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Gauge theory and thermalization are both topics of essential importance for modern quantum science
and technology. The recently realized atomic quantum simulator for lattice gauge theories provides a
unique opportunity for studying thermalization in gauge theory, in which theoretical studies have shown
that quantum thermalization can signal the quantum phase transition. Nevertheless, the experimental study
remains a challenge to accurately determine the critical point and controllably explore the thermalization
dynamics due to the lack of techniques for locally manipulating and detecting matter and gauge fields. We
report an experimental investigation of the quantum criticality in the lattice gauge theory from both
equilibrium and nonequilibrium thermalization perspectives, with the help of the single-site addressing and
atom-number-resolved detection capabilities. We accurately determine the quantum critical point and
observe that the Néel state thermalizes only in the critical regime. This result manifests the interplay
between quantum many-body scars, quantum criticality, and symmetry breaking.
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Introduction.—Since quantum gauge theories are com-
putationally intractable in the nonperturbative regime, the
idea of formulating gauge theories on discretized space-
time lattices led to lattice gauge theories (LGTs) [1], and
the developments of LGTs enabled numerical simulation of
gauge theories with various classical algorithms in the past
decades [2,3]. Recently, a new trend is realizing LGTs in
quantum simulators with ultracold atoms or trapped ions
[4–9]. By taking the quantum advantage, these quantum
simulation platforms offer the promise of a better under-
standing of LGTs than classical simulations [10–15].
One potential advantage of quantum simulation for

studying LGTs lies in the nonequilibrium dynamics, such
as quantum thermalization [16–18]. In ultracold atom
systems, the essential parameters in the gauge theory are
tunable, allowing accessing different phases and the quan-
tum criticality in between. Quantum criticality refers to a
qualitative change of the ground state and the universal
behavior of low-energy physics. On the contrary, thermal-
ization dynamics usually involves highly excited states.
Remarkably, it has been recently proposed that the thermal-
ization dynamics of the Néel state (labeled as jZ2i) can also
signal the quantum critical regime in the U(1) LGT [19,20].
However, it is challenging to study these physics due to the
lack of techniques for manipulating and detecting local
matter and gauge fields in the previous experiments.

In this Letter, we report on an experimental study of both
equilibrium and thermalization dynamics in the quantum
critical regime of the U(1) LGT. We integrate the tech-
niques of single-site manipulation of matter and gauge
fields and atom-number-resolved detection into an updated
LGT simulator. With these technical advances, we can
monitor the local Gauss law and then perform the post-
selection, which eliminates the processes violating local
gauge symmetries. We can measure the order parameter
with various system sizes to perform a proper finite-size
scaling, which overcomes the finite-size effects and deter-
mines the critical point accurately. We can also determin-
istically prepare the jZ2i state by addressing single atoms
in a programmed manner. Equipped with these capabilities,
we observe the nontrivial thermalization dynamics across
the quantum critical regime [19,20].
Experimental setup.—Our experimental system is shown

in Fig. 1(a), which realizes a U(1) LGT using bosons in
optical lattices, and the protocol is the same as that reported
in previous work [8]. We combine a short lattice and a long
lattice with twice the lattice spacing to create a one-
dimensional superlattice, and this superlattice contains
alternating deep and shallow lattice sites, as shown in
Fig. 1(b) [26]. When the deep lattice sites are doubly
occupied, the on-site energy is U − 2δ, where U is the
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on-site interaction energy and δ is the energy offset between
deep and shallow lattices. When U ≈ 2δ, the on-site energy
of a doubly occupied site is nearly degenerate with an
empty site, but is off-resonant with a singly occupied state.
Thus, we only retain the empty and doubly occupied states,
denoted by j↓i and j↑i, respectively. These deep lattice
sites are viewed as gauge sites, and the shallow lattice sites
are viewed as matter sites. This realizes the LGTwritten as
[8,21]

Ĥ ¼
X
l

½t̃ðψ̂ lŜ
þ
l;lþ1ψ̂ lþ1 þ H:c:Þ þmψ̂†

l ψ̂ l�; ð1Þ

where l labels the matter sites and ψ̂ l are bosonic operators
for the matter fields. Spin-1=2 operators Ŝl;lþ1 are defined
in the deep lattices. Here m ¼ δ −U=2 is the mass of the
matter field. t̃ is generated by a second-order hopping
process because the long-range direct hoppings are sup-
pressed by applying a tilting potential.
This model possesses local gauge symmetries because

the Hamiltonian Eq. (1) is invariant under the local gauge
transformation that individually rotates the ψ̂ l operator
at each site as ψ̂ l → eiθl ψ̂ l, and correspondingly, the
spin operators are changed as Ŝþl;lþ1 → e−iθl−iθlþ1 Ŝþl;lþ1

and Ŝþl−1;l → e−iθl−1−iθl Ŝþl−1;l [8]. This local gauge symmetry
gives rise to a set of local conserved quantities
Gl ¼ Szl−1;l þ Szl;lþ1 þ nl. By introducing the electric field
El−1;l ¼ ð−1ÞlSzl−1;l and the physical charge Ql ¼ ð−1Þlnl,
the conservation Gl ¼ 0 can be written as

El;lþ1 − El−1;l ¼ Ql; ð2Þ

which is exactly the Gauss law of U(1) LGTs [8]. A
configuration of the electric field and Gauss law is also
schematically shown in Fig. 1(b).
When focusing on the gauge sector with allGl ¼ 0, there

are two phases in the Hamiltonian Eq. (1) as tuning m=t̃.
This can be easily seen by looking at two limits with
m=t̃ ¼ �∞. When m=t̃ → þ∞, the matter field favors
nl ¼ 0 and therefore Szl−1;l þ Szl;lþ1 ¼ 0, leading to an
antiferromagnetic state jZ2i ¼ j↑↓↑↓…i or j↓↑↓↑…i
at gauge sites. This leads to a twofold degenerate ground
state. When m=t̃ → −∞, the matter field favors nl ¼ 1 and
therefore Szl−1;l ¼ Szl;lþ1 ¼ −1=2. This state does not break
the original lattice translational symmetry. Hence the
transition is a Z2 symmetry breaking transition of the
Ising type, and detailed theoretical calculations predict the
critical point at m=t̃ ≈ 0.655 [27–29]. Signatures of two
different phases have also been observed in the previous
experiment [8]. However, the absorption imaging detection
method used there lacks single-site resolution, preventing
an accurate determination of the critical point.
Adiabatic ramping.—To accurately determine the quan-

tum critical point, we first prepare a jZ2i state with high
fidelity utilizing the ability of single-site addressing [21] at
δ ¼ 447ð1Þ Hz, U ¼ 732ð2Þ Hz, and t̃ ¼ 23.5ð2Þ Hz, cor-
responding to m=t̃ ¼ 3.44ð7Þ [30]. This jZ2i state is an
antiferromagnetic state j↑↓↑↓…i in the gauge sites and
empty sites in the matter sites. Here, we prepare 5–10
copies of identical chains along the x direction, as shown in
Fig. 1(a). Each chain contains L gauge sites and Lþ 1
matter sites, with a total of Lþ 1 atoms in each chain. Here

FIG. 1. Experimental system. (a) Schematic of the ultracold atom microscope and the prepared jZ2i initial state. We combine the
optical superlattices and the addressing beam generated by the digital micromirror device (DMD) to prepare the initial jZ2i state [21].
The top shows an exemplary raw-data fluorescence image of the atom distribution of the initial jZ2i state in a single experimental
realization. (b) The physical model with bosons in a one-dimensional optical lattice with alternating deep and shallow lattice sites. Here,
U denotes the on-site interaction strength, J denotes the hopping amplitude of bosons, δ denotes the energy offset between neighboring
shallow and deep lattices, andΔ denotes the linear tilt per site. The open and solid circles withþ or − denote physical charge zero,þ1 or
−1 at the matter sites, and the arrows denote the electric field. (c) An Ising-type quantum phase transition by tuning m=t̃.
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we choose L ¼ 5, 7, 9 that is convenient for deterministic
state preparation. Then, we adiabatically ramp δ to the
targeted critical regime around 373 Hz, with a constant
ramping speed _δ ¼ 2.1 Hz=ms. Such change of δ leaves U
and t̃ nearly unaffected, and it changes the value of m=t̃ to
the critical regime, as shown in Fig. 2. Finally, the system is
suddenly frozen and the atom number at each site is read
out with the single-site-resolved microscope. Note that
usually the fluorescence imaging cannot distinguish two
atoms from zero atom at the same site [31,32]. Here, before
detection, we split two atoms into two sites of a double well
along the y direction if there are two atoms at the same site.
This allows us to resolve atom number two from zero at a
single site [21]. To mitigate the undesired effects from
processes beyond the LGT, we postselect our data based on
two rules: (i) the total atom number remains the same as
that of the initial state and (ii) the Gauss law Eq. (2) has to
be obeyed for all sites. In our case, about 60% of total
images are discarded [21]. With the adiabatic ramping and
the postselection, we ensure that the ground state of the
LGT at the targeted m=t̃ is reached. The results of single-
site-resolved measurement of atom number distribution is
shown in Fig. 2(a) for a range of m=t̃.
To locate the critical point, we measure the order

parameter L−1P
lð−1ÞlSzl−1;l. This order parameter is the

staggered magnetization, and given the definition of the
electric field, this order parameter is also the spatial
averaged electric field strength, denoted by Ē. We plot

jĒj as a function of m=t̃ with L ¼ 7 in Fig. 2(c), which
exhibits a rapid change when m=t̃ is in the range ∼½0; 1�.
The finite-size scaling theory predicts that nearby the
critical point, jĒjLβ=ν is a universal function of ½m=t̃ −
ðm=t̃Þc�L1=ν [33,34]. For the two-dimensional Ising uni-
versality class, the order parameter critical exponent β ¼
1=8 and the correlation length critical exponent ν ¼ 1 [35].
To more accurately determine the critical point, we perform
a finite-size scaling using data in this range. We plot
jĒjLβ=ν as a function of m=t̃ for different system size
L ¼ 5, 7, 9. The crossing point of these curves locates the
critical point [21]. Here we indeed observe the crossing of
three curves. However, since each data point has an error
bar, it is not clear to visualize the exact crossing point.
Hence, we consider each point as a normalized Gaussian
distribution piðxÞ ¼ N ðμi; σ2i Þ, where x ¼ jĒjL1=8, μi and
σi are, respectively, the value and the error bar of each data
point. We calculate the averaged Kullback–Leibler (KL)
divergence of the three Gaussian distributions at each m=t̃,
which quantifies the degree of overlap between three
Gaussian distributions. The averaged KL divergence is
defined as [36]

DKL ¼ 1

6

X3
i;j¼1

Z þ∞

−∞
dxpiðxÞ log

�
piðxÞ
pjðxÞ

�
: ð3Þ

We plot theDKL as a function ofm=t̃ in Fig. 4(a), and fitting
the data yields a peak position atm=t̃ ¼ 0.59ð8Þ. This value

FIG. 2. Adiabatic ramping and phase transition. (a),(b) Single-site-resolved atom number distribution for a range of m=t̃. (c) The
absolute of the spatial averaged electric field jĒj as a function ofm=t̃. (d) jĒjL1=8 as a function ofm=t̃ for L ¼ 5, 7, 9. The crossing point
of the three curves locates the quantum critical point. The inset verifies the critical behavior by showing jĒjLβ=ν plotted against
½m=t̃ − ðm=t̃Þc�L1=ν, which collapse onto a single curve near the critical point [33,34]. Error bars denote the standard error of the mean.
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is consistent with theoretical predictions [27–29]. Given the
energy scale of our t̃, the deviation from the theoretical
critical value is less than 2 Hz.
Quench dynamics.—We then consider the quench

dynamics. The same jZ2i state is prepared as the initial
state. Now, instead of adiabatic ramping, we suddenly
change the value of m=t̃ to the targeted value nearby the
critical point from m=t̃ ¼ 10, with a typical timescale of
1 ms. Here we fix t̃ ¼ 34.1ð3Þ Hz and U ¼ 676ð2Þ Hz.
The value of t̃ is larger than what we used for the adiabatic
ramping process. This is because we find that even a weak
spatial inhomogeneity can cause noticeable variations of m
from site to site, which can affect the time dynamics. A
larger t̃ helps to reduce this variation in terms of m=t̃ and
can significantly suppress the effects of the inhomogeneity.
We record the spatial atom number distribution at different
times during the real-time dynamics using a single-site-
resolved microscope. We also apply the same postselection
to ensure that the dynamics is governed by the LGT. The
measurements of time dynamics are shown in Fig. 3 for
different values of m=t̃.
We fit the experimental data in Fig. 3 with a damped

sinusoidal function Ae−t=τ sinðωtÞ þ E∞, where A, τ, ω,
and E∞ are all fitting parameters. We obtain E∞ as the
longtime steady value, as illustrated by the dashed lines in
Fig. 3. Meanwhile, we can also theoretically extract the
thermalization values Eth, provided that the system obeys
the eigenstate thermalization hypothesis and the initial jZ2i
state thermalizes [37–40]. Eth is obtained by calculating
Tr½ρðTÞL−1 P

lð−1ÞlSzl−1;l�. Here ρðTÞ is an equilibrium
density matrix of the LGT system, with the temperature T
determined by matching energy Tr½ρðTÞĤ� ¼ hZ2jĤjZ2i
[21]. Previous work has predicted that for the PXP model,
E∞ matches Eth and the initial jZ2i state thermalizes only
in the quantum critical regime [19]. These two values
depart from each other away from the critical point ðm=t̃Þc.
When m=t̃ > ðm=t̃Þc, the ground state is twofold degen-
erate and the jZ2i state has large overlap with the ground
state, and the ground state is always not thermalized. When
m=t̃ < ðm=t̃Þc, especially around m=t̃ ¼ 0, it is known that
the PXP model hosts a set of many-body scar states as the

FIG. 3. Time evolution after a quench. The real-time dynamics of Ē for different values ofm=t̃ (marked at the axes ofm=t̃). The dashed
lines are the fitted longtime steady values E∞, and the solid lines are the theoretical thermal values Eth assuming that the initial state fully
thermalizes. Here L ¼ 7 and each data point is averaged over 10–20 chains after the postselection. Error bars denote the standard error of
the mean, and are smaller than the markers if hidden.

FIG. 4. Quantum criticality. (a) The averaged KL divergence
DKL defined by Eq. (3) quantifies the overlap of three data points
for eachm=t̃ in Fig. 2(d).DKL is plotted as a function ofm=t̃. The
peak of DKL defines the point where the three curves in Fig. 2(d)
cross each other and locates the quantum critical point. The error
bars of the data points are the error of the calibratedm=t̃ [21]. The
determined quantum critical point ðm=t̃Þc lies at the middle of the
range of m=t̃ spanned by the shaded region. Its error bar (coming
from both the Gaussian fitting error and the calibration error) is
indicated by half of the horizontal width of the shaded region.
(b) The data points are the steady values E∞ extracted from
Fig. 3. The red dashed line is the theoretical steady value with the
same system size as the experimental system, and the solid yellow
line is the theoretical thermal value Eth assuming that the initial
state obeys the eigenstate thermalization hypothesis. The hori-
zontal error bars denote the errors of the calibrated m=t̃, and the
vertical error bars denote the standard deviations of the fitted E∞.
The center and the half width of the shaded region represent the
quantum critical point (determined by the intersection between
the solid yellow line and the fitted curve of the data points) and its
error bar, respectively.
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system’s eigenstates [41–43]. The jZ2i state also has large
overlap with the scar states, preventing it from thermal-
ization [41–43]. The PXP model is equivalent to this LGT
model under the local gauge constraints of Gl ¼ 0 for all l,
and therefore, the discussion also applies to this LGT
model [44,45]. In Fig. 4(b), we compare E∞ with Eth, and
our measurements agree with the prediction that E∞ ≈ Eth
only in the quantum critical regime [19]. The numerical
simulation in Ref. [19] shows that this conclusion holds in a
finite system.
Conclusion.—We have performed a single-site-resolved

quantitative experimental study of the quantum criticality in
the U(1) LGT realized with bosons in optical lattices. Our
study combines both the equilibrium property and the
thermalization dynamics. To achieve single-site addressing
and atom number detection while mitigating the undesir-
able effects of spatial inhomogeneity, our system size is up
to ∼19 lattice sites. Still, our quantitative results agree well
with the numerical results of exact diagonalization. This
agreement benchmarks the validity of our ultracold atom
quantum simulator quantitatively, and demonstrates this
simulator as a powerful platform to study nonequilibrium
dynamics of the gauge theory. In the near future, when our
system size is enlarged several times, it will be beyond the
capability of exact diagonalization. The experimental con-
trol and detection capability developed in this work can be
used to study other interesting dynamical phenomena in
this system, such as entanglement entropy dynamics
[46,47], where the entanglement growth rate is also
expected to signal the quantum criticality [21]. We can
also modify our model to alter either the scar state or the
symmetry breaking property, and it is expected that the
thermalization behavior in different regimes should change
respectively. This can help pinpoint the physical mecha-
nism. Our system can also be used to study string breaking
[48–50], dynamical transition between quantum phases
[51,52], the false vacuum decay, and the confinement-
deconfinement transition [44,45,53]. The current scheme of
implementing the LGT can also be extended to higher
dimensions [54].
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