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We prove that prethermalization is a generic property of gapped local many-body quantum systems,
subjected to small perturbations, in any spatial dimension. More precisely, let H0 be a Hamiltonian,
spatially local in d spatial dimensions, with a gap Δ in the many-body spectrum; let V be a spatially local
Hamiltonian consisting of a sum of local terms, each of which is bounded by ϵ ≪ Δ. Then, the
approximation that quantum dynamics is restricted to the low-energy subspace of H0 is accurate, in the
correlation functions of local operators, for stretched exponential timescale τ ∼ exp½ðΔ=ϵÞa� for any
a < 1=ð2d − 1Þ. This result does not depend on whether the perturbation closes the gap. It significantly
extends previous rigorous results on prethermalization in models where H0 was frustration-free. We infer
the robustness of quantum simulation in low-energy subspaces, the existence of athermal “scarred”
correlation functions in gapped systems subject to generic perturbations, the long lifetime of false vacua in
symmetry broken systems, and the robustness of quantum information in non-frustration-free gapped
phases with topological order.
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Introduction.—Consider an exactly solved many-body
quantumHamiltonianH0, assumed to be spatially local in d
spatial dimensions. Now, consider perturbing the
Hamiltonian to H0 þ V, where V is made out of a sum
of local terms, each of bounded norm ϵ. As long as we take
the thermodynamic limit before sending ϵ → 0, general
lore states that a perturbation (ϵ > 0) has drastic qualitative
effects. For example, the orthogonality catastrophe shows
that eigenstates are extraordinarily sensitive to perturba-
tions [1]. A general integrable system generally exhibits a
complete rearrangement of the many-body spectrum, tran-
sitioning from Poisson (ϵ ¼ 0) to Wigner-Dyson (ϵ ≠ 0)
energy-level statistics [2,3]. Only in special settings, such
as the conjectured many-body localized phase [4–9], might
the simple properties of many-body systems remain robust
to perturbations.
With that said, it is known that in gapped quantummany-

body systems, the thermalization timescale (as measured by
physical observables, i.e., local correlation functions) may
be exponentially long:

t� ∼ exp

��
Δ
ϵ

�
a
�
; ð1Þ

where Δ is the gap of H0, and a > 0. To understand
why, consider the Hubbard model H ∼

P
i∼j ϵc

†
σicσj þP

i Δn↑in↓i [10,11]: although two particles on the same
site (called a doublon) store enormous energy and “should”
thermalize into a sea of mobile excitations by separating,
there is no local perturbation that can do this! The doublon
has energyΔ, but one no-doublon excitation has energy≲ϵ.

One must go to order Δ=ϵ in perturbation theory to find a
many-body resonance whereby a doublon can split apart
while conserving energy: this implies Eq. (1). Only in the
last few years was this intuition put on rigorous ground
[12,13].
Existing proofs of prethermalization in the Hubbard

model rely fundamentally on peculiar aspects of the
problem. The “unperturbed” H0 consists exclusively of
the repulsive potential energy—it is a sum of local
operators that (1) act on a single lattice site, (2) mutually
commute, and (3) have an “integer spectrum,” such that the
many-body spectrum ofH0 is of the form 0;Δ; 2Δ;…. The
“perturbation” V is the kinetic (hopping) terms. While
prethermalization proofs have also been extended to
Floquet and other non-Hamiltonian settings [14–19] with
various experimental verifications [20–25], assumptions
(2) and (3), which lead to exact solvability, among other
useful features, essentially remain.
At the same time, one may be surprised on physical

grounds by this state of affairs: the intuition for pretherm-
alization does not rely on solvability of H0, nor even a
discrete spectrum in the thermodynamic limit. In fact, it
should suffice to simply say that if Δ is a many-body
spectral gap of H0, and any local perturbation can add
energy at most ϵ ≪ Δ, then one has to go to order Δ=ϵ in
perturbation theory to witness a many-body resonance
wherein a system, prepared on one side of the gap of
H0, can “decay” into a state on the other side.
Indeed, this argument is consistent with a very different

physical scenario: false vacuum decay. Here, we consider a
gapped H0 with degenerate ground states protected by
symmetry (in the thermodynamic limit), separated from the
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rest of the spectrum by gap Δ. An example is an Ising
ferromagnet with Z2 symmetry spontaneously broken in
the ground state. If the perturbation V explicitly breaks the
symmetry, one of H0 ’s ground states will generically have
“extensive energy” forH0 þ V. So V will close the gap, and
the false vacuum is one of exponentially many excited
states of similar energy. Still, path integral calculations
imply the false vacuum is stable for nonperturbatively long
times [26]. This is confirmed, as measured by local
correlators in specific lattice models [27–31]. If we con-
sider a quench at time t ¼ 0, since the rate per spacetime
volume of nucleating a bubble of true vacuum scales as
1=t�, the probability a local correlator detects the true
vacuum is tdþ1=t� in d spatial dimensions, implying
thermalization time exp½ðΔ=ϵÞa�.
Moreover, we expect gapped topologically ordered

phases are robust to perturbations at all times. This could
pave the way for topological quantum computing [32,33]
and quantum memory [34,35] at zero temperature.
However, such stability has been proven only for certain
gapped Hamiltonians [36,37].
The gap in H0 is crucial to all three stories above. In this

Letter, we prove that all three phenomena are related to a
common result: when any gapped H0 is perturbed to
H0 þ V, local correlation functions are efficiently approxi-
mated by truncating to the low-energy subspace ofH0 for a
nonperturbatively long time. Prethermalization, captured
by Eq. (1), is independent of the solvability of H0. This is
(1) a substantial generalization of the theory of [13], (2) a
proof that false vacuum decay is nonperturbatively slow,
and (3) a proof of stability for gapped topological phases
over nonperturbatively long times. These diverse applica-
tions of our result are summarized in Table I.
Main result.—Let H0 and V be local many-body

Hamiltonians on a d-dimensional lattice Λ, e.g.,

V ¼
X

S⊂Λ;S local
VS; ð2Þ

where VS acts nontrivially on the degrees of freedom on
sites in the geometrically local S, and trivially elsewhere,

and kVSk ≤ ϵ. H0 has a similarly local structure, and we
require the existence of a “spectral gap” of size Δ, wherein
the many-body Hilbert space H can be decomposed into
H ¼ H< ⊕ H>, whereH< contains eigenvectors of eigen-
value at most E�, while H> contains eigenvectors of
eigenvalue at least E� þ Δ; see Ref. [38] for details.
For sufficiently small ϵ=Δ, there is a quasilocal unitaryU

such that

H0 þ V ¼ UðH� þ V�ÞU†; ð3Þ

where H� has no matrix element connecting eigenstates of
H0 whose eigenvalue difference is larger than Δ, while V�
is a sum of local terms of strength

kðV�ÞSk≲ ϵ exp

�
−
�
Δ
ϵ

�
a
�
; for any a <

1

2d − 1
: ð4Þ

(This a is likely not tight for d > 1.) U is generated
by finite-time evolution with a quasilocal Hamiltonian
protocol H̃ with terms of strength ϵ, where H̃ ∝
−
R
∞
−∞ WðtÞVðtÞdtþ Oðϵ2Þ is defined order by order.

Here, WðtÞ is a fast-decaying function, and VðtÞ ¼
eitH0Ve−itH0 is dominated by terms with range ≲t due to
the Lieb-Robinson bound (which proves the locality of
operator dynamics in many-body systems [46,47]). These
facts imply H̃ is indeed quasilocal.
Numerical demonstration.—To explain the physical

implications of these formal statements, it helps to show-
case our result with the interacting d ¼ 1 spin model

H0 ¼
XN−1

i¼1

ðZiZiþ1 þ JxXiXiþ1Þ þ h
XN
i¼1

Xi; ð5aÞ

V ¼ ϵZ ¼ ϵ
XN
i¼1

Zi; ð5bÞ

where h ¼ 0.9, Jx ¼ 0.37. If Jx ¼ 0, H0 is the transverse-
field Ising model with two ferromagnetic ground states,
separated from the excited states by a gap 2ð1 − hÞ ≈ 0.2
[48]. Jx term is added to break the integrability of H0, but
using exact diagonalization, we findH0 is still gappedwithin
the ferromagnetic phase; see Fig. 1(a). However, this gap is
extremely sensitive to V: the ground state jψ↑i of H0 with
hZii > 0 quickly merges into the excitation spectrum when
ϵ ∼ N−1. So Eq. (5)models false vacuum decay, generalizing
the literature that studies the case Jx ¼ 0 [27–31]. For ϵ≲ Δ,
we see clear nonthermal dynamical behavior in Fig. 1(b) if
the system starts in the true false vacuum jψ↑i or even the
product state j↑ � � �↑i. Prethermalization and slow false
vacuum decay are visible in the anomalously large values of
hZiðtÞi, even at t > N=ϵ. Both preparing the initial state
j↑ � � �↑i and measuring hZiðtÞi are achievable in ultracold
atom experiments [49].

TABLE I. Summary of rigorous results on the robustness of
gapped systems.

Scenario Assumption on H0 t� ≥ ?

Prethermalization Commuting; integer
spectrum

exp½Δ=ϵ� [13]

Gapped exp½ðΔ=ϵÞa� (this
Letter)False vacuum decay Discrete symmetry

breaking (gapped)

Stability of
topological order

Gapped
Frustration-free,

local topological order,
and gapped

∞ [36]
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The nonthermal behavior is also manifest when we
analyze the exact eigenstates of H0 þ V; see Fig. 1(c).
While V strongly prefers hZii < 0, and most eigenstates
near energy E↑ ¼ hψ↑jHjψ↑i (similar for j↑ � � �↑i) obey
this, there are three atypical eigenstates with hZi > 0 on
which ψ↑ has large support.
H0 is neither commuting or frustration-free nor has

integer spectrum or topological order. Previous bounds
could not prove prethermalization in this model. Our work
proves that this numerically demonstrated slow false
vacuum decay persists to the thermodynamic limit, even
as V closes the gap of H0.
Scars and the false vacuum.—Let us return to the

physical implications of the decomposition [Eq. (3)] in
more general models. We focus on the false vacuum decay
problem in a ferromagnet for concreteness, but the dis-
cussion readily generalizes. First, observe that UH�U† ¼
H0� is block-diagonal in UH< ⊕ UH>. Analogously to
Fig. 1(a), UH< has two eigenstates: ground state jΩ0

0i with
energy E0, and excited state jΩ0

1i with energy E > E0. By
definition, jΩ0

0;1i ¼ U†jΩ0;1i, where jΩ0;1i are (in the
thermodynamic limit) degenerate ground state of ferro-
magnetic H0. Note that H0� ¼ H −UV�U†, H0� is a local

Hamiltonian, only differing from H up to nonperturba-
tively small quasilocal terms (UV�U†).
Let us now see that the states jΩ0

0;1i, when probed
by a local (few-body) operator B, behave similarly to
the ferromagnetic vacua jΩ0;1i. By the Lieb-Robinson
theorem, kU†BU − Bk ∼ ϵ=Δ. So if hΩ1jBjΩ1i ∼ 1,
hΩ1jBjΩ1i ¼ hΩ0

1jU†BUjΩ0
1i ≈ hΩ0

1jBjΩ0
1i ∼ 1 as well.

Since jΩ0
1i is an eigenstate of H0�, hΩ0

1jBðtÞjΩ0
1i ≳ 1 −

t=t� stays close to 1 before prethermal time [Eq. (1)]: time
dependence in the correlator comes from the nonperturba-
tively small V� contained within BðtÞ ¼ eiHtBe−iHt. Thus,
the prethermal phenomena will be visible in local corre-
lation functions.
By construction, H0� generically has exact quantum

scars [50–61]: athermal and atypical eigenstates buried
in an otherwise chaotic spectrum. In contrast, our theorem
does not prove that H has exact scars. It is intriguing that
prethermalization also has clear fingerprints in the actual
eigenstates of H0 þ V in Fig. 1.
In our example, the scar jΩ0

1i also is the false vacuum
state. Our framework improves on a subtle shortcoming [62]
of the classic [26] path integral calculation of false vacuum
decay, by providing a nonperturbative and explicit con-
struction of such a state, including whenH0 is not amenable
to a perturbative analysis (a la Feynman diagrams). We also
highlight what it means to have a long-lived false vacuum:
local correlation functions in jΩ0

1i are close to those of jΩ1i,
even though jΩ1i and jΩ0

1i are effectively orthogonal.
Applications.—An immediate consequence of our result

is the generic robustness of quantum simulation of low-
energy—often constrained—quantum dynamics in the
presence of realistic experimental perturbations. For exam-
ple, one may wish to study exotic quantum dynamics in a
Hilbert space where no two adjacent spins in a 1D chain
can both be up. Yet in experiment, such a constraint can
only be “softly” implemented by penalizing adjacent up
spins, e.g., via the Rydberg blockade [51]. Our result
proves that for any such model with soft constraints, the
dynamics is accurately approximated by quantum dynam-
ics in the constrained subspace of physical interest for
nonperturbatively long times. Similarly, thermalization
(and the timescales after which eigenstate thermalization
hypothesis [63–66] can hold) is extraordinarily slow in
all perturbations of gapped systems, starting from states
in UH<.
In the Hubbard model, [13] proved the quasiconservation

of doublon number, which is a sum of local operators. This
proof relies critically on H0 having an integer spectrum.
Since our result does not require this assumption, it is not
clear if such a few-body quasiconserved quantity exists,
when H0 contains only a single gap. Still, under the
assumption that the low-energy spectrum of H0 comes
from (gapped) quasiparticle excitations, we argue in [38]
that our rigorous result suggests the absence of low-energy
quasiparticle proliferation [29] before the prethermalization

(a)
(b)

(c)

FIG. 1. (a) Spectrum of H ¼ H0 þ V in Eqs. (5a) and (5b) at
N ¼ 14 (blue lines). The lowest 60 eigenstates are shown; E0 is
the ground state energy. For the lowest 3 eigenstates, data for
N ¼ 10, 12 are also shown by solid lines of different colors,
indicating the gap closes at ϵ ∼ 1=N. Solid dots represent E↑ ¼
hψ↑jHjψ↑i at ϵ ¼ 0, 0.1, 0.2; for the latter two values, the false
vacuum has been lifted above the gap. (b) Solid lines: hZi=N with
initial state ψ↑ for ϵ ¼ 0, 0.1, 0.2. The green line ϵ ¼ 0 has slight
dynamics because ψ↑ is superposition of only almost degenerate
states (with finite system size). Dashed lines: hZi=N starting from
j↑ � � �↑i instead. Athermal behavior is observed for times
t > N=ϵ, even as Δ ¼ 0.2 ∼ ϵ. (c) Overlap of eigenstates jEi
of H with the false vacuum: jhEjψ↑ij2, as a function of energy
around E↑ for N ¼ 14, ϵ ¼ 0.2. The color for each eigenstate jEi
indicates jhEjψ↑ij2. jψ↑i is supported mainly by three atypical
“scar states” with hZi > 0.
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time, starting from any state that has sufficiently low energy
(jψ↑i or j↑ � � �↑i in the numerical example). Since H� in
Eq. (3) is quasilocal and does not connect eigenstates ofH0

with energy difference larger than Δ, it would not connect
between states with differing numbers of low-energy
quasiparticles (whose energy is at least Δ).
Most spectral gaps in many-body systems arise in

gapped phases of matter, where the ground states are
separated by a finite gap Δ from any excited state. In a
topological phase, there are exactly degenerate ground
states [67], which may serve as a logical qubit. Our
prethermalization proof implies such a qubit will remain
protected in a low-dimensional subspace for extraordinarily
long timescales in the presence of perturbations. This
work thus provides an interesting generalization of earlier
results [34,36,37,68] that proved the robustness of topo-
logical order in frustration-free Hamiltonians. In practice,
decoherence of an experimental device may be far more
dangerous than any perturbation itself to a qubit [69,70].
We cannot prove the robustness of accessible information
[35]: logical operators L are often extensive, so even if the
rotation U in Eq. (3) is quasilocal, kU†LU − Lk ∼ 1 is
possible.
A somewhat similar application of our result arises in

SU(2)-symmetric quantum spin models, where states in the
Dicke manifold (maximal S2 subspace) can readily form
squeezed states [71] of metrological value [72]. When the
Dicke manifold is protected by a spectral gap (as arises in
realistic models), our work demonstrates that this protec-
tion of squeezed states is robust for exponentially long
timescales in the presence of inevitable perturbations. Of
course, many practical atomic physics experiments have
long-range (power-law) interactions [73], which currently
lie beyond the scope of our proof. It will be important in
future work to understand whether our conclusions can be
extended to this setting.
Proof idea.—We now sketch the proof of our main result

(details are in [38]). Although the proof structure mirrors
that for Hubbard-like models [13], we need substantial
technical improvements because our assumption is much
weaker: we only need a single gap in H0. In what follows,
jni is an eigenstate of H0 with eigenvalue En.
Suppose for the moment that V was so small that

kVk ≪ Δ, and (for convenience) suppose that hmjVjni ¼
Vmn ≠ 0 only if jmi and jni are on opposite sides of the
gap. In this case we would know exactly V does not close
the gap, and moreover we could use first order perturbation
theory to explicitly rotate the eigenstates

jni1 ¼ jni þ
X
m≠n

Vmn

En − Em
jmi: ð6Þ

Moreover,

kjni1 − jnik≲ ϵ

Δ
: ð7Þ

Higher orders in perturbation theory are tedious but
straightforward, and Eq. (7) holds for the exact all-order
eigenstates jniH0þV . Unfortunately, this series is badly
behaved in the more realistic setting where each local term
in V is bounded by ϵ instead. Now, kVk ∼ ϵN diverges with
the number of lattice sites N. Yet this divergence should
only be present in many-body states due to the orthogon-
ality catastrophe; local operators should be well-behaved to
high order.
The operator counterpart of Eq. (6) is formulated by the

Schrieffer-Wolff transformations [74,75], which proceed as
follows. First, we project V onto terms acting within [PV]
and between [ð1 − PÞV] the high and low-energy subspa-
ces of H0. This can be done by defining

PV ¼
Z

∞

−∞
dt wðtÞeiH0tVe−iH0t

¼
X
n;m

ŵðEn − EmÞVnmjnihmj: ð8Þ

Here, wðtÞ is a real-valued function with Fourier transform
ŵðωÞ. The second line of Eq. (8) follows from the
Heisenberg evolution VðtÞ ¼ P

n;m VnmeiðEn−EmÞtjnihmj.
We do not try to calculate jni or Vnm; nevertheless, the
formal statement [Eq. (8)] is valuable. If we can find a
function where ŵðωÞ ¼ 0 if jωj ≥ Δ, this transformation
can project out the off-diagonal terms in V. Such functions
are known [76,77], and have asymptotic decay wðtÞ ∼
e−jtj=ln2jtj at large t. The Lieb-Robinson theorem [46,47]
shows that for any local operator Bx supported on site x,
eiH0tBxe−iH0t is, up to exponentially small corrections, a
sum of operators acting on sites within a distance d ∼ vt of
x, for finite velocity v. As a result, terms in PV that act on
sites separated by distance r decay faster than exp½−r1−δ�,
for any δ > 0: this is because wðtÞ decays a little slower
than e−t, and BxðtÞ has support in a ball of size vt,
centered at x.
With the desired projection, we then define

D1 ¼ PV; W1 ¼ ð1 − PÞV; ð9Þ

and a first order unitary rotation U1 ¼ eA1 where

½A1; H0� ¼ W1; ð10Þ

to rotate away the off-diagonal W1. A1 can be found
as i times a quasilocal Hamiltonian in a similar fashion
in Eq. (8). Explicit calculation shows that the new
Hamiltonian in the rotated frame,

U†
1ðH0 þ VÞU1 ¼ H2 þ V2; ð11Þ
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is indeed block-diagonal (H2 piece) for the two gapped
subspaces of H0 up to a Oðϵ2Þ piece V2. Moreover,
although the generator Hamiltonian −iA1 contains terms
that decay slowly with its support, we prove V2 is a sum of
local terms that decay as exp½−r1−δ� with the support size r.
To get this locality bound of V2, we do require somewhat
better Lieb-Robinson bounds, inspired by the equivalence
class construction of [78], than the standard ones [46].
Equation (11) with the locality bound completes the first
order Schrieffer-Wolff transformation. Similar ideas have
previously been developed at finite order of the trans-
formation [79–82]. Here, we not only deal with general
models, but iterate this process to very high order, to obtain
the nonperturbative bound [Eq. (1)].
At kth order, we are given Vk as the off-diagonal part in

the Hamiltonian. We define Dk ¼ PVk, Wk ¼ ð1 − PÞVk

and ½Ak;H0� ¼ Wk. Rotating the Hamiltonian by Uk ¼ eAk

gives the next off-diagonal Vkþ1. The nontrivial aspect of
this iteration is to show that Vk (and Ak;Dk; � � �) is not too
nonlocal: after all, our argument for prethermalization
relied on kU†BU − Bk ≪ kBk, which is only guaranteed
when U consists of local rotations. As we use the same
projection P at each step of the process, Vk has increasingly
large support for increasing k, and eventually this process
becomes uncontrollable: the support of terms in Vk is so
large that our error kU†

kBUk − Bk increases with k. In our
proof, we can show that

kVkþ1klocal
kVkklocal

≲ ϵ

Δ
kð2d−1Þ=ð1−2δÞ: ð12Þ

Here, kVklocal roughly denotes the operator norm of terms
in V that act nontrivially on one particular site. From
Eq. (12), we see that we must stop the Schrieffer-Wolff
iterations when

k� ¼
�
Δ
ϵ

�
a
; where a ¼ 1 − 2δ

2d − 1
: ð13Þ

This establishes Eqs. (3) and (4) with V� ¼ Vk� because
kVkklocal decays exponentially before k� in Eq. (12).
Outlook.—In this Letter, we have proved that the

prethermalization of doublons in the Hubbard model is
but one manifestation of a universal phenomenon, whereby
distinct sectors of a gapped Hamiltonian H0 remain
protected for (stretched) exponentially long times in the
presence of local perturbations V. Prethermalization, in all
measurable local correlation functions, is generic to any
perturbation of a gapped system. We thus immediately
provide a rigorous proof that the false vacuum decays
nonperturbatively slowly, placing less rigorous field-
theoretic calculations [26] on firmer footing.
Our result shows that is always reasonable to simulate

quantum dynamics generated by V in constrained models,
so long as one studies H0 þ V, where H0’s ground state

manifold is the constrained subspace of interest, andH0 has
a large spectral gap Δ. Even if H0 þ V is gapless and
chaotic, the (locally rotated) ground states of H0 serve as
effective “scar states” that will exhibit athermal dynamics
for extraordinarily long times. We anticipate that this
observation will have practical implications for the prepa-
ration of interesting entangled states on the Dicke manifold
in future atomic physics experiments, and for the ease of
recovering qubits under imperfect local encoding.
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