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Permitting a more precise measurement to physical quantities than the classical limit by using quantum
resources, quantum metrology holds a promise in developing many revolutionary technologies. However,
the noise-induced decoherence forces its superiority to disappear, which is called no-go theorem of noisy
quantum metrology and constrains its application. We propose a scheme to overcome the no-go theorem by
Floquet engineering. It is found that, by applying a periodic driving on the atoms of the Ramsey
spectroscopy, the ultimate sensitivity to measure their frequency characterized by quantum Fisher
information returns to the ideal t2 scaling with the encoding time whenever a Floquet bound state is
formed by the system consisting of each driven atom and its local noise. Combining with the optimal
control, this mechanism also allows us to retrieve the ideal Heisenberg-limit scaling with the atom number
N. Our result gives an efficient way to avoid the no-go theorem of noisy quantum metrology and to realize
high-precision measurements.
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Introduction.—Aiming at precise measurements to
physical quantities, metrology plays a vital role in devel-
oping highly advanced technologies. Restricted by classical
statistics, the metrology precision achievable in classical
physics is bounded by the shot-noise limit (SNL) N−1=2

with N being the number of employed resource in mea-
surements. The advent of quantum metrology reveals that
the SNL can be beaten by quantum effects [1–12]. It has
been found that, by using entanglement of quantum probes,
one can achieve a frequency measurement in Ramsey
spectroscopy with a precision of Heisenberg limit (HL)
N−1. Quantum metrology has versatile applications in next-
generation gyroscope [13–16], atomic clock [17–21],
magnetometers [22–24], and gravimetry [25].
The realization of quantum metrology is challenged by

the noise-induced decoherence in its stability and scal-
ability [26–32]. It was found that the Markovian dephasing
noise forces the HL in Ramsey spectroscopy not only to
return to the SNL at an optimal encoding time but also to
become divergent in the long-time condition [33]. Being
universal for any Markovian noise [34–40], these two
destructive consequences are called no-go theorem of noisy
quantum metrology [41,42]. Further studies showed that
the non-Markovian effect of the dephasing noise can reduce
the HL to the Zeno limit N−3=4 at an optimal time [42–47].
Many efforts, e.g., adaptive [17,48] and nondemolition [49]
measurements, correlated decoherence [50], purification
[51], error correction [52–58], and dynamical control
[59,60], have been proposed to restore the HL. Although
partially recovering the quantum superiority in its scaling
with N, the divergence fate of the precision in the long-time
condition does not change. A mechanism to solve the

divergence problem was proposed in [16,61], but the
recovery of the HL for arbitrary N is unavailable. Hence,
how to retrieve the HL and overcome the precision diver-
gence with time simultaneously is still an open question.
Inspired by the advance that Floquet engineering has

become a versatile tool in quantum control [62–65] and
generating novel quantum phases [66–68], see a review in
Ref. [69], we propose a scheme to overcome the no-go
theorem of noisy quantum metrology by Floquet engineer-
ing. We discover that, via applying a periodic driving on the
atoms of the Ramsey-spectroscopy-based quantum metrol-
ogy under local dissipative noises, the precision divergence
in the long-time condition is avoided as long as a Floquet

FIG. 1. Schematic illustration of noisy quantum metrology
under periodic control. ÛjðtÞ is the evolution operator of the jth
periodically driven atom interacting with its environment.
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bound state (FBS) is formed in the quasienergy spectrum of
the system formed by each driven atom and its local noise.
Further using this mechanism, we can completely recover
the HL by optimally designing the driving amplitude.
Retrieving the ideal scaling of the precision with N
and t simultaneously, our result paves the way to realize
quantum metrology in practice.
Noisy quantum metrology.—Quantum metrology pur-

sues a highly precise measurement of physical quantities by
using quantum resources of a probe. To measure a quantity θ
of a system,we first prepare a probe in a state ρin and couple it
to the system to encode θ into the probe state ρθ. Then we
measure a certain observable Ô of the probe and infer the
value of θ from the result. The inevitable errors make us
unable to estimate θ precisely. According to quantum
parameter estimation theory [70,71], the ultimate precision
of θ optimizing all possible observable Ô is constrained by
the quantumCramér-Rao bound δθ ¼ 1=

ffiffiffiffiffiffiffiffiffi

υF θ

p
, where δθ is

the standard error of the estimate, υ is the number of repeated
measurements, and F θ ¼ TrðL̂2

θρθÞ is the quantum Fisher
information (QFI) characterizing the most information of θ
extractable from ρθ. L̂θ called symmetric logarithmic deriva-
tive is defined as ∂θρðθÞ ¼ ðL̂θρθ þ ρθL̂θÞ=2. If δθ ∝ N−1=2,
with N being the number of the used resource, then the
precision is called the SNL, which is the achievable limit of
any classical measurement. The SNL can be beaten by using
quantum protocols.
In aRamsey spectroscopy tomeasure the atomic frequency

ω0, see Fig. 1, one chooses N atoms themselves as the probe
and prepares their state in a Greenberger-Horne-Zeilinger
(GHZ) type entangled state jψ ini ¼ ðjgi⊗N þ jei⊗NÞ= ffiffiffi

2
p

,
where jgi and jei are the atomic ground and excited
states. Then the free evolution governed by the jth
atomic Hamiltonian Ĥ0;j ¼ ω0σ̂

†
j σ̂j, with ℏ ¼ 1 and σ̂j ¼

jgjihejj, encodes ω0 into the state jψðtÞi ¼
e−i

P

j
Ĥ0;jtjψ ini. The ultimate precision described by the

QFI is evaluated as Fω0
ðtÞ ¼ N2t2, which scales with N as

theHL and beats the classical SNLN times due to the utilized
entanglement [18,72,73]. It exhibits the quantum superiority
of the metrology scheme. Another feature is that Fω0

ðtÞ
scales with the encoding time as t2, which also acts as a
resource to increase the precision [74].
In practice, the encoding process is influenced by the

dissipative environments, which cause the energy loss and
the entanglement degradation of the probe. The encoding is
governed by Ĥ ¼ P

j Ĥj with

Ĥj ¼ Ĥ0;j þ
X

k

½ωkâ
†
j;kâj;k þ gj;kðâj;kσ̂†j þ H:c:Þ�; ð1Þ

where âj;k is the annihilation operator of the kth mode with
frequencyωk of the environment felt by the jth atom and gj;k
is their coupling strength. The coupling is further described
by the spectral density JðωÞ ¼ P

k jgkj2δðω − ωkÞ. After
tracing out the environmental degrees of freedom from the

dynamics of the total system, we obtain the non-Markovian
master equation [61]

ρ̇ðtÞ ¼
X

N

j¼1

f−iωðtÞ½σ̂†j σ̂j; ρðtÞ� þ γðtÞĽjρðtÞg; ð2Þ

where ĽjρðtÞ≡2σ̂jρðtÞσ̂†j −fρðtÞ; σ̂†j σ̂jg, γðtÞ≡ −Re½ċðtÞ=
cðtÞ� is the dissipation rate, andωðtÞ≡ −Im½ċðtÞ=cðtÞ� is the
renormalized frequency. Here, cðtÞ is determined by the
integro-differential equation

ċðtÞ þ iω0cðtÞ þ
Z

t

0

νðt − τÞcðτÞdτ ¼ 0; ð3Þ

where νðxÞ≡ R

∞
0 JðωÞe−iωxdω is the environmental corre-

lation function andcð0Þ ¼ 1. SolvingEq. (2) under the initial
state jψ ini,we can calculate the correspondingQFI according
to [70,75]

Fω0
¼

X

i;j

�

λ−1i λ02i þ 4λihλ0ijλ0ii −
8λiλj
λi þ λj

jhλijλ0jij2
�

; ð4Þ

where the prime denotes the derivative with respect to ω0

and ρðtÞ ¼ P

i λijλiihλij.
In the special case when the probe-environment coupling

is weak and the characteristic timescale of the environment is
smaller than that of the probe, we can apply the Markovian
approximation to Eq. (3). The approximate solution reads
cMAðtÞ ¼ expf−κt − i½ω0 þ Δðω0Þ�tg [76,77], where κ ¼
πJðω0Þ and Δðω0Þ ¼ P

R∞
0 ½JðωÞ=ω0 − ω�dω. Here, P

denotes the Cauchy principal value. The QFI is
FMA

ω0
ðtÞ ¼ ½2N2t2=1þ ðe2κt − 1ÞN þ e2Nκt�. First, we find

that FMA
ω0

ðtÞ has a maximum maxtFMA
ω0

¼ 0.24=κ2 when
topt ¼ 1.11=ðκNÞ in the large-N condition. In the Ramsey
spectroscopy, one generally repeats the measurement within
a time duration TR. Thus, we have the repeating times
υ ¼ TR=topt. According to quantum Cramér-Rao bound, the
ultimate precision is mint δωMA

0 ¼ ð0.22TRN=κÞ−1=2, which
is the SNL [33]. Second, we see limt→∞FMA

ω0
ðtÞ ¼ 0 and

limt→∞ δωMA
0 ðtÞ ¼ ∞, which implies the breakdown of the

scheme in the long-time condition. Thus, the noise washes
out the quantum superiority. This is called the no-go theorem
of noisy quantum metrology [41,42].
Floquet engineering.—To overcome the no-go theorem,

we apply a periodic driving Ĥc;jðtÞ ¼ fðtÞσ̂†j σ̂j, with
fðtÞ ¼ ðA=2Þ½1 − cosðωTtÞ� and ωT being the driving
frequency, on the probe. This is realizable by a time-
dependent Zeeman magnetic field [78–81]. It is interesting
to find that the master equation in this case takes the same
form as Eq. (2), but Eq. (3) becomes

ċðtÞ þ i½ω0 þ fðtÞ�cðtÞ þ
Z

t

0

dτνðt − τÞcðτÞ ¼ 0: ð5Þ
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Because of the dynamical independence of each atom,
Eq. (5) is equivalent to cðtÞ ¼ hej; f0kgjÛjðtÞjej; f0kgi for
each atom and its local environment, where ÛjðtÞ ¼
T̂ e−i

R

t

0
½ĤjþĤc;jðτÞ�dτ is the evolution operator, jf0kgi is

the environmental vacuum state, and T̂ is the time-ordering
operator. According to the Floquet theorem, ÛjðtÞ for the
periodic system ĤjðtÞ ¼ Ĥjðtþ TÞ, with T ¼ 2π=ωT , is
expanded as ÛjðtÞ ¼

P

α e
−iϵαtjuαðtÞihuαð0Þj. Here, ϵα and

juαðtÞi ¼ juαðtþ TÞi, being called quasienergies and qua-
sistationary states, respectively, are determined by the
Floquet eigen equation ½ĤjðtÞ − i∂t�juαðtÞi ¼ ϵαjuαðtÞi
[82,83]. The quasienergy spectrum of a periodically driven
two-level system coupled to an environment constitutes a
finite-width quasienergy band and possibly formed discrete
quasienergy levels, which we call FBSs. The contribution
of the quasistationary states from the quasienergy band to
the long-time cðtÞ tends to zero due to the out-of-phase
interference [62,63]. Only the ones from FBSs survive.
Then the long-time solution of Eq. (5) under the strobo-
scopic dynamics, i.e., t ¼ nT, is [77]

lim
t→∞

cðtÞ ¼
X

M

l¼1

Zle
−iϵbl t ð6Þ

when M FBSs are formed, where Zl ¼ jhubl ð0Þjej; f0kgij2
and jubl ðtÞi is the lth FBS with quasienergy ϵbl .
In the absence of the FBS, it is natural to expect that

Fω0
ðtÞ tends to zero because cðtÞ asymptotically

approaches zero. Consistent with the Markovian result,
the metrology scheme in this case is also broken by the
dissipation. We focus on the case that one FBS is formed.
Substituting Eq. (6) into Eqs. (2) and (4) under the initial
GHZ state, we obtain [77]

lim
N;t→∞

Fω0
ðtÞ ≃ yNðZ2ÞðNt∂ω0

ϵbÞ2 þ Nð∂ω0
Z2Þ2

Z2ð1 − Z2Þ ; ð7Þ

where yNðxÞ ¼ 2xN=½1þ xN þ ð1 − xÞN �. We find that
Eq. (7) returns to its ideal t2 scaling with the encoding
time up to a time-independent shift of the second term.
Furthermore, its scaling relation with N would return to the
HL if yNðZ2Þ is managed to be recast into a N-independent
function. It is realizable by assuming optZ2 ¼ e−a=N ,
which results in yNðZ2Þ ⋍ ð2=ea þ 1Þ and

optA lim
N;t→∞

Fω0
ðtÞ ¼ 2

ea þ 1
ðNt∂ω0

ϵbÞ2; ð8Þ

with a being a positive constant. Then we use optZ2 to
inversely design the optimal driving amplitude A for given
N. Thus, it is remarkable to find that the ideal ðNtÞ2 scaling
of Fω0

ðtÞ is recovered and the no-go theorem is overcome
via Floquet engineering and optimal control. Note that our
result goes beyond the ones in [16,61], where, although the
error divergence with time was avoided, the sensitivity was
even worse than the SNL for large N.
Numerical results.—We consider that the environment

consists of a two-dimensional structured reservoir, with a
finite bandwidth 8h, whose dispersion relation reads ωk ¼
ωc − 2hðcos kx þ cos kyÞ [84,85]. It may be realized by a
L × L coupled resonator array or optical lattice with ωc
being the eigen frequency of the resonator or the lattice and
h being the nearest-neighbor hopping rate. The atom-
environment coupling strength is gj;k ¼ ge−ik·rj=L. A
prerequisite for forming the FBS is the existence of band
gaps in the quasienergy spectrum, which occurs when
ωT > 8h [77]. The quasienergy spectrum of the total
system formed by each driven atom and its environment
in Fig. 2(a) shows that, with increasing the driving

FIG. 2. (a) Quasienergy spectrum in different driving amplitude A. The shaded backgrounds mark the regions with the FBS.
(b) Evolution of Fω0

=t2 in different A via numerically solving Eq. (5). The red line shows the result evaluated from Eq. (7) at t ¼ 31T.
(c) Evolution of Fω0

in the absence of the FBS when A ¼ 16h (magenta dot-dashed line), 20h (green dashed line), and 0 (black line).
(d) Evolution of Fω0

=t in the presence of the FBS when A ¼ 11h (light-red line), whose stroboscopic values are given by the red line
marked by the red squares. The lines marked by the orange triangle and the cyan diamond are the stroboscopic values of Fω0

=t when
A ¼ 8h and 32h, respectively. The blue dashed lines are the QFI evaluated from Eq. (6), which match with the stroboscopic values in the
long-time limit. The insert is the comparison of the numerical result (light-red line) with the one evaluated from the FBS (black dot-
dashed line). We use ωT ¼ 12h, g ¼ ω0 ¼ h, ωc ¼ 0, and N ¼ 20.
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amplitude A, the two branches of FBS quasienergies
residing in the band gaps divide the spectrum into two
regions: without the FBS when A ∈ ð0; 4.9Þh ∪
ð13.9; 28.3Þh and one FBS when A ∈ ð4.9; 13.9Þh ∪
ð28.3; 35.2Þh. Via numerically solving Eq. (5), we obtain
the evolution of Fω0

=t2 in different A [see Fig. 2(b)]. In the
region without the FBS, Fω0

=t2 exclusively decays to zero,
which exhibits the destructive effect of the no-go theorem.
It is interesting to observe that, as long as the FBS is
formed, Fω0

=t2 tends to a nonzero constant with a
persistent tiny-amplitude oscillation. The red line in
Fig. 2(b) from Eq. (7) indicates that the peaks of the
oscillation match with the stroboscopic dynamics. This
confirms that the t2 scaling of Fω0

in the ideal case is
recovered in the long-time condition. A detailed analysis of
the FBS-absence cases in Fig. 2(c) shows that, although
being dramatically enhanced over the one without the
driving (black solid line), Fω0

under the driving decays
to zero finally after a transient increasing. On the contrary,
the stroboscopic values ofFω0

=t in the presence of the FBS
when A ¼ 11h [see the light-red line in Fig. 2(d)], which
match the analytical results in Eq. (6), show a linear
increasing with t. This confirms the t2 scaling of Fω0

in
the long-time dynamics. The similar behavior is observed
for A ¼ 8h and 32h in Fig. 2(d). The matching of the
numerical result with the one from the FBS in the inset of
Fig. 2(d) verifies the dominant role of the FBS in the long-
time dynamics. All these results indicate that the problem
of the error divergence with time has been avoided due to
the formation of the FBS.
To reveal whether the HL is retrievable or not when the

FBS is formed, we plot in Fig. 3(a) the long-stroboscopic
time Fω0

=N as a function of atom number N. It indicates a
near-linear increasing of Fω0

=N with N, i.e., Fω0
∝ N2,

only for small N. For largeN, Fω0
=N exhibits an unwanted

exponential decay to a constant governed by the second
term of Eq. (7) [see the inset of Fig. 3(a)]. Being similar to
the result in the absence of the periodic driving [16,61],
such a N-dependent behavior is universal to all the driving
amplitude A supporting the FBS [see Fig. 3(b)]. We find
that Fω0

=N in different A fill up the region below the ideal
HL. This implies the possibility to avoid the decay of Fω0

with N and thus to retrieve the N2 scaling of Fω0
by

optimizing A. For this purpose, we plot in Fig. 3(c) yNðZ2Þ
as a function of Z2 in differentN. It exponentially decreases
with increasing N for a definite Z2. Because all the curves
of yNðZ2Þ for different N have two same endpoints, (0,0)
and (1,1), we can always find an optimal Z2 for a given
N to make yNðZ2Þ being a constant. By requesting
yNðZ2Þ ¼ 0.5, we plot in the inset of Fig. 3(c) the needed
Z2 as a function of N. The numerical fitting reveals
optZ2jyNðZ2Þ¼0.5 ¼ e−1.1=N , which permits us to design
the optimal A from the numerical correspondence between
Z2 and A in the inset of Fig. 3(d). Figure 3(d) shows the
obtained optimal A in different N. The corresponding
opt limt→∞Fω0

ðtÞ is plotted by the red line in Fig. 3(b),
which matches with our analytical result in Eq. (8). It
clearly depicts that the decay with N is avoided and the HL
Fω0

∝ N2 is retrieved by the optimally designed periodic
driving. The results reveal that, given an atom number N,
we always have an experimentally realizable optimal
periodic driving such that the no-go theorem of noisy
quantum metrology is completely overcome.
Discussion and conclusion.—Going beyond the widely

used Markovian approximation [17,48–58], our scheme is
an exact characterization to remove the noise effects on
quantum metrology via periodic driving. This enables us

FIG. 3. Stroboscopic values of Fω0
=N at t ¼ 50T as a function of the atom number N in (a) for A ¼ 8h (the orange triangle line), 11h

(the red square line), and 32h (the cyan diamond line), and in (b) for all A ∈ ½0; 100�h supporting the FBS (the gray lines). The inset of
(a) shows the large-N behavior for A ¼ 32h, where the blue dashed and green dot-dashed lines are from the first and second terms of
Eq. (7), respectively. The cyan in (b) is the ideal HL. The red line is the numerical result under the optimized A such that
optAyNðZ2Þ ¼ 0.5. The black dashed line is the analytic result evaluated from Eq. (7). (c) fNðZ2Þ as a function of Z2 for N ranging from
1 to 19 with a fixed interval 2 by the lines from left to the right. The dependence of Z2 onN to make yNðZ2Þ ¼ 0.5 is denoted by the blue
dots in the inset, which are numerically fitted as Z2 ¼ e−1.1=N . (d) Optimized A in different N such that yNðZ2Þ ¼ 0.5, which causes
limt→∞ Fω0

∝ N2 shown by the red line in (b). The inset shows Z2 in different A. The shaded backgrounds mark the regions where the
FBS is formed. Other parameters are the same as Fig. 2.
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retrieve the ideal HL scaling of the precision in the Ramsey
spectroscopy with respect to not only the atom number but
also the encoding time. It succeeds in overcoming the
challenge set by decoherence on the scalability and stability
of quantum metrology. Although only the GHZ state is
studied, our FBS mechanism is applicable to other initial
states, e.g., the spin squeezing state [5,86]. Because of the
building block role of Ramsey spectroscopy in developing
quantum gyroscope, atomic clock, magnetometers, and
gravimetry [13–25], our result has a practical meaning in
realizing these technique innovations. Floquet engineering
is widely used in quantum technologies [62–69]. Without
resorting to the well designed control pulses [59,60,87,88],
our always-on sinusoidal periodic driving meets the exper-
imental accessibility. The system-environment bound state
in the static case has been observed in circuit QED [89] and
cold atom [90] systems, which provides a support to realize
our FBS in periodically driven systems.
In summary, we have proposed a Floquet engineering

scheme to eliminate the detrimental effects of dissipative
noises on quantum metrology. Via applying a periodic
driving on the atoms of the Ramsey-spectroscopy-based
quantummetrology in the presence of local noises, we have
found that its precision characterized by the QFI is
essentially determined by the quasienergy-spectrum feature
of the system formed by each driven atom and its noise.
Whenever a FBS is formed in the spectrum, the ideal t2

scaling of the QFI with the encoding time is recovered.
Further combining the optimal control to the driving field,
the HL scaling of the QFI with arbitrary atom number N is
also retrieved. Giving a flexible way to solve the long-
standing no-go theorem of noisy quantum metrology, our
scheme supplies a guideline to realize the ultrasensitive
measurement in practical situation.
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[73] L. Pezzé and A. Smerzi, Entanglement, Nonlinear Dynam-
ics, and the Heisenberg Limit, Phys. Rev. Lett. 102, 100401
(2009).

[74] S. Pang and A. N. Jordan, Optimal adaptive control for
quantum metrology with time-dependent Hamiltonians,
Nat. Commun. 8, 14695 (2017).

[75] J. Liu, J. Chen, X.-X. Jing, and X. Wang, Quantum fisher
information and symmetric logarithmic derivative via anti-
commutators, J. Phys. A 49, 275302 (2016).

[76] C.-J. Yang, J.-H. An, H.-G. Luo, Y. Li, and C. H. Oh,
Canonical versus noncanonical equilibration dynamics of
open quantum systems, Phys. Rev. E 90, 022122 (2014).

[77] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.050801 for a de-
tailed derivation of the no-go theorem of noisy quantum
metrology, the steady-state solution of cðtÞ, the QFI in the
presence of one FBS, and the structure of the quasienergy
spectrum.

[78] J. Liang, Y. Zhou, W.-C. Jiang, M. Yu, M. Li, and P. Lu,
Zeeman effect in strong-field ionization, Phys. Rev. A 105,
043112 (2022).

[79] A. Hartung, S. Eckart, S. Brennecke, J. Rist, D. Trabert, K.
Fehre, M. Richter, H. Sann, S. Zeller, K. Henrichs, G.
Kastirke, J. Hoehl, A. Kalinin, M. S. Schöffler, T. Jahnke,
L. P. H. Schmidt, M. Lein, M. Kunitski, and R. Dörner,
Magnetic fields alter strong-field ionization, Nat. Phys. 15,
1222 (2019).

[80] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Photon
Momentum Sharing between an Electron and an Ion in
Photoionization: From One-Photon (Photoelectric Effect) to
Multiphoton Absorption, Phys. Rev. Lett. 113, 263005
(2014).

[81] P.-L. He, D. Lao, and F. He, Strong Field Theories Beyond
Dipole Approximations in Nonrelativistic Regimes, Phys.
Rev. Lett. 118, 163203 (2017).

[82] J. H. Shirley, Solution of the Schrödinger equation with a
Hamiltonian periodic in time, Phys. Rev. 138, B979 (1965).

[83] H. Sambe, Steady states and quasienergies of a quantum-
mechanical system in an oscillating field, Phys. Rev. A 7,
2203 (1973).

[84] A. González-Tudela and J. I. Cirac, Quantum Emitters in
Two-Dimensional Structured Reservoirs in the Nonpertur-
bative Regime, Phys. Rev. Lett. 119, 143602 (2017).

[85] A. González-Tudela, C. S. Muñoz, and J. I. Cirac, Engineer-
ing and Harnessing Giant Atoms in High-Dimensional
Baths: A Proposal for Implementation with Cold Atoms,
Phys. Rev. Lett. 122, 203603 (2019).

[86] S.-Y. Bai and J.-H. An, Generating Stable Spin Squeezing
by Squeezed-Reservoir Engineering, Phys. Rev. Lett. 127,
083602 (2021).

[87] J. Liu and H. Yuan, Quantum parameter estimation with
optimal control, Phys. Rev. A 96, 012117 (2017).

[88] J. Liu and H. Yuan, Control-enhanced multiparameter
quantum estimation, Phys. Rev. A 96, 042114 (2017).

[89] Y. Liu and A. A. Houck, Quantum electrodynamics near a
photonic bandgap, Nat. Phys. 13, 48 (2017).

[90] L. Krinner, M. Stewart, A. Pazmiño, J. Kwon, and D.
Schneble, Spontaneous emission of matter waves from a
tunable open quantum system, Nature (London) 559, 589
(2018).

PHYSICAL REVIEW LETTERS 131, 050801 (2023)

050801-7

https://doi.org/10.1103/PhysRevA.87.032102
https://doi.org/10.1103/PhysRevA.87.032102
https://doi.org/10.1088/1367-2630/18/7/073034
https://doi.org/10.1088/1367-2630/aa8b01
https://doi.org/10.1088/1367-2630/aa8b01
https://doi.org/10.1103/PhysRevA.91.052122
https://doi.org/10.1103/PhysRevA.91.052122
https://doi.org/10.1103/PhysRevA.102.060201
https://doi.org/10.1103/PhysRevA.102.060201
https://doi.org/10.1103/PhysRevLett.117.250401
https://doi.org/10.1103/PhysRevLett.117.250401
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1038/nature21413
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1126/science.1097576
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1038/ncomms14695
https://doi.org/10.1088/1751-8113/49/27/275302
https://doi.org/10.1103/PhysRevE.90.022122
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.050801
https://doi.org/10.1103/PhysRevA.105.043112
https://doi.org/10.1103/PhysRevA.105.043112
https://doi.org/10.1038/s41567-019-0653-y
https://doi.org/10.1038/s41567-019-0653-y
https://doi.org/10.1103/PhysRevLett.113.263005
https://doi.org/10.1103/PhysRevLett.113.263005
https://doi.org/10.1103/PhysRevLett.118.163203
https://doi.org/10.1103/PhysRevLett.118.163203
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRevA.7.2203
https://doi.org/10.1103/PhysRevA.7.2203
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevLett.122.203603
https://doi.org/10.1103/PhysRevLett.127.083602
https://doi.org/10.1103/PhysRevLett.127.083602
https://doi.org/10.1103/PhysRevA.96.012117
https://doi.org/10.1103/PhysRevA.96.042114
https://doi.org/10.1038/nphys3834
https://doi.org/10.1038/s41586-018-0348-z
https://doi.org/10.1038/s41586-018-0348-z

