtj region as RN increases. The C distribution has
a significant excess of RES and INE events from ∼0.025 to
∼0.5 ½GeV=c�2 compared to CH, despite both being inter-
actions on carbon. This is due to the ∼7.6-cm thickness of
the C segment, where one or more pions from those
backgrounds are absorbed inside the passive material,
which allows the event to pass the Evtx cut.
A high jtj sideband (0.2 < jtj < 0.7 ½GeV=c�2) is used to

tune the QE, RES (Non-QE, W < 1.4), INE (1.4 < W <
2.0), and DIS (W > 2.0) backgrounds. Because of their
small content, “coherent” and “other interactions” (NC-,

ν̄μ-, or νe
ð−Þ
-induced) are not tuned, and 2p2h is considered

QE during the tuning. Because the C target has limited
statistics, two modifications were made to the fit for that
target only: RES and INE were combined, and the QE and
DIS scale factors were replaced by their CH counterparts.
The scale factors for each of the backgrounds are in the
Supplemental Material [55].
Events with jtj < ð0.1; 0.125; 0.075; and 0.05Þ ½GeV=c�2

were selected for C, CH, Fe, and Pb, respectively. More than
99% of GENIE true signal events are below those cuts. After
the jtj cut and background subtraction, there are 14855�
433 CH, 303� 41 C, 726� 89 Fe, and 492� 41 Pb
candidate events.
An iterative unfolding approach [56] was used to correct

the background-subtracted distributions for resolution
effects. The unfolded distributions were then efficiency
corrected. The cross sections were extracted according to
the expression σ ¼ NDATA eff=ðΦTÞ, where NDATA eff is the
background-subtracted, unfolded, and efficiency-corrected
data,Φ is the incident neutrino flux, and T the number of C,
Fe, or Pb nuclei. The largest sources of inefficiency come
predominantly from well-understood random processes,
which supports the assumption that the nondetected events
have the same relative background composition.
The extracted cross sections are compared to the R-S

model (GENIE v2.12.6) and to the Berger-Sehgal (B-S)
model (GENIE v3.0.6) [57–59]. The latter is also PCAC-
based, and also includes the muon mass correction, but
uses pion-carbon data [1] to model the elastic pion-nucleus
cross section, instead of pion-deuterium data as the
R-S model.

Figure 2 shows the total cross section as a function of Eν,
with the flux integrated per bin, where both models under-
predict the reaction rate at high neutrino energies in the four
materials. Inner (outer) error bars are the statistical
(statisticalþ systematic) uncertainties. The differential
cross sections with respect to Eπ and θπ, are flux averaged
from 2 < Eν < 20 GeV. In dσ=dEπ (Fig. 3) there is a clear
disagreement between the models and the data of the two
heavier nuclei, for low (high) Eπ in iron (lead). Figure 4
shows that the models also underpredict the dσ=dθπ cross
section at very forward angles in all materials. Notably,
forward pion production in the heavier nuclei is enhanced
relative to scattering on carbon, where for lead, the cross
section becomes negligible for θπ > 30°.
The simultaneous neutrino exposure of the various

targets enables precise measurement of cross section ratios
thanks to the same beam configuration in all targets at
any given time. Figure 5 shows the cross section ratios as
a function of Eν: σC=σCH, σFe=σCH, and σPb=σCH.

FIG. 2. Total cross sections as a function of Eν: CH, C, Fe, and
Pb, in reading order. Data are compared to the R-S (red) and B-S
(blue) models.

FIG. 3. Differential cross sections as a function of Eπ: CH, C,
Fe, and Pb, in reading order. Data are compared to the R-S (red)
and B-S (blue) models.
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As expected, the former is consistent with unity [60].
The CH cross sections used to calculate the ratios, were
reweighted to use a flux that matched the flux used to
calculate the C, Fe, or Pb cross sections [21].
The R-S and B-S models predict a scaling of the cross-

section with respect to the mass number A and practically
energy independent (horizontal dashed lines in Fig. 5),
∼A1=3 [18,61] and ∼A2=3 [3,62], respectively. The PCAC-
based Belkov-Kopeliovich (B-K) model predicts a scaling
close to A1=3 at low pion energy but close to A2=3 at high
pion energy [63,64]. In terms of neutrino energy, the B-K
model predicts a scaling of ∼A1=3 (∼A2=3) at neutrino
energies below (above) ∼10 GeV [65].
The measured σFe=σCH resembles the trend predicted by

B-K, where below ∼8 GeV there is a clear agreement with
the A1=3 scaling, and a better agreement with the A2=3

scaling above ∼10 GeV, with a constant increase in

between. A similar trend occurs for the measured
σPb=σCH but with an A-scaling larger than predicted below
10 GeV.
The statistical uncertainty of the total cross section

dominates in the three passive materials (Fig. 6). The
largest systematic uncertainties are related to the detector’s
geometry and particles interacting in it (Detector Model),
like the muon energy deposition in MINERvA and MINOS
[66]. Uncertainties associated with the “interaction model,”
come from GENIE and the uncertainties from the
MINERvA tune v.4.4.1. The “physics sideband” is the
uncertainty on the backgrounds scale factors, plus a “per-
bin” uncertainty covering for the remaining disagreement
between data and the simulation in the high jtj sideband.
The “flux” uncertainty comes from the uncertainty on the

beam line parameters, and hadron interactions [34]. It was
further constrained from 7.6% to 3.9% using a neutrino-
electron scattering measurement [67].
Other sources of uncertainty are the discrepancy in the

detector mass; modifications to the QE-like background
(low recoil and RPA); low Q2 suppression of resonant pion
production; and the uncertainty on the plastic background
scale factors (plastic sideband). They contribute less than
∼5% (∼15%) to the total cross section uncertainty in CH
(C, Fe, and Pb). The CH sample provides the most precise
measurement of the interaction so far, reducing the total
uncertainty from ∼25% to ∼15% compared to the previous
MINERvA measurement [25]. Cross section ratios have a
further reduction of some systematic uncertainties, in
particular the flux, reduced by ∼75% of itself (Fig. 6).
The measurements in this Letter represent the first

simultaneous measurement of the interaction in multiple
materials and the first measurement in nuclei with A > 40

(56Fe and 207Pb), from which cross section ratios with
respect to CH are measured. The data indicates that the R-S
and B-S PCAC models do not accurately describe the
angular dependence on θπ, the energy dependence on Eπ , or

FIG. 4. Differential cross sections as function of θπ: CH, C, Fe,
and Pb, in reading order. Data are compared to the R-S (red) and
B-S (blue) models.

FIG. 5. Cross section ratios as a function of Eν: σC=σCH,
σFe=σCH, and σPb=σCH, in reading order. The upper (lower)
dashed line is the ratio predicted by an A2=3 (A1=3) scaling.
The slope is the best A-scaling fit. The 2–3 GeV bin is not
included in the σPb=σCH fit due to the null cross section in lead in
that bin (Fig. 2).

FIG. 6. Uncertainties in the total cross section as a function of
Eν: CH, C=CH, Fe=CH, and Pb=CH, in reading order. The
systematic uncertainties are described in the text.
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the A dependence. While the σFe=σCH qualitatively agrees
with the B-Kmodel’s energy-dependent A scaling, σPb=σCH
does not, at least at low Eν.
The estimate of the cross sections A scaling provided in

this Letter could be used to extrapolate to materials where
measurements do not exist or the statistics are limited, like
H2O for Hyper-K or Ar for DUNE. For the latter, pion
production will make up around three quarters of the
detected neutrino-induced events.
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