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We find that the duality between color and kinematics can be used to inform the high energy behavior of
effective field theories. Namely, we demonstrate that the massless gauge theory of Yang-Mills deformed by
a higher-derivative F3 operator cannot be tree level color dual while consistently factorizing without a
tower of additional four-point counterterms with rigidly fixed Wilson coefficients that reaches to the
ultraviolet (UV). We find through explicit calculation a suggestive resummation, namely that their
amplitudes are consistent with the α0 expansion of those generated by the ðDFÞ2 þ YM theory, a known
color-dual theory where the F2 term has been given a mass squared proportional to 1=α0. As a result,
considering consistent double-copy construction as a physical principle implies that an F3-based color-dual
resolution of the UV divergence in N ¼ 4 supergravity comes at the cost of field-theoretic locality.
Similarly, when double copying F3 with itself, double-copy consistency lifts R3 gravity to a family of
gravity theories with an all-order tower of higher-derivative corrections, which includes the closed bosonic
string as a standard adjoint-type double copy.
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Introduction.—Perturbative calculation in quantum grav-
ity theories is not as prohibitive as Feynman diagram
approaches, in generic gauges, might suggest. The duality
between color and kinematics [1], and associated double-
copy construction [1–3], reduces the complexity of
calculations in many gravity theories to understanding
predictions in much simpler gauge theories.
On the other hand, identifying consistent ultraviolet (UV)

completions of quantum gravity theories still remains chal-
lenging from the perspective of pointlike quantum field
theories. The onlyprovenUVcompletion toquantumgravity,
the closed string, requires an infinite number of higher-
derivative corrections from the quantum field theory (QFT)
perspective–arguably rendering the theory nonlocal. The best
candidate for a perturbatively finite local quantum field
theory of gravity is themaximally supersymmetric theory [4],
N ¼ 8 supergravity (SG), which remains finite in four
dimensions at least through the five-loop correction [5–7].
Counterterms compatible with known linearly realized sym-
metries have been identified whichwould be relevant starting
at seven loops [8,9], although their coefficients have not been
determined and could vanish in four dimensions. The
ultimate fate of N ¼ 8 SG awaits explicit calculation.

Absent direct data from the UV theory, positivity
bounds have long [10] been a tool for probing potentially
valid UV behavior of effective field theories (EFTs) by
bounding a priori unconstrained Wilson coefficients. In
this Letter, we investigate whether the duality between
color and kinematics in combination with factorization
constraints can serve a similar role and go beyond simply
aiding in calculation. After all, perturbative string theory,
the only known UV completion to Einstein-Hilbert
gravity, can now be understood at tree-level as a field-
theoretic double copy involving all order in α0 color-dual
EFTs [17–21]. We demonstrate that this duality can
indeed inform UV completion, finding surprisingly that
it has the potential to enforce all-order relations between
Wilson coefficients starting only from the IR. We motivate
this result by engaging with a sharp problem—resolving
the UV behavior of half-maximal supergravity in four
dimensions.
In four dimensions, the perturbative finiteness of pure

half-maximal SG survives three loops [22], a challenge
analogous to maximal supergravity’s conjectured seven-
loop divergence [9], only to diverge at four loops [23].
The observed divergence at four loops has been linked to
the U(1) anomalous behavior [24–26] of the theory. Such
anomalous behavior at one loop can be removed with a
simple local counterterm whose double-copy description
involves adding the TrðF3Þ operator to a pure Yang-Mills
theory. Does including this counterterm render supergravity
finite? This too awaits explicit calculation—but investiga-
tion at one and two loops [27,28] has verified that the
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addition of this appropriately tuned counterterm does
indeed remove the anomalous behavior.
We will show in this Letter that the consequence of

requiring that amplitudes both consistently factorize
and participate in double-copy construction via color-
kinematics duality, a property we call double-copy con-
sistent, demands rigid relations between coefficients of
EFToperators that ascend into the UV. Motivated by the 4D
anomaly of half-maximal supergravity, we will investigate
amplitudes in a Yang-Mills theory deformed by the TrðF3Þ
operator. We will do so in D dimensions using formal
polarization vectors. For a detailed review of double-copy
structure and supersymmetry, we refer the interested reader
to Ref. [30]. Here we need only recall that the double-copy
structure of pure half-maximal supergravity (half-max. SG)
is given,

ðhalf max SGÞ ¼ ðmaximal sYMÞ ⊗ YM: ð1Þ

Maximally supersymmetric Yang-Mills (maximal sYM)
follows via dimensional reduction of one supersymmetry
in ten dimensions. The double copy of maximal sYM in
any dimension with nonsupersymmetric gauge theory
results in a supergravity with half the maximal supersym-
metry it could have in that dimension, so, e.g., N ¼ 4 SG
in 4D.
First, we provide evidence that double-copy consistency

for YMþ F3 requires the inclusion of an infinite tower of
rigidly constrained counterterms at four points through
Oðα04Þ by explicit calculation via color-dual bootstrap
between four and five points—finding for the first
time the most generic color-dual five-vector amplitude
through this mass dimension. We parametrize all residual
freedom in Wilson coefficients unconstrained by five-point
factorization. We then present a potential resummation of
this tower of operators to ðDFÞ2 þ YM theory, a known
dimension-six color-dual theory, whose α0 expansion
explicitly matches the Wilson coefficients that result from
our bootstrap.
What has happened to our half-maximal supergravity?

Remarkably, we have bootstrapped to a string theory
where some (but not all) of the nonlocality has been
removed—the double copy of ðDFÞ2 þ YMwith maximal
sYM results in amplitudes of a twisted [29] heterotic
string [33]. This is an entirely novel consequence of
demanding color-dual consistency from an IR vector
theory starting only with Yang-Mills deformed by F3.
We note that there remains the color-dual freedom to
complete to known UV completions like the standard
heterotic string. We clarify this structure and freedom,
while pointing out consequences for double-copy consis-
tent gravity theories involving R3. We close this Letter
by summarizing our results and discussing important
next steps.

Double-copy consistency of TrðF3Þ.—The idea of dou-
ble-copy consistency gets to the heart of an open question
regarding double-copy construction. Should we regard the
double copy as a technical trick to be employed piecemeal,
amplitude by amplitude as necessary, or rather as a physical
principle pointing to the presence of an as-yet-unrecognized
physical mechanism braiding together factors of two other-
wise consistent theories? Here we explore the gravitational
UV consequences of using double-copy consistency to
constrain an ansatz-driven color-dual vector bootstrap.
For comparison, we first consider a scalar EFT that also

requires an infinite number of counterterms to be double-
copy consistent. We start with a theory of massless scalars
with only the interaction term,

L4-int ¼ Λfabefecdð∂μϕaÞϕbϕcð∂μϕdÞ: ð2Þ

While even-multiplicity amplitudes are nonvanishing, the
four-point amplitude is color dual. The color-dual theory
requires an additional six-field operator whose coefficient
is uniquely determined by the duality and consistent
factorization [34]. Indeed requiring double-copy consis-
tency to arbitrary multiplicity involves adding an infinite
chain of operators with fixed Wilson coefficients. This
resums to the pion Lagrangian of the venerable nonlinear
sigma model known to be color dual [35]. Demanding
double-copy consistency encodes the same physical
Nambu-Goldstone symmetry as imposing the constraint
of the famous Adler’s zero.
Let us now address the theory at the heart of this Letter,

Yang-Mills theory deformed by the higher derivative
TrðF3Þ operator,

LYMþF3 ¼ −
1

4
TrðF2Þ þ α0

3
TrðF3Þ: ð3Þ

For this theory both Oðα00Þ and Oðα01Þ orders in the three-
gluon amplitude satisfy the duality between color and
kinematics, as does the four-point tree-level amplitude
through Oðα0Þ [36]. In contrast, the Oðα02Þ contribution
to the four-point amplitude, while naturally gauge invariant,
is not color dual. One must modify LYMþF3 with an
additional TrðF4Þ operator [36] for color-dual four-point
amplitudes through Oðα02Þ.
In fact, we will present evidence that no finite number of

local operators is sufficient to render LYMþF3 double-copy
consistent. The situation is markedly different than the
earlier scalar theory, which at least requires only a finite
number of operators to render any particular multiplicity
color dual.
To understand the origin of the requisite UV ladder,

consider the minimal cut factorization of five points,

A5ð12345Þjðk4þk5Þ2-cut ¼
X
states

A4ð123lsÞA3ð−ls̄45Þ: ð4Þ
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Since the three-point amplitude is comprised of both Yang-
Mills and TrðF3Þ contributions, A3 ≡ AYM

3 þ α0AF3

3 , the
physical state sum with a purely local four-point contri-
bution at order Oðα0nÞ means a nonvanishing five-point
factorization channel at Oðα0nþ1Þ. We find that the
Oðα0nþ1Þ contribution at five points cannot be color dual
without the additional contribution from a specific four-
field operator of orderOðα0nþ1Þ sewn with the TrðF2Þ term,
as depicted in Fig. 1. This higher-weight four-point contact
must come in with a fixed Wilson coefficient. Contraction
of this additional Oðα0nþ1Þ four-point contact with the
α0TrðF3Þ term now forces consideration of a nonvanishing
Oðα0nþ2Þ contribution at five points, and so forth, thereby
constructing a compulsory ladder of operators into the UV.
We will now demonstrate the inevitability of this ladder

throughOðα04Þ—a nontrivial task given the formidable size
of the necessary five-vector Ansätze. To tease out this
structure, we start by identifying the color-dual four-point
kinematics that are consistent three points, and then we
calculate the constraints of five-point factorization.
At four points adjoint color-dual amplitudes can always

be written in terms of cubic, or trivalent, graphs:

A4 ¼
nscs
s

þ ntct
t

þ nucu
u

: ð5Þ

We label the graphs by their propagators, using s, t, and u to
refer to the standard Mandelstam invariants, using an all
outgoing convention, s ¼ ðk1 þ k2Þ2, t ¼ ðk2 þ k3Þ2, and
u ¼ ðk1 þ k3Þ2. Each graph has a color weight arising from
dressing every vertex with a color-structure constant, e.g.,
cs ¼ cð1; 2; 3; 4Þ ¼ fa1a2bfba3a4 . Similarly, keeping polari-
zation vectors formal, we require a functional map from
the labeled graph to kinematic weight such that, e.g.,
ns ¼ nð1; 2; 3; 4Þ, nt ¼ nð1; 4; 3; 2Þ, and nu ¼ nð1; 3; 2; 4Þ.
The dressing is color dual if the kinematics satisfy a Jacobi-
like relation ns ¼ nt þ nu and are antisymmetric about
vertex flips in concordance with the adjoint color factors,

e.g., nð1; 2; 3; 4Þ ¼ −nð2; 1; 3; 4Þ. Only if such a represen-
tation exists can the theory participate in double-copy
construction.
We can bootstrap to arbitrary orders in α0 by giving

our color-dual numerator a generic Ansatz in terms of
D-dimensional formal polarization vectors at the particular
mass dimension of interest, and then constraining on any
factorization channels. Here we have complete control over
color-dual structure in terms of only eight vector building
blocks that span all higher-derivative corrections under
composition with scalar permutation invariants [37,38]. We
simply impose factorization to three-point vertices of the
form AYM

3 þ α0AF3

3 . As such, every contribution to A4

above Oðα02Þ must be purely local. All lower-order terms
are fixed to be related to coupling constants appearing in
the three-point amplitude.
We find, through Oðα04Þ, the following functional

numerator of the s-channel graph,

ndccs ¼ nYMs þ α0nYMþF3

s þ α02nðF
3Þ2þF4

s

þ α03½a3ðnD2F4

s þ σ2nYMþF3

s Þ þ a3;YMσ3nYMs �
þ α04½a4;1ðnðDFÞ4

1
s þ σ2n

ðF3Þ2þF4

s Þ
þ a4;2n

ðDFÞ4
2

s þ a4;F3σ3nYMþF3

s � þOðα05Þ: ð6Þ

We have scaled out mass dimension using the TrðF3Þ
dimensionful coupling α0, leaving all unconstrained Ansatz
parameters, ai, dimensionless. We introduce scalar permu-
tation invariants σ2 ¼ ðs2 þ t2 þ u2Þ=8 and σ3 ¼ ðstuÞ=8.
Here the numerator is given in terms of six of the
eight spanning color-dual vector building blocks nOi

s of
Refs. [37,38], with explicit definitions given in an ancillary
machine-readable file. The factors of ai are free numeric
parameters unconstrained by the factorization of four
points. We will now see that imposing factorization con-
straints on the most general color-dual five-point amplitude
entirely fixes a3, a4;1, and a4;2, and relates a4;F3 to a3;YM.
As no spanning basis of color-dual vector building

blocks is known yet at five points, we consider a general
Ansatz expressed in all combinations of Lorentz invariants.
Performing the calculation to the desired order in mass
dimension involves reduction of a 58 923 parameter Ansatz
spanning from order four in dot products, relevant to
Oðα00Þ, to order eight at mass dimension Oðα04Þ above
Yang-Mills. Unsurprisingly reaching this order via vector
Ansätze is a computational task comparable to nontrivial
multiloop calculations only recently within reach [39].
We find that requiring color-dual factorizing amplitudes

at five points through Oðα04Þ imposes the following
constraints on the free parameters in Eq. (6):

a3 ¼ a4;1 ¼ a4;2 ¼ 1; a4;F3 ¼ 1þ a3;YM: ð7Þ

FIG. 1. Contributions to the factorization of five-point tree-level
amplitude, Eq. (4), at Oðα0nÞ. Color-dual constraints on the five-
point amplitude relate Wilson coefficients of α0n and α0nþ1 four-
field operators.
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In summary, double-copy consistency establishes a
tower of ever higher-derivative operators at four points
with rigidly locked Wilson coefficients. The tower remains
to be proven to all orders in α0, but we find the explicit
results so far to be sufficiently provocative to consider
resummation.
Resummation to DF2 þ YM.—A natural question is if

the results above resum to a known theory. We apparently
have the freedom to set a3;YM ¼ 0. If we do so, our four-
point and five-point amplitudes precisely match the Oðα04Þ
expansion of the Bð1;…; nÞ amplitudes of Ref. [40]. These
B amplitudes belong [41] to the ðDFÞ2 þ YM theory of
Ref. [42], where the ðDFÞ2 has been deformed by a
massive gauge theory, with mass scale set by 1=α0.
Indeed, in Ref. [37], the four-point amplitude of ðDFÞ2 þ
YM theory was expressed in terms of the above color-dual
building blocks:

nðDFÞ2þYM
s ¼ nYMs

þ α0nF3

s þ α02nðF
3Þ2þF4

s þ α03nD2F4

s þ α04nðDFÞ4
s

1− α02σ2 − α03σ3
;

ð8Þ

with nðDFÞ4
s ≡ n

ðDFÞ4
1

s þ n
ðDFÞ4

2
s .

The ðDFÞ2 þ YM theory that generates the B amplitudes
is a fascinating color-dual dimension-six theory involving
the TrðF3Þ operator with higher-order propagators. It was
first written down by Johansson and Nohle [42] with the
explicit aim of finding a double-copy description of
conformal supergravity. While we double copy over stan-
dard propagators, the hallmark conformal propagators
emerge from the fact that the resummed graph “numer-
ators” of Eq. (8) are themselves nonlocal.
As previously noted, double copying ðDFÞ2 þ YM with

maximal sYM recovers the four graviton amplitude of the
twisted heterotic string [33]. More generally here we find
ourselves lifting the Poincaré theory to a family of Einstein-
Weyl theories of which Berkovits-Witten conformal super-
gravity is a famous limiting example [43,44]:

ðhalf-max Einstein-Weylþ…Þ
¼ ðmaximal sYMÞ ⊗ ððDFÞ2 þ YMþ…Þ: ð9Þ

We include ellipses to emphasize the potential inclusion of
operators unfixed by solely requiring the double-copy
consistency of YMþ F3. As we discuss in the next section,
this freedom can be fixed with particular Wilson coeffi-
cients to promote half-maximal SG amplitudes to the
gravitational amplitudes of the heterotic string at tree level.
Using Eq. (8) to rewrite our constrained Ansatz in Eq. (6)

offers a revised form of the four-point numerator for our
double-copy consistent theory through α04:

ndcc ¼ nðDFÞ2þYM þ a3;YMα03σ3ðnYM þ α0nF3Þ: ð10Þ

Note that the terms in the second expression, nYM þ α0nF3

,
mirror the first terms of the α0 expansion of nðDFÞ2þYM

given in Eq. (8). This suggests the possibility that double-
copy consistent amplitudes can be promoted to higher-
order contact terms via a product of their color-dual
numerators with scalar permutation invariants, and that
this information can be consistently propagated to higher
multiplicity color-dual amplitudes.
Indeed, we will shortly introduce a map from string

theory which offers not only a proof of concept, but a
prescriptive understanding of how higher multiplicity
color-dual amplitudes may be constructively reconciled
with the addition of local counterterms. It is therefore likely
that we span all order contributions to a double-copy
consistent TrðF3Þ-theory four-vector amplitude with

Adcc
4 ¼ Bð1; 2; 3; 4Þ

�
1þ

X
x≥1;y

cðx;yÞσx3σ
y
2α

03xþ2y

�
; ð11Þ

where σ3 and σ2 are the four-point scalar permutation
invariants, and all remaining freedom is parametrized by
cðx;yÞ, which encode the Wilson coefficients of higher-
derivative corrections. Higher-multiplicity factorization
may yet require additional relations between cðx;yÞ, but
none that could exclude the single-valued promotion of
Eq. (17) that we will now describe.
Heterotic string and the SV promotion.—We now

demonstrate that the additional UV freedom to add oper-
ators to the ðDFÞ2 þ YM theory allows us to promote the
half-maximal Einstein-Weyl supergravity amplitudes to the
tree-level graviton amplitudes of the heterotic string. Recall
that ordered open superstring amplitudes emerge from the
field-theory double copy of Yang-Mills with doubly
ordered Z-theory amplitudes [17–21]:

AOSS
A ¼ AsYM

a ⊗ab ZAb; ð12Þ

where the indices, a, b, and A refer to various orderings of
kinematic labels, and the outer product is taken to mean the
field-theoretic double copy.
The doubly ordered scalar Z-theory disc amplitudes

encode string-theoretic higher-derivative corrections at
each order in α0. Here we use capital indices to refer to
orderings of external legs that satisfy string-theoretic
monodromy relations [45,46], and the lowercase indices
to refer to orderings that satisfy field-theoretic amplitude
relations [1,47]. This notation emphasizes the fact that the
bicolor dressed Z-theory amplitudes have the property that
their a-orderings are color dual order by order in α0 [37,38].
A similar double-copy structure exists for the open

bosonic string [40,41]
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AOBS
A ¼ Ba ⊗ab ZAb; ð13Þ

where we again use B to refer to ordered amplitudes
generated by the ðDFÞ2 þ YM theory.
Closed superstrings are also field-theoretic double copies

to all multiplicity. This can be seen by first noting the
construction of closed string amplitudes via the string KLT
kernel [2], represented here by ⊗α0,

ACSS ¼ AOSS
A ⊗AB

α0 AOSS
B : ð14Þ

Applying now Eq. (12) reveals a field-theory double copy,

ACSS ¼ ðAsYM
a ⊗ab ZAbÞ ⊗AB

α0 ðZBc ⊗cd AsYM
d Þ ð15Þ

¼ AsYM
a ⊗ab ðAsYMÞsvb ; ð16Þ

where we introduce the single-valued promotion of field-
theory amplitudes,

ðYÞsva ≡ ðZAa ⊗AB
α0 ZBb ⊗bc YcÞ: ð17Þ

This operation is called “single valued” because all the
coefficients of α0 introduced by the promotion come with
only single-valued multiple zeta values (MZVs). At four
points this can be understood as multiplying the Y theory
color-dual numerators by scalar permutation invariants at
each order in α0. The existence of such a double-copy
consistent map means that we are free to conjecture the
most general double-copy consistent UV completion of
Bð1; 2; 3; 4Þ to be contained in Eq. (11).
It was pointed out in Ref. [41] that amplitudes of

ðDFÞ2 þ YM theory also play a critical role in the field-
theoretic construction of gravitational heterotic string
amplitudes,

AHS ¼ Ba ⊗ab ðAsYMÞsvb : ð18Þ

It is clear from the above construction that one could
equally well describe the hetoretic string amplitude as

AHS ¼ ðBÞsva ⊗ab AsYM
b : ð19Þ

The set of consistent double-copy completions to YMþ F3

must therefore allow for the single-valued promotion of
ðDFÞ2 þ YM. Indeed this is realized through Oðα04Þ by
setting a3;YM ¼ cð1;0Þ ¼ ζ3 in Eqs. (10) and (11).
It is natural at this stage to remark on the double copy of

YMþ F3 with itself. Do we generate R3 from double copy
in the sense of the α02 corrections to the closed string? The
answer, as initially noted in Ref. [36], is yes, gravitational
amplitudes involving single insertions of R3 do arise from
amplitudes involving single insertions of F3 double copied
with themselves. Following the analysis of this Letter,
double-copy consistency lifts the result to a family of

gravitational theories that includes [41] the tree-level
amplitudes of the closed bosonic string

ACBS ¼ ðBÞsva ⊗ab Bb: ð20Þ

Conclusion.—We have presented evidence that demand-
ing double-copy consistency of a gauge theory with the
TrðF3Þ operator induces an all-order tower of α0 correc-
tions, which seems to require at a minimum all higher-
derivative corrections associated with ðDFÞ2 þ YM. There
exists a small basis of color-dual vector building blocks, up
to trivial scalar permutation invariants, at four points [37].
Using this basis reduces the complexity of four-point color-
dual vector amplitudes to simple considerations of what
permutation invariant scalars are required for a given mass
dimension. Developing a similar basis for vector building
blocks at five points, as has already been done for higher-
derivative color weights [38], would allow a simple proof
that YMþ F3 must close to ðDFÞ2 þ YM under double-
copy consistency.
Here we summarize the most important consequence of

our analysis. If we require double-copy consistency as a
matter of principle, and we wish to grapple with the UV
behavior of half-maximal supergravity by adding the
TrðF3Þ operator to the Yang-Mills copy, it appears that
the fate of the theory lies in a family of Einstein-Weyl
theories with freedom to add an additional tower of higher-
derivative corrections compatible with the single-valued
promotion. Our findings invite a new paradigm that
elevates color-kinematics duality from a mathematical
correspondence with the capacity to encode IR symmetries
like Adler’s zero, to a principle capable of probing UV
physics captured by higher-derivative corrections consis-
tent with the heterotic string.
Furthermore we identified the number-theoretic single-

valued promotion of Eq. (17) as a tool for lifting double-
copy consistent field theories to all orders in higher
dimensional operators. It will be intriguing to learn in
what ways the fixed only single-valued MZV Wilson
coefficients of this mapping can be generalized to identify
distinct classes of double-copy consistent theories and what
principles from a field-theory perspective uniquely select
the single-valued promotion.
Finally, it does not escape us that our analysis has

implications beyond half-maximal supergravity. Adding
supersymmetric matter to the Yang-Mills single copy
would lift N ¼ 4 SG to higher supersymmetry, evading
known anomalies. We expect the explicit calculation of the
UV behavior of N ¼ 5 SG at five loops and N ¼ 8 SG at
seven and eight loops to prove critical to understanding the
potential perturbative finiteness of four-dimensional local
theories of gravity.
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