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Autonomous quantum error correction (AQEC) protects logical qubits by engineered dissipation and thus
circumvents the necessity of frequent, error-prone measurement-feedback loops. Bosonic code spaces,
where single-photon loss represents the dominant source of error, are promising candidates for AQEC due to
their flexibility and controllability. While existing proposals have demonstrated the in-principle feasibility of
AQEC with bosonic code spaces, these schemes are typically based on the exact implementation of the
Knill-Laflamme conditions and thus require the realization of Hamiltonian distances d > 2. Implementing
such Hamiltonian distances requires multiple nonlinear interactions and control fields, rendering these
schemes experimentally challenging. Here, we propose a bosonic code for approximate AQEC by relaxing
the Knill-Laflamme conditions. Using reinforcement learning (RL), we identify the optimal bosonic set of
code words (denoted here by RL code), which, surprisingly, is composed of the Fock states |2) and |4). As
we show, the RL code, despite its approximate nature, successfully suppresses single-photon loss, reducing
it to an effective dephasing process that well surpasses the break-even threshold. It may thus provide a
valuable building block toward full error protection. The error-correcting Hamiltonian, which includes
ancilla systems that emulate the engineered dissipation, is entirely based on the Hamiltonian distance d = 1,
significantly reducing model complexity. Single-qubit gates are implemented in the RL code with a

maximum distance d, = 2.

DOI: 10.1103/PhysRevLett.131.050601

Introduction.—Implementing efficient quantum error
correction (QEC) is a prerequisite and the main obstacle
toward building a general-purpose quantum computer
[1-3]. The purpose of QEC is to restore encoded quantum
information that has been corrupted by environmental
noise: physical qubits inevitably interact with the sur-
rounding environment [4,5]. In conventional QEC this is
achieved by error syndrome measurements and adaptive
recovery operations, which involve imperfect measure-
ments and classical feedback loops that themselves raise
and propagate errors [6—14].

Autonomous quantum error correction (AQEC) has been
developed as an alternative that avoids these additional
error sources by realizing QEC through quantum reservoir
engineering, where the cleverly designed and continuously
acting dissipation processes replace the repeated measure-
ment-feedback cycles [15-19]. More specifically, the inter-
action between the to-be-protected system and an ancilla
system is engineered to transport the decoherence-induced,
cumulative entropy from the system to the ancilla, from
where it decays into the environment [20-28].

The realization of AQEC in bosonic systems is particu-
larly attractive, as an infinitely large Hilbert space offers
ample design opportunities while the noise channels remain
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fixed. Indeed, several pioneering works have demonstrated
the great potential of AQEC to counteract single-photon
loss, the dominant error source in bosonic systems; for
instance, based on the T4C code [15], the binomial code

[29], or the v/3 code [30]. While these code words fully
satisfy the Knill-Laflamme (KL) conditions, and hence in
principle allow for exact AQEC [31,32], experimental
limitations have so far prohibited their faithful implemen-
tation. Therefore, the experimental surpassing of the break-
even threshold (i.e., improved performance compared to
code words consisting of the Fock states |0) and |1) and no
error correction) using AQEC is still lacking.

Rigorous implementation of the KL condition unavoid-
ably implies code words that entail complex and fragile
superpositions of Fock states, which are hard to produce.
This is reflected by the required Hamiltonian distance, i.e.,
the number of Fock states that must be bridged by the
Hamiltonian. Indeed, an exhaustive search has excluded the
existence of a code space that both rigorously satisfies
the KL condition and is content with Hamiltonian distance
d =1 for AQEC [30]. On the other hand, the larger the
Hamiltonian distance, the more high-order interactions are
required, accompanied by an increasing number of control
fields. The experimental hardness is further aggravated by

© 2023 American Physical Society
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the necessity to implement gates, which typically require
even larger Hamiltonian distances.

Here, we pursue a different strategy, following the spirit
of approximate QEC [33-37]. By relaxing the KL con-
dition, we strive to ease the experimental overhead by
lowering the Hamiltonian distance as much as possible.
While this excludes the in-principle exact QEC, we con-
sider our strategy successful if the discovered AQEC
surpasses the break-even threshold, i.e., if the encoded
qubit outperforms the natural qubit and thus lowers the
threshold for a concatenated QEC stack.

The search for the optimal approximate AQEC scheme
that achieves this involves a complex optimization prob-
lem, which we solve with the help of reinforcement
learning (RL) [38—48]. We find that the optimal AQEC
scheme relies on surprisingly simple code words (denoted
here by RL code) composed of the two Fock states |2)
and |4). The RL code not only significantly surpasses
the break-even with an infidelity reduction of over 80%
(surprisingly even outperforming the v/3 code), but also
can be realized with the smallest possible Hamiltonian
distance d = 1; the respective Hamiltonian distance
required to implement single-qubit gates is d, = 2, which
again outperforms all previously proposed code spaces.

We demonstrate that the approximate AQEC based on
the RL code can be realized by complementing the encoded
bosonic mode with an ancillary lossy mode, an ancillary
lossy two-level system, and couplings that are readily
available on existing platforms.

Approximate AQEC.—AQEC employs engineered
dissipation to recover from the errors that occur due to
natural decay processes. In brief, engineered Lindblad
operators ) _; D[Ley, 4] are introduced such that the overall
dissipative channel M|, which also includes the natural
Lindblad operators »_; D[L,,;], minimizes the growth of
the infidelity between an arbitrary qubit state p, (6, ¢) =
[wop) (Wos| in the code space and the evolved state
p:(0.9) = M[p, (6,¢)]. This happens by enlarging the
effect of Y D[Leng 1) [49], where D[x] = 2xpx" — x"xp—
px'x, and the angles @ and ¢) parametrize an arbitrary qubit
state in the Bloch-sphere representation.

The mean fidelity F(|0,),|1.)), and hence the perfor-
mance of the AQEC, depends on the choice of the logical
code words |0, ) and |1;). If the logical code words satisfy
the KL condition [32],

(u|L]

nat,jLnat,i|UL> - ajiémw u,v e {O’ 1}’ (1)
where a;; are the elements of a Hermitian matrix, one can,
in principle, achieve exact QEC. However, in the context of
AQEC for bosonic codes, where L, ; € {I,a} [50-52],
the exact implementation of the KL conditions can be
challenging. For instance, the necessity to engineer multi-

ple Lindblad operators, as is the case with the binomial and

the T4C code, dramatically increases experimental complex-
ity. A similar challenge occurs if multiple high-order
nonlinear interactions, along with multiple control fields,
are required, as for the V/3 code.

It has been shown that approximate QEC (i.e., the
code words partially satisfy the KL condition) can
combine experimental feasibility with good QEC perfor-
mance [53-56]. Following this line of research, we relax
the KL condition by discarding the constraint that
<1L|Lj;at,iLnat,i|1L> = <0L|L;m,iLnat.i|0L>§ Le., we allow the
logical code words to exhibit different error probabilities.
General code words (selecting the even subspace) that
satisfy the remaining KL conditions can then be para-
metrized as

00) =S eldn), (1) = el lan+2). (2)
n=0 n=0

where the c,(,‘)) and cﬁll)

ficients and satisfy 3=, |c\|2 = 1 (u =0, 1). Our goal is

now to find coefficients cﬂo) and cﬁll) that optimize the

performance of the corresponding AQEC with only a
single, fixed QEC jump operator,

denote undetermined real coef-

Leng = LO{TI‘[L:QLO]}_I/Z,
Lo = |OL><Oer| + |1L><1er ’

(3)

where |ue,) = alug )/, (u =0, 1) denotes the basis of the
error space and &, = /(u; |a'a|u;) is the normalization
coefficient. The QEC jump operator L., steers the encoded

quantum state from the error space back into the code space
and can be expanded as

Leng = Z Z’Ind,|n> <I’l + dl|7 (4)

|di|<d n

where d is the Hamiltonian distance.

We can model the engineered dissipation through a system-
environment interaction by introducing a lossy auxiliary
qubit and the coupling Hey = g(Leng0 4 + Llnga_), which
results in the engineered Lindblad superoperator D[L,,]
when the qubit is traced out. The evolution of the whole
system is then governed by the master equation (72 = 1),

d _

L = il + 2Dl + 2Dl ). (5)

2 2

where y, denotes the single-photon loss rate of mode a
and y, denotes the decay rate of the auxiliary qubit. We
assume that the parameters satisfy y,,g <y, and y, < g,
which promotes the unidirectional transition from the
error space to the code space effected by Lan. As shown
in Fig. 1(a), the recovery process is then as follows:
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FIG. 1. (a) Energy level diagram illustrating the approximate AQEC process. Induced by a single-photon loss, the encoded state |1//9¢>

undergoes one out of two possible error correction cycles: [ygy, 0) LS Gy 0) EN lwop. 1) n [wop. 0) or [wgy.0) A3 WG 0) N

[wop. 1) I ey 1) n w5y 0) KA lwop: 1) n [wo,. 0), where the parameters satisfy y,, g < 7, and y, < g. (b) Diagram: the cyclic
learning process between the RL agent and the encoded system. The policy function z(A|S) selects an action based on the current state
and reward, and the action acts on the encoded system to generate the new reward r;, | and state s, ;. The states and rewards collected
during the sampling process are fed back to the policy network for updating the networks’ parameters. (c) Comparison of the AQEC
performance of RL code, the lowest-order binomial code, /3 code, and break-even. The blue round dots show the optimal mean
fidelities obtained from the RL algorithm for different fixed optimization times. The inset highlights an initial transition period where the

dynamics is dominated by the single-photon loss. (d) State-dependent fidelity F (60, ¢, t) for the RL code versus the angles 6 and ¢

at t = 0.6/y,. Other parameters are y,/y,

Ya
—

Ya g 14
|l//9(/)’0> - |l//z£ﬁvo> - |l//9(/)»1> _b) |l//9(/)’0> and |l//9gb70>

V5-0) = Wag. 1) = I 1) = Wi 0) = [wop. 1)
[woy- 0). That is, when an error occurs, the system returns to
the logical state |y, 0) by transitioning through one out of
two possible error correction cycles.

Optimal code space.—Finding the optimal coefficients
cﬁ,o) and c,(ql), such that the code words Eq. (2) maximize the
mean fidelity F(|0.),|1,)), at some fixed reference time,
represents a complex optimization problem that we solve
using reinforcement learning (RL). In brief, each episode is
divided into a finite number of steps k =1,2,...,K. As
shown in Fig. 1(b), at each step k, the agent observes the
current state s, € S, and chooses an action a; € A accord-
ing to the policy z(A|S). The action corresponds to a

Vb
—

coefficient vector [c,(P), cﬁ,l)], and the state is described
by the fidelity F (6, ¢.t) = Tr[p, (0. ¢)p,(0. )], with 6 €
{0,7/2,7} and ¢ € {0,7/2,7,37/2}. After each action,
the agent receives a reward r;,; and arrives at a new state
.1, where the reward ry, is set to maximize the difference
between the mean fidelity of the logical space and the break-
even point. State and reward are obtained by simulating the
master equation (5) until y,r = 0.6 with QuTIp [57,58],
where the parameters g/y, = 400, y,, /v, = 1750 are chosen
to maximize the cooperativity C = ¢%/y,7, =~ 91.4, while
remaining experimentally realistic. The states and rewards
collected during the sampling process are fed back to the
proximal policy optimization algorithm to update the policy
n(A|S) [59], which is achieved by Ray [60] (see
Supplemental Material for the more information [61]).
The optimal code basis found by the RL algorithm,
delivering a mean fidelity ~0.95 at y,t = 0.6 and thus

1750 and g/, = 400.

significantly exceeding the break-even point at ~0.84,
consists of the Fock states: |0.)~ |4) and |1)=~|2),

ie., c<10) ~1, cél) ~1, c(()o) R cgl) ~ 0. [Note that we trun-

cated the code space at 6 photons. Moreover, we stress that
different optimization times y,¢ yield consistent outcomes,
cf. Fig. 1(c)]. These simple code words can be conveniently
prepared in existing experimental setups, e.g., supercon-
ducting quantum systems [63-67]. Moreover, the respec-
tive QEC jump operator L, o [2)(1] + [4)(3| has the
shortest possible Hamiltonian distance d = 1, implying
that the QEC Hamiltonian can be efficiently implemented
without the need for multiple nonlinear interactions and
control fields [15,30]. The Hamiltonian distance of the code
words is 2, resulting in single-qubit gates with d, = 2.
For instance, the logical Pauli operators are implemented
as o, = |2)(4] +4)2[, o, =i(]4)(2[-]2)(4]), and
o, = [2)(2| —|4)(4|. For comparison, the lowest-order
binomial code requires d, =4 and the V3 code d, = 6.
Consequently, single-qubit gates in the RL code space only
require second-order nonlinearity, instead of the fourth-
order or sixth-order nonlinearities of previous proposals.
In Fig. 1(c), we compare the mean fidelities of the RL

code, v/3 code, and the lowest-order binomial code, where
each code is complemented by a single QEC jump operator
Eq. (3). We find that the RL code surpasses break-even and
both other codes, with the performance advantage growing
in time. The mean fidelity of the RL code exceeds the
break-even point by ~36% at y,t = 4.

Note that there is a short transition period where the RL
code performs poorer than the other codes. This is because
initially, when the system lives entirely in the code space,
the jump operator Eq. (3) is not yet effective and the
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dynamics is entirely driven by the detrimental single-
photon loss [68]. The associated decay rate is proportional
to the mean photon number, which is highest for the RL
code in our comparison (77 = 3 for the RL code, compared

to n = 2 for the binomial code, n = \/§ for the \/§ code,
and 7 = 0.5 for the break-even code). Only after this
transition period the jump operator Eq. (3) becomes
effective and the RL code can unfold its performance
advantage over the other codes. Note that the dip at the
onset of the transition period reflects the reversible
fraction of the fidelity loss and can be removed by using
a quantum trajectory-resolved and temporally coarse-
grained fidelity F7(z) [61,68].

To demonstrate that the AQEC can efficiently protect
all quantum states in the RL code space, we evaluate in
Fig. 1(d) the fidelity F (0, ¢, t) att = 0.6/y,, where 0 and ¢
are the Bloch-sphere angles. We find that the fidelity
remains for all states within the range [0.93, 1], well above
the break-even point 0.84.

Protection of the logical qubit.—To better understand
the level of protection provided by our AQEC scheme, we
solve the master equation in the limit y,,g <y, and
*/(vayp) > 1 (a detailed derivation can be found in the
Supplemental Material [61]). The approximate solution,
after tracing out the auxiliary qubit and expressed in terms
of the first five Fock states, reads

0 0 0 0 0
0 0 0 0 0
pa(t)m [0 0 px(0) 0 pou(0)e™t [, (6)
0 0 0 0 0
0 0 pyp0)e 0 P44(0)

with the initial state elements p;;(0). The effective protec-

tion factor u = 3 — 2\/§ =~ (0.17 captures the reduction of
the residual dephasing rate compared to the |0) and |1)
encoding. The resulting mean fidelity is upper bounded by

- 2 1

F(1) = 3 + s exp(—uy 1),

=3-2Vv2=0.17, (7
373 u=3-2v2~017, (7)

and thus clearly outperforms the mean fidelity of the
break-even:

Fou(1) :é exp (=7af) + 2exp <—7’> + 3]. (8)

We infer from Eq. (7) that, if the cooperativity C is large
enough, the performance of AQEC depends only on
the evaluation time y,t. If we choose y,t =0.17 (e.g.,
7. = 0.1 kHz, t = 1.7 ms), the mean fidelity is 99.05%,
which significantly surpasses the break-even point (94.68%).
The infidelity reduction of the RL code compared to the
break-even is [I — F(t)]/[1 — Fy(t)] = 0.17, corresponding

to the gain G = 1/u ~ 5.83 (near to 6 times the T4C code
[15]). Therefore, the approximate AQEC with the RL code
significantly surpasses the break-even point with an infidel-
ity reduction of over 80%. We clarify that, similar to other
AQEC schemes, leakage out of the error space ultimately
limits the protection time ¥, and eventually the system will
end up in the ground state.

Coupling engineering.—In contrast to previous AQEC
proposals [15,30], where complex code words necessitate
multiple nonlinear interactions and complicated control
fields, AQEC based on the RL code only requires a
Hamiltonian distance d = 1, which can be realized with
a comparatively simple setting. Figure 2(a) depicts a
possible scheme, where the encoding mode « is intermedi-
ately coupled to a dissipative mode c¢ through a qubit. The
corresponding system Hamiltonian reads

H=w.a'a+ %az +w.cfe+ f(t)(a+a')oy

+g.(0)(c + o, —I—%{aTaaz, 9)

and the control fields are

0 2)] ()]
(1) = 2a; cos(2yt) + 2a, cos(4yt), (10)

f@@cmodea
X
o 20 Q-
qubit mode C
1.00q o
z =
’g 0.95{(®)
= \\\\\
§0'90- —— RL code \‘\\
g 085] " Break-even \\\\
0 0.2 0.4 0.6
Yast

FIG. 2. (a) Proposed system-environment coupling. Blue side-
band transitions between a qubit and the encoding mode a are
selected by the control field f(z). Red sideband transitions,
mediated by the control field g.(7), transfer the excitation of the
qubit to the high-decay mode ¢, where it dissipates into the
environment. (b) Mean fidelity of the RL code versus time for
this coupling model under parameters w,/2z = 3.5 GHz,
w,/27n = w,./27 =5 GHz, y/2n=3MHz, a,/2z=0.05MHz,
a;/2n = 0.07 MHz, y,,/2x = 0.2 kHz, y;,,/27x =2 kHz, and
Ye1/27 = 0.12 MHz.
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where w; (i = a, b, c) are the resonant frequencies of the
modes and the qubit (w, = w.), ®; = w, + @, is the
resonant frequency for the blue sideband transitions, y is
the nonlinear coefficient, and a; (j = 0, 1) are the strengths
of the control fields. (For detailed information about
the control fields, see the Supplemental Material [61]).
We can recover the master equation (5) by adiabatically
eliminating the high-decay mode ¢ under the conditions
Wy, Wy, W > Y, and Ye1 = Qq > ag > Yal>Vbl» where Yi1
(i = a, b, c) are the respective decay rates. The controllable
coupling between qubits and bosonic modes has been
thoroughly investigated both in theory and in experiment
[69-76]. The nonlinear term aTa(rZ can be effectively
obtained by a linear coupling between mode and qubit,
p(a’ + a)o,, with a large detuning A = |w, — w| > f,
where the dispersive coefficient y = ¢>/A can be larger
than 7 x 2z MHz [77-85]. It is thus possible to realize the
scheme with linearly coupled systems. A low single-photon
loss of 0.118 x 2z kHz has been achieved in experiments
with 3D coaxial cavities, and the decay of the transmon
qubits can be suppressed to 1.8 x 2zkHz [86-88]. We
simulate the mean fidelity of the full quantum system in
Fig. 2(b) with typical experimental parameters in super-
conducting circuits, @, /2x=3.5 GHz, w,/2n = @, /27 =
5 GHz, y./2x =0.12 MHz, y/2z =3 MHz, ay/27 =
0.05 MHz, «a,/2z =0.07 MHz, y,,/2z = 0.2 kHz, and
7p/27 = 2 kHz. We find that the mean fidelity of the RL
code by far surpasses break-even threshold, and the model
may be realized by engineering the coupling between a 3D
coaxial cavity, a transmon qubit, and a dissipative cavity.

Discussion and conclusion.—We propose a bosonic code
space for approximate AQEC with the shortest possible
Hamiltonian distance d = 1, allowing for significantly
reduced model complexity. Nevertheless, our scheme
comfortably surpasses break-even threshold, outperform-
ing other AQEC schemes that rely on larger Hamiltonian
distances and disproving a previous claim that surpassing
break-even threshold requires d > 2. The code words
consist of Fock states rather than complex superposition
states, and single-qubit logic gates in the RL code space are
implemented with a maximum distance of d, = 2. The
mean fidelity of the RL code can exceed break-even point
by more than 36% at y,t =4, and the expected gain
G = 1/(3 —2v/2) = 5.83 is more than twice the currently
best experimental value G = 2.27 4+ 0.07 [89]. This dem-
onstrates that, despite our AQEC scheme being approxi-
mate, which upper bounds the level of protection, it delivers
logical qubits with significantly improved quality and thus
may greatly facilitate subsequent QEC steps toward fully
fault-tolerant qubits.
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