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We discover a new type of nonequilibrium phase transition in a model of chromatin dynamics, which
accounts for the coherent motions that have been observed in experiment. The coherent motion is due to the
long-range cooperation of molecular motors tethered to chromatin. Cooperation occurs if each motor acts
simultaneously on the polymer and the surrounding solvent, exerting on them equal and opposite forces.
This drives the flow of solvent past the polymer, which in turn affects the orientation of nearby motors and,
if the drive is strong enough, an active polar (“ferromagnetic”) phase of motors can spontaneously form.
Depending on boundary conditions, either transverse flows or sustained longitudinal oscillations and waves
are possible. Predicted length scales are consistent with experiments. We now have in hand a coarse-
grained description of chromatin dynamics which reproduces the directed coherent flows of chromatin seen
in experiments. This field-theoretic description can be analytically coupled to other features of the nuclear
environment such as fluctuating or porous boundaries, local heterogeneities in the distribution of chromatin
or its activity, leading to insights on the effects of activity on the cell nucleus and its contents.

DOI: 10.1103/PhysRevLett.131.048401

Introduction.—Chromatin is the functional form of DNA
in living cells, with a variety of active processes such as
transcription, replication, and DNA repair taking place
directly on the chromatin fiber [1–3]. Active forces from
these processes affect the organization and dynamics of
chromatin [4–6]. Through displacement correlation spec-
troscopy, chromatin motions were simultaneously mapped
across the entire nucleus in live cells, revealing that
chromatin exhibits fast uncorrelated motions at short times
(<1 s) and slow correlated motions at longer times [7]. The
correlated chromatin motions are coherent over 3–5 μm for
several seconds, before the coherent domains break up and
new ones form, resembling an oscillatorylike behavior [7].
Furthermore, while the uncorrelated motions were shown
to be thermal-like, the coherent chromatin flows were
eliminated upon ATP depletion or inhibition of major
nuclear enzymes such as RNA polymerase II, DNA
polymerase, and topoisomerase II, demonstrating the
active, energy-dissipating and nonequilibrium nature of
the coherent chromatin flows [7–9].
Hydrodynamics of systems with activity has been the

subject of many studies in the context of active matter
research, as reviewed in Ref. [10]. Depending on the role of
solvent and the symmetry of the order parameter [11,12],
active hydrodynamics exhibit phenomena ranging from
coherent instabilities [13,14] to nematic or polar order [15–
17] to treadmilling [18,19]. In many works, e.g., on active
nematics, the idea is that nematic order is formed as in the
usual passive system, due to interactions between, say,
elongated molecules, and then activity drives spectacularly
interesting dynamics (see Ref. [16]).

In the context of chromatin, unlike regular active
nematics, molecular motors driving active dynamics, such
as RNA polymerases, do not appear to be close enough to
form a long-range order due to direct contact with each
other [20]. At the same time, hydrodynamic treatment
of chromatin finds that coherent dynamics can be sus-
tained only in the presence of the ordered orientations
of force dipoles [8]. In alternative hydrodynamics-free
approaches, computationally reproducing coherent chro-
matin motions required the use of artificial long-range
interactions [21–23]. An important hint came from hydro-
dynamic simulations work, where large-scale coherent
chromatin dynamics as well as strong nematic order of
chromatin fiber were observed, without inserting any
artificial long-range forces [9]. Instead, this model relies
on the nonspecific effects of hydrodynamics. In our earlier
study, we identified motors, which exert equal but
opposite forces on the polymer and solvent, as responsible
for the large-scale hydrodynamic flows in the chromatin-
nucleoplasm two-fluid system [24]. Here, we aim to
develop a coarse-grained hydrodynamic model, which
reproduces the development of the coherent chromatin
phase. We hypothesize that there can be an ordering phase
transition when the force of the motors exceeds a thresh-
old value. We seek to analyze which properties of the
chromatin-nucleoplasm system govern this phase transi-
tion as well as the structure of ordered phase.
Model and equations of motion: Linear response.—

Following earlier work [8,24] we describe chromatin using
the two-fluid model originally introduced by Doi and
Onuki [25]. The dynamics of the system in this model is
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described by the fields of polymer velocity vpðr; tÞ,
polymer volume fraction ϕðr; tÞ, and the solvent velocity
vsðr; tÞ, while the solvent volume fraction is 1 − ϕðr; tÞ
because of overall incompressibility. To describe the onset
of spontaneous symmetry breaking and formation of polar
ordered domains, we start with the assumption of linear and
local rheological response of the polymer. This implies that
the velocities are small, as are the deviations from the
average density, ϕðr; tÞ ¼ ϕ0 þ δϕðr; tÞ. This implies fur-
ther that polymer osmotic pressure is Π ≃ Kδϕðr; tÞ, with
osmotic modulusK, while the force resulting from polymer
viscous stress is ηp⋆∇2vpðr; tÞ, where polymer viscosity
may have some time memory kernel and ⋆ means con-
volution [see below about neglect of extensional viscosity
and terms ∼∇ð∇ · vpÞ]. In this approximation, equations of
motion of the model are conveniently written in the
Fourier-transformed frequency domain (with sign conven-
tion ∂t → −iω) as follows:

ζðvpω − vsωÞ ¼ ηpω∇2vpω − K∇δϕω − ϕ0∇Pω þ Fp
ω; ð1aÞ

ζðvsω − vpωÞ ¼ ηs∇2vsω − ð1 − ϕ0Þ∇Pω þ Fs
ω; ð1bÞ

iωδϕω ¼ ϕ0∇ · vpω ¼ −ð1 − ϕ0Þ∇ · vsω: ð1cÞ
The first two equations represent force balance conditions
for polymer and solvent, respectively, while the last two
are continuity conditions for these two components. Here ζ
is the friction coefficient of polymer against solvent, per
unit volume, ηs is the viscosity of the solvent, Pω is the
hydrostatic pressure.
The heart of the problem is the understanding of active

force densities Fp and Fs generated by motors. The typical
size of every motor, which we denote a, is on the order of or
smaller than the mesh size λ. As explained above, we focus
on motors exerting equal and opposite forces on polymer
and on solvent [Fig. 1(a)], which to the first approximation
means Fp ¼ −Fs ¼ fρmðr; tÞ, where ρ is the number
density of motors, while mðr; tÞ ¼ hn̂i is the average
orientation. With f > 0, this describes extensile force
dipoles; contractile ones correspond to f < 0. Remaining
within linear response, we assume jmj small and neglect
the change of motor density associated with changing
polymer density δϕ. Note that every motor has, generally,
some finite processivity, stemming from its on and off rates;
density ρ includes only those motors that are simultane-
ously working.
Since the body of the force-exerting motor is tethered to

the polymer at one end and experiences friction from the
solvent, there must be a torque acting on the motor and
proportional to the relative velocity vp − vs ¼ w, leading to
the following dynamics of the m field (see Sec. I in
Ref. [26]):

−iωmω ¼ 2

3a
wω − 2

T
γ
mω; ð2Þ

where γ is the rotational drag coefficient for the motor and
T is the temperature in energy units.
Apart from nonlinearities (considered below), we neglect

in Eq. (2) coupling of motor orientation to polymer
concentration gradient (because motor size is smaller than
or comparable to polymer mesh), do not consider renorm-
alization of active force due to the flow itself (because f is
large enough), and ignore the possibility of the induced
nematicity of the polymer and corresponding active stress.
Our theory is in some ways similar to that of Adar and
Joanny [17], as they also examine coupling between flow
and polarization in a two-fluid model, but they focus on the
regime of strong polarization which can only rotate in
response to the flow, while we concentrate on the chro-
matin-relevant opposite regime of weak polarization which
only arises due to the flow.
Along with Eq. (2), it is convenient to recast the

equations of motion (1) in terms of the above defined
relative velocity wω ¼ vpω − vsω and viscosity-weighted
average velocity uω¼ðηpωvpωþηsvsωÞ=ðηpωþηsÞ (see Sec. III
in Ref. [26]). Doing so, one can see that relative velocity w
is driven by m, i.e., mathematically by force monopoles
rather than dipoles. A similar mathematical structure
appeared in Ref. [44], albeit in a different physics context.
This explains why hydrodynamic interactions are so
important in our active system, despite the fact that in
passive polymers they are screened at the distances not far
exceeding the mesh size [45]. Another feature of the full set
of equations is that they allow for simultaneous Helmholtz
decomposition of the three vector fields m, u, and w to the
uncoupled divergence-free (transverse, ⊥) and curl-free
(longitudinal, k) modes.
Threshold of instability: Divergence-free modes.—

Transverse modes do not involve density change,
δϕ ¼ 0, and, accordingly, no pressure gradient, ∇P ¼ 0.
This leaves us with just two equations which are easily

(a) (b) (c)

FIG. 1. Sketch of our model and the two dynamic modes.
(a) Polymer with attached disordered motors; enlarged section
shows one motor and its parameters. (b) Transverse mode in a
spherical domain. Notice the polar alignment of motors.
(c) Longitudinal, oscillatory mode. Time goes from the upper
panel to the lower one, with time per frame given in Eq. (9).
Dashed arrows show passive relaxation of polymer density. Solid
arrows show the motor-driven polymer flow.
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combined into one (see Sec. III of Ref. [26]):

−iωτð1 − λ2∇2Þwω⊥ ¼ 2

�
fργ
3aζT

− 1þ λ2∇2

�
wω⊥; ð3Þ

where we introduced shorthand notations,

τ ¼ γ

T
and λ2 ¼ ηpωηs=ζ

ηpω þ ηs
≃
ηs

ζ
; ð4Þ

and in the last transformation we took into account the fact
that ηpω ≫ ηs, by several orders of magnitude, over the
entire frequency range of interest [27–35]. Clearly, τ is the
characteristic time of passive reorientation by a single
motor, while λ is the length scale of the mesh size.
In an infinite domain, the modes are just plane waves,

∇2 → −q2, and we see that modes become unstable when
ðfργ=3aζTÞ − 1 > λ2q2. The fact that the length scale 1=q
of the unstable modes diverges as we approach from above
the critical force level at which ðfργ=3aζTÞ − 1 ¼ 0 is
reminiscent of a second-order phase transition, similar to
that in a magnet, with w⊥ playing the role of (self-
consistent) magnetic field and m⊥ the local averaged spin.
The critical parameter ϵ ¼ ðfργ=3aζTÞ − 1 describes a
competition between the velocity produced by the co-
operatively acting motors ðfρ=ζÞ and the characteristic
velocity needed to align a motor, aT=γ ¼ a=τ.
If the system is confined in a finite domain of size R, then

modes have a more elaborate structure and discrete
spectrum. Although the stability analysis for this case
may require a separate study [46], the qualitative estimate
of the amount of force needed to generate instability can be
obtained by just setting q ∼ 1=R (see Fig. 2):

fρ >
3aζT
γ

þ aηsT
γR2

: ð5Þ

This condition means that motors acting together have to be
strong enough to overcome the friction of the solvent
pumped through the network (the first term) and additional
friction against the boundary (the second term) [see
Fig. 1(b)].
Threshold of instability: Curl-free modes.—The longi-

tudinal waves involve density fluctuations, which is why
their description is more complicated. Nevertheless, even in
this case, the problem is reduced to a single equation for the
field wk (see Sec. III of Ref. [26] for derivation):

½1 − λ2s∇2�τ2∂2twk − 4λ2d∇2wk

þ 2

�
1 − ðλ2s þ λ2dÞ∇2 −

fργ
3aζT

�
τ∂twk ¼ 0; ð6Þ

where in addition to Eq. (4) we introduced two new length
scales; their complete expressions are cumbersome [see
Eq. (26) in Ref. [26] ], but in simplified form (due to

ηpω ≫ ηs) they are as follows:

λ2s ≃
ηpð1 − ϕ0Þ2

ζ
and λ2d ≃

Kϕ0ð1 − ϕ0Þ2γ
2ζT

: ð7Þ

In Eq. (6), we returned to time domain (−iω → ∂t), making
the oscillator structure of the equation more transparent.
This is possible only as long as polymer viscosity ηpω is only
smoothly dependent on frequency.
As in the transverse case before, in an infinite do-

main the modes are just plane waves, ∇2 → −q2, and
Eq. (6) becomes that of a damped harmonic oscillator.
Remarkably, active driving force comes only in the friction
term. In particular, sufficiently strong and numerous motors
can lead to the flipped sign of friction, making the oscillator
unstable. As before, structure of modes for a finite size
domain of size R requires special analysis [46], but
qualitatively we can estimate the instability threshold by
just replacing q → 1=R (see Fig. 2):

fρ >
3aζT
γ

þ ð1 − ϕ0Þ2a
R2

�
3Tηp

γ
þ 3

2
Kϕ0

�
: ð8Þ

Similar to the formula (5) for the transverse case, Eq. (8)
means that motors have to be strong enough to overcome
friction, which this time involves moving and deforming
polymers, thus dependent on ηp and K, respectively.
This implies that a larger force is needed to generate
longitudinal modes compared to the transverse ones (and
the extensional viscosity of the polymer can further
increase this threshold).

FIG. 2. Phase diagram of the instabilities and the regions of
parameter space where they develop, as a function of the active
force density and the size of the container. In the left (yellow)
region of the diagram, the forcing is insufficient to drive
instabilities and the system remains disordered. The middle
(red) region is where the forces are sufficient to drive transverse
flows but not strong enough to cause polymer density fluctua-
tions. Finally, the bottom right (purple) region of parameter space
is where both longitudinal oscillations and transverse flows are
possible. The lines separating the regions correspond to the
conditions in Eqs. (5) and (8), respectively.
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When force is exactly equal to the threshold value for
some q, this mode exhibits a sustained oscillation with
frequency such that ðωτÞ2 ¼ 2λ2dq

2=ð1þ λ2sq2Þ. In particu-
lar, the small qmodes (qλs ≪ 1) are just propagating waves
with ω ∝ q and with velocity ∼λd=τ ∼ K=ζ. Numerically
generated movies illustrating possible wave packet dynam-
ics can be found in Sec. IV of Ref. [26].
To rationalize this, let us define rate τ−1q ∼ ðK=ζÞq2;

given that K=ζ has dimensionality of a diffusion coeffi-
cient, τq is the characteristic relaxation time of a density
wave of length 1=q by cooperative diffusion, driven by
polymer elasticity (K) against friction (ζ). In terms of τq,
we can write mode q frequency as the geometric mean of
two rates:

ω ∼ ðττqÞ−1=2; with τ−1q ∼ ðK=ζÞq2: ð9Þ
The mathematical structure of frequency as the geometric
mean of two rates is analogous to that which arises in the
Lotka-Volterra equations [36,37], featuring the growth rate
of the prey and the death rate of the predator. This structure
reflects the physical nature of the oscillator: by the time
some dense region of size 1=q relaxes, it will have
generated a velocity field which locally aligns the field
mk. This field has a persistence time τ, and pumps the
polymer in the same direction in which it was relaxing. This
causes a new dense region to develop, until the dipoles lose
their alignment in turn after a time τ, and the polymer
relaxation begins yet again at a rate 1=τq in the opposite
direction. This is illustrated in Fig. 1(c).
If the force is slightly above or slightly below the

threshold Eq. (8), then the oscillator is either slowly
decaying (below) or slowly increase swinging (above), with
characteristic time that diverges at the threshold, again
reminiscent of a standard critical slowing-down in phase
transitions.
Beyond linear response.—Once driving force exceeds

the threshold value, unstable modes exponentially explode,
grow out of the linear response range, and then nonlinearity
comes to rescue and eventually arrests the growth. There
are many nonlinear effects possible (see Sec. IIIC in
Ref. [26]), but we will focus on the most basic and
omnipresent one, namely, the fact that orientational order
of motors is limited such that jmj ≤ 1: the maximum
motors can do together is to align completely.
A complete description of orientation dynamics in an

orienting field is rather cumbersome (see Sec. I in
Ref. [26]). We will restrict ourselves with the simplest
estimate, assuming that polarization vector m beyond the
linear regime Eq. (2) evolves according to

τ∂tm ¼ 2½meqðwÞ −m�;

with meqðwÞ ≃ w
τ

3a

�
1 −

ðwτ=aÞ2
15

�
: ð10Þ

Here meqðwÞ is the equilibrium value that would be
achieved in a constant flow w; similar to classical ori-
entation of dipoles, meqðwÞ ¼ coth ðwγ=aTÞ − aT=γw, and
we use the first nonlinear term of expansion. Equation (10)
is not exact, but captures the main qualitative features.
Once the dynamics is nonlinear, separation of longi-

tudinal and transverse modes is not possible. Nevertheless,
neglecting frequency dependence of ηp (and, therefore, λs),
we can reduce equations of motion to a single equation (see
Sec. III of Ref. [26]):

τ2∂2t ½1 − λ2s∇∇ ·þλ2∇ × ∇×�w − 4½λ2d∇∇·�w
þ 2τ∂t

�
1 − ðλ2s þ λ2dÞ∇∇ ·þλ2∇ × ∇×

−
fργ
3aζT

�
1 −

τ2

15a2
w2

��
w ¼ 0: ð11Þ

Equation (11) is instructive. First of all, if we drop the
nonlinear term, then it is reduced to either Eq. (3) or
Eq. (6) if the field w is divergence-free or curl-free,
respectively [47]. Of course, a full nonlinear equation is
difficult to analyze. Nevertheless, Eq. (11) is still similar to
that for an oscillator (specifically, the van der Pol oscillator
[48,49]), with both active forces and nonlinear saturation
contributing to the friction term (with first time derivative).
All types of second spatial derivatives, arising from viscous
stresses, are controlled by the domain size and estimated as
1=R2, although the detailed structure of the vector field w is
sensitive to the domain shape and boundary conditions. For
an estimate, we just say that modes start to grow when
force makes the friction term in Eq. (11) negative and then
jwj grows until the friction term becomes positive again.
If the threshold for instability is ðfρÞ� [determined, e.g.,
by Eq. (8)], then the steady velocity amplitude scales
as w2 ∼ ð15a2=τ2Þ½fρ − ðfρÞ��=ðfρÞ�, and the correspon-
ding density variations amplitude is δϕ2 ∼ ð15a2ζ=KτÞ
½fρ − ðfρÞ��=ðfρÞ�. Numerical solutions are consistent
with predicted scaling, as shown in Sec. IV of Ref. [26].
Discussion.—Our model predicts three phases for

chromatin dynamics: disordered, and two types of polar
order—transverse flows and oscillatory regime. These are
controlled by the active force density fρ and the domain
size R (Fig. 2).
Our results are consistent with extensive simulations

reported in Ref. [9], showing that extensile motors (f > 0),
if present in sufficient density fρ, produce polar ordered
state and coherent motion. An additional feature of the
computational model [9] is that they observe nematic
ordering of polymer itself; we speculate that nematicity
of the polymer may be a consequence of the polar order of
motors, because the motors in the simulations were tied to
local direction of the polymer.
Speaking about chromatin in vivo, we consider

RNA polymerase II as a likely motor driving chromatin
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dynamics, as it binds to chromatin and pushes RNA into the
solvent [1], although many other nuclear enzymes can also
mechanically couple chromatin fiber to the nucleoplasm,
e.g., loop extruding condensin [50]. For these motors,
density ρ≳ 102 μm−3 [38], force f ∼ 25 pN [51], size
a ∼ 20 nm [52]. At full cooperation, when perfectly
aligned, these motors can drive solvent past chromatin at
a very large speed wmax ∼ fρ=ζ ∼ 107 nm=s; here, we used
ζ ¼ ηs=λ2, assuming nucleoplasm viscosity similar to that
of water, ηs ∼ 10−3 Pa s [33,34], and taking chromatin
mesh size λ ∼ 50 nm (30–100 nm reported in experi-
ments [39,40]). Of course, polymer moves with a smaller
speed, reduced by a factor of the ratio of viscosities,
vp ∼ ðηs=ηpÞw.
Unfortunately, the ratio of viscosities is difficult to

measure directly. Using experimentally measured values
of ηp and ηs [27–35], we estimate the ratio to be in the range
10−2–10−6. The latter figure would be in agreement with
experimentally measured polymer speed in slow coherent
motion about 10 nm=s [7]. If the actual ratio of viscosities
is not quite that small, then we will have to conclude
that chromatin in vivo operates close to criticality, where
our model predicts reduction of velocity by a factor
½fρ=ðfρÞ� − 1�1=2.
Can we estimate actual closeness to criticality,

directly comparing force density to its critical value?
The critical condition is given by fρ=ζ > ðfρÞ�=ζ ¼
ð3a=τÞ½1þ λ2=R2�, Eq. (5). Here λ2=R2 is negligible for
realistic nucleus size of about R ∼ 10 μm [1,3], but passive
reorientation time of a motor τ is yet another parameter
poorly constrained by available experiments. We calculate
τ ≳ 10−6 s (Sec. Vof Ref. [26]), but the actual value could
be significantly higher, since we underestimated the dis-
sipative coupling between motor and polymer. Accepting
our calculated value yields 3a=τ ≲ 107 nm=s, similar to
wmax above. Thus, uncertainties in τ and ηp=ηs are too great
to find actual closeness to criticality. However, the known
parameters allow us to confidently claim that actual force
density exceeds the critical value for transverse flows and
thus the latter could indeed be responsible for the coherent
chromatin flows in live cells.
In the oscillatory regime, required critical force density is

larger, fρ=ζ > ðfρÞ�=ζ ¼ ð3a=τÞ½1þ ðηp=ηsÞλ2=R2�; see
Eq. (8). Given the uncertainties in the estimates of τ and
ratio of viscosities, it is difficult at the present time to make
definitive statements about feasibility of this regime for
in vivo chromatin. A similar uncertainty exists about our
predictions of running waves speed and oscillations period
[Eq. (9)], which is poorly constrained, but seems signifi-
cantly shorter than the measured lifetime of coherent
chromatin flows in cells of ∼5–10 s [7]. Importantly, a
set of parameters consistent with current knowledge can be
chosen that yields physiologically relevant results, yet such
a choice cannot be presently motivated.

Overall, our model might be consistent with current
measurements, although the significant approximations in
our theory and uncertainties in parameters call for future
efforts toward more detailed modeling. This will require
consideration of the boundary conditions [46], including
solvent permeation through the nuclear envelope [53],
coupling of chromatin to lamin [54–56] and to nuclear
envelope fluctuations [57]. Another promising direction is
to account for a nonuniform distribution of active motors in
the nucleus and along the chromatin fiber, such as active
motors preferentially residing in transcriptionally active
euchromatin [21,56,58]. But already now our theory makes
predictions that beg for experimental tests, in particular for
solvent motions, which unlike chromatin motions have not
been measured before.
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