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We consider a standard Ginzburg-Landau model of a ferroelectric whose electrical polarization is
coupled to gradients of elastic strain. At the harmonic level, such flexoelectric interaction is known to
hybridize acoustic and optic phonon modes and lead to phases with modulated lattice structures that
precede the state with spontaneously broken inversion symmetry. Here, we use the self-consistent phonon
approximation to calculate the effects of thermal and quantum polarization fluctuations on the bare
hybridized modes to show that such long-range modulated order is unstable at all temperatures. We discuss
the implications for the nearly ferroelectric SrTiO3 and KTaO3, and we propose that these systems are
melted versions of an underlying modulated state that is dominated by nonzero momentum thermal
fluctuations except at the very lowest temperatures.
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A ferroelectric (FE) material is defined by spontaneously
broken inversion symmetry, usually due to a small and
coherent displacement of atomswithin the unit cell andhence
a spontaneous electrical polarization P [1]. Because lattice
displacements generate the order, the homogeneity of the
polarization depends on coupling between neighboring unit
cells, and over longer distances by a continuous elastic strain
ϵ. In a cubic (or other high symmetry FE) the principal order
parameter (OP) P belongs to a different irreducible repre-
sentation from the strain fields at zero wave vector (q ¼ 0).
This means that the leading order electrostrictive coupling in
a uniform Landau theory for the free energy is bilinear in
polarization and linear in strain [i.e., OðϵP2Þ]. However,
there is also a well-known flexoelectric coupling [2–5] [i.e.,
OðP∇ϵÞ], which is allowedby symmetry in all insulators and
gives rise to modulated incommensurate phases within a
harmonic theory, provided that the coupling is big enough
[6–11]. Being a harmonic interaction, flexoelectricity is in
principle more relevant than the nonlinear electrostrictive
coupling, and it is the focus of this Letter.
The materials SrTiO3 (STO) and KTaO3 (KTO) have

long been cited as examples of quantum paraelectrics
(QPEs). In both cases, the dielectric constant follows a
Curie-Weiss (CW) law divergence with a finite-temperature

intercept, yet at low temperatures saturates at extremely
large values [12], and there is no FE phase transition. The
idea that quantum tunneling of domains in a mean-field like
(and massive) system has already grown to be very large
before quantum effects take over is disconcerting and has,
over the years, generated considerable interest in the
general theory of a FE quantum critical point [13–21].
Recent experiments, however, have revealed phase dia-

grams and lattice dynamics in STO and KTO which cannot
be explained by our current understanding of these materi-
als [22]. Specifically, measurements of the dielectric
response have found several crossovers (specially seen
under pressure) [23–26], and very significantly, inelastic
neutron scattering experiments observe softening of a
transverse acoustic (TA) mode at a small but finite wave
vector in STO (≃0.025 rlu) [27] and at a larger one in KTO
(≃0.1 rlu) [7]. The latter results are consistent with
momentum-resolved electron energy-loss spectroscopy
[28] and a previous neutron scattering study [29] which
show an unusual softening of the TA branch, and with a
first-principle simulation [30] which found a dip in the
acoustic dispersion.
Soft acoustic phonons with a minimum at a finite wave

vector are characteristic of systems approaching a structural
instability corresponding to the onset of a long-wavelength
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modulation [32,33], and can be understood as the conse-
quence of level-repelling hybrid modes associated with a
sufficiently large coupling between a primary OP (e.g.,
polarization) and gradients of a secondary OP (e.g., strain)
[34]. However, harmonic and mean-field solutions of such
models [6–11] predict the condensation of the low energy
branch at a finite wave vector qmod, thus leading to a
modulated phase that is not observed in STO and KTO. Nor
can these solutions generate crossovers.
Here, we invoke a well-known model of flexoelectricity

[2–5] and, crucially, solve it within the self-consistent
phonon approximation (SCPA) in order to account for
thermal and quantum fluctuations of polarization of the
disordered phase. We show that in the presence of purely
thermal fluctuations, the phase space for orientational
fluctuations is large enough that the modulated transition
is suppressed to zero temperature, and that by including
zero-point quantum fluctuations, the correlation length
will remain finite even at absolute zero. We estimate the
parameters in comparison to KTO and STO, and we find
reasonable agreement with a model where the flexoelectric
coupling is close to the classical critical value for the onset
of a modulated phase. Our analysis suggests that the
putative QPE phase of STO and KTO is largely explained
by classical thermal-modulated fluctuations, and there is a
second crossover to a regime dominated by quantum
fluctuations at much lower temperature. However, the
quantum regime in our theory does not require macroscopic
quantum tunneling, and instead arises more trivially due to
zero-point occupation of orientational zero modes. In the
light of these results, we propose that STO and KTO are
incipient modulated dielectrics with incommensurate order
caused by the coupling of polarization and strain inhomo-
geneity. In the underlying ordered phase, the rotational
symmetry of the crystal is broken as well as its translational
symmetry, but only in one direction (qmod). This would lead
to intertwined stripe order parameters where the polariza-
tion and elastic strain are periodic with a wave vector qmod
[32]. Such stratified ordering resembles the structural
organization of the “lamellar” or “smectic” phases in liquid
crystals: a nearly periodic array of parallel layers of
polarizable molecules that do not possess long-range
positional order within a layer [35]. In a smectic, the
director vector n points orthogonal to the planar lamellae,
as does here the wave vector qmod. Lastly, we comment on
lacunae in the model, the most important of which is the
neglect of crystal anisotropy and compositional disorder.
We expect anisotropy to lead to an ordered (striped) phase
at low enough temperatures, and disorder to a glassy frozen
version of the same. Both of these effects can suppress the
quantum regime. We also suggest experiments to further
test our proposed picture.
We consider an isotropic polarizable, elastic medium

with a polarization OP PαðxÞ and a linear strain
ϵαβðxÞ ¼ ð1=2Þð∂uα=∂xβ þ ∂uβ=∂xαÞ as a secondary OP

in which uαðxÞ is the displacement field due to long-
wavelength acoustic phonons (α; β ¼ 1; 2; 3). PαðxÞ is
associated with a soft transverse optic (TO) mode, the
condensation of which leads to the FE transition. We
propose a Ginzburg-Landau Hamiltonian that is a sum
of three terms: for the polarization Hpol, the elastic modes
Helastic, and the flexoelectric coupling Hflexo [3],

H ¼ Hpol þHelastic þHflexo;

where
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1
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Here, Uαβðx; x0Þ ¼ rδαβδðx − x0Þ þ Fαβðx; x0Þ is the bare
propagator of the optic phonons, and Fαβðx; x0Þ is the
dipole tensor with Fourier transform FαβðqÞ ¼ cq2δαβ þ
g0ðqαqβ=q2Þ − h0qαqβ [36]. Cαβγδ is the elastic constant
tensor, fαβγλ is the flexocoupling tensor, and r ¼ r0ðT − T0Þ
where T0 is the mean-field transition temperature to a
homogeneous FE state at fαβγλ ¼ 0.
In the absence of flexoelectric coupling and nonlinearities

(u ¼ 0), the phonon excitations of H are well known: there
are two doubly-fold degenerate TO and TA modes with
(squared) frequencies ω2

TOðqÞ ¼ rþ cq2 and ω2
TAðqÞ ¼

ðℏ2Cs=ρÞq2, respectively, and two singly degenerate longi-
tudinal optic (LO) and acoustic modes with (squared)
frequencies ω2

LOðqÞ ¼ rþ g0 þ ðcþ h0Þq2 and ω2
LAðqÞ ¼

fℏ2½Cv þ ð4=3ÞCs�=ρgq2, respectively. Cv and Cs are the
bulk and shear elastic moduli, respectively, and ρ is the
density of the solid.
We focus on the hybrid transverse modes only, as the

level repulsion is significantly weaker in the longitudinal
branches due to the large depolarizing fields of FEs, which
gap the LO excitations. Moreover, flexoelectricity does not
mix the transverse and longitudinal excitations in isotropic
media, as shown in the Supplemental Material, Sec. 1 [37].
We now discuss our results. Figure 1(a) shows sche-

matics of the phase boundary (PB) computed from the
condensation of the bare modes (u ¼ 0) in the parent phase
(see the Supplemental Material, Sec. 1) [37]. For small
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shears of the flexocoupling tensor (fs < fcr ¼
ffiffiffiffiffiffiffiffi
cCs

p
), the

soft zone-center TO mode condenses at a transition temper-
ature which is independent of fs and equal to T0, thus
leading to a FE transition. For large flexoelectric shears
(fs > fcr), a soft minimum develops at a nonzero wave
vector qmod of the TA branch, which upon condensation at a
temperature Tmod > T0, would lead to the modulated phase
with coupled strain and polarization OPs that are periodic
with a wave vector qmod [32]. The zone-center TO mode re-
mains gapped with energy squared τ0mod ≡ r0ðTmod − T0Þ.
At fs ¼ fcr, qmod ¼ 0 and both the TO and TA modes
condense Tmod ¼ T0.
We now assess the stability of the bare PB. Near above

T0 and Tmod and in the classical limit, the local correlation
functions of polarization are approximately given as
follows, hP2i0 ∝ 1 − bðT − T0Þ1=2 for fs < fcr, hP2i0 ∝
ðT − T0Þ−1=4 for fs ¼ fcr hP2i0 ∝ ðT − TmodÞ−1=2 for
fs > fcr, where h…i0 denotes thermal average at the
Gaussian level and b is a constant (see the Supplemental
Material, Sec. 2) [37]. The PB is thus strongly modified by
the inclusion of fluctuations: while the FE transition
prevails at T0, the long-range modulated phase change is
unstable, except at absolute zero where hP2i0 ¼ 0.
We now consider nonlinearities (u > 0) in the SCPA (see

the Supplemental Material, Sec. 3) [37]. We first discuss the
impact of thermal fluctuations alone and then introduce
quantum effects. Figure 1(b) shows the purely classical PB.
For fs < fcr, the coupling to finite-momentum elastic
fluctuations suppresses the FE transition temperature and
leads to a thermal regime where the square of the soft zone-
center TO frequency τ (or equivalently the inverse dielectric
constant) separates from the CW law behavior, as shown in
Fig. 1(d). For fs > fcr, the bare PB turns into a crossover.

This is illustrated best by the SCPA dispersions shown in
Fig. 1(d). As mentioned above, the bare coupled acoustic
mode softens to zero at a nonzero momentum qmod.
However, in an isotropic theory such as ours, only the
modulus of qmod is determined but not the direction. The
phase space for fluctuations in the direction of qmod lies on
the surface of a sphere of one dimension less than the
physical dimension. This all but guarantees that thermal
fluctuations at any finite temperature will disorder the
direction, so there will be no long-range stripe order. This is
very analogous to fluctuating laminar or nematic soft
matter systems [35]. Consequently, the harmonic transition
in Fig. 1(a) becomes a crossover in Fig. 1(b), and the
acoustic excitations in the vicinity of qmod acquire a gap, as
seen in Fig. 1(e). The polarization correlations of the melted
phase are quasisinusoidal functions attenuated by an
exponentially decaying envelope with a correlation length
ξ ∝ ðτ − τ0modÞ−1=4 much longer than the period of the
modulation, i.e.,

hPðxÞ · Pð0Þi ∼ e−x=ð2qmodξ
2Þ sin ðqmodxÞ=ðqmodxÞ ;ð1Þ

where qmodξ ≫ 1, x ¼ jxj and qmod ¼ jqmodj (see the
Supplemental Material, Sec. 3) [37]. This is schematically
shown in Fig. 1(f). Upon cooling, ξ would grow as τ
approaches τ0mod [Fig. 1(d)] and diverge at absolute zero,
thus restoring the long-range stripe order, as shown in
Fig. 1(b).
We now assess the effects of quantum polarization

fluctuations. In our model, the nonlinearity of the theory
is controlled by the quartic coefficient u, as shown in
Fig. 2. For fs ¼ 0, the FE transition temperature drops
approximately linearly in u, vanishing at a quantum critical

(a) (b) (c)

(d) (e) (f)

FIG. 1. Phase boundaries in the (a) harmonic approximation and in the self-consistent phonon approximation (SCPA) (b) ignoring and
(c) including quantum fluctuations of polarization. (d) SCPA schematics of the temperature dependence of the zone-center hybrid TO
mode and the (e) hybrid TA and TO phonon dispersions in the disordered phase. (f) Schematic correlation function of polarization in the
lamellarlike liquid with correlation length ξ [see Eq. (1)]. QPE ¼ quantum paraelectric.
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point. For 0 < fs < fcr, the critical nonlinearity is reduced,
and there is a more substantial parameter regime where
quantum fluctuations alone destroy the transition and lead
to the standard QPE phase, as it is shown in Fig. 1(c). This
is consistent with the much larger phase space for orienta-
tional fluctuations when the long-range modulated order
would be at finite q.
For fs > fcr, the zero-point fluctuations keep the energy

gap at qmod open even at absolute zero, thus destabilizing
the classical T ¼ 0 K transition shown in Fig. 1(b). In
addition, the temperature at which the quantum fluctuations
become relevant marks another crossover in the spectrum,
where the correlation length will saturate. This occurs when
kBT is comparable to the energy of the excitations around
qmod, as shown in Fig. 1(e). So, for fs > fcr we predict that
there will be two crossovers as T is lowered, and no long-
range stripe order, as shown in Fig. 1(c). When zero-point
quantum fluctuations are included, the only ordered
phase that we find is ferroelectricity. But outside the
envelope shown in Fig. 2(a) and for fs > fcr, we expect
the lamellarlike fluctuations to have very long-range
correlation.
We now compare to STO and KTO. Table S1 in the

Supplemental Material, Sec. 4, gives the values for the
model parameters, which for the most part were taken from
the literature while others were obtained from experimental
data, e.g., fs was fitted to the reported TA anomalies
(0.025 rlu for STO [27], and 0.1 rlu for KTO [7]). For both
materials, we find agreement between the calculated and
measured temperature dependence of the TO frequency, as
shown in Figs. 3(a) and 3(b). We note the apparent kink in
the calculated frequencies is a consequence of the small
values of u in our parametrization. As shown in the
Supplemental Material, Sec. 3 [37], τ is a smooth function
of T at all temperatures. Figures 3(c) and 3(d) show the
calculated and observed phonon dispersion curves. While
our model and parametrization overestimate the repulsion
between the TA and TO branches, it generates a minimum
at a finite q in the hybrid acoustic dispersion while
preventing symmetry breaking down to the lowest temper-
atures, as observed in experiments [7,27]. We stress that no

such behavior occurs for fs ≤ fcr, nor could we obtain a
physically reasonable parametrization in this regime (see
the Supplemental Material, Sec. 4) [37]. We attribute the
quantitative discrepancies to ignoring crystal anisotropy
(e.g., low temperature STO is tetragonal while KTO is
cubic), broadening, nonzero lifetimes, electrostriction,
and coupling to other lattice modes (e.g., rotations of
the TiO6 octahedra). Our fits place both materials in the
liquid phase of Fig. 1(c) (fs=fcr ¼ 1.17 for STO and
fs=fcr ¼ 1.12 for KTO). Of course, these values should
be taken as rough estimates, as our simplified model,
approximate solution, and currently available experimen-
tal data prevent us from determining fs precisely.
Nonetheless, they show that both materials are near a
modulated instability.
This point connects to a long debate about the nature of

the FE phase transition as “displacive” or “order-disorder”
[50,51]. Polar nanodomains are clearly seen at room
temperature in strained films of STO, though their presence
has been attributed to long-range Coulomb forces rather
than strain [52]. Nuclear magnetic resonance (NMR) is a
technique that is sensitive to local charge disproportionation
and electric field gradients, and was useful in identifying
charge-density waves in transition metal dichalchogenides,
evenwhen not fully ordered [53,54]. NMRmeasurements on
STO [55] have been interpreted in terms of dynamic
fluctuations of the Ti ion into off-center sites coupled in a
biasedway to elongations of the unit cell; however the length
scale of this correlation could not be determined, and the
measurements did not go below 25 K. Ab initio calculations
of STO [56] concluded that quantum lattice fluctuations are
necessary to stabilize the PE phase—but spatially modulated
phases were not considered in that work. Modulated phases
could also be in principle seen in ab initio calculations, albeit
using very large supercells. In that context, recent calcu-
lations [57,58] predict that STO and cubic BaTiO3 should be
polymorphic at T ¼ 0 K, with a disordered arrangement of
off-site Ti distortions. A disordered ground state at absolute
zero violates the third law, and perhaps is associated instead
with not matching the supercell to the natural incommensu-
rate period.

(a) (b) (c)

FIG. 2. (a) Dependence of the ferroelectric transition temperature Tc on the flexoelectric shear coupling constant fs and the quartic
anharmonic coefficient u of the polarization. (b)–(c) Cross-sections of (a) in the Tc − u and Tc − fs planes, respectively. u0 is the value
of u at Tc ¼ 0 K and fs ¼ 0.
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We now discuss our simplifying approximations. We
have ignored crystal anisotropy, in which case the orienta-
tional modes will have a preferred direction. Once the
temperature becomes considerably smaller than the
anisotropy in the spectrum, the phase space volume of
critical fluctuations will be reduced, which may lead to the
stabilization of the incommensurate phase, as with quartz
[59] (though nonlinearities could also lock in the modu-
lation to a commensurate wave vector, as with PbZrO3

[60]). Compositional disorder will also break the Oð3Þ
symmetry and should be expected to lead to a glassy phase
where orientational fluctuations are frozen. This is a
familiar situation in charge-density-wave systems, where
impurities and disorder pin its OP and generate a strongly
nonlinear response to applied electric fields [61,62]. Our
finding that STO should be near a modulated instability is
in stark contrast with ab initio calculations [63], which
suggest that fs=fcr ≃ 0.7 at most. However, we are using a
phenomenological continuum theory where the parameters
are determined from experiment (but nonetheless can make
explicit predictions because the number of parameters is
small). We cannot assert that the parameters can be directly
calculated from harmonic microscopic theory because we
have already coarse grained to a scale of many unit cells, so
that, for example, twin boundaries and defect structures
have been integrated over [64]. The difference between
parameters obtained from macroscopic fits and those
determined by microscopic calculations hints at some
mesoscale physics to be unearthed.

Our self-consistent solution of the model implicitly
assumes that in the melted phases, the amplitudes of
fluctuations are small. Beyond this regime, electrostrictive
couplings which are effectively quartic in the primary OP
will be important. These would not only enhance the
anisotropy at least at very long length scales, but also
effectively soften the sound velocity and hence enhance the
flexoelectric effect. In a strong coupling theory, the model
would become one of quasiperiodic FE domains separated
by fluctuating, sharp domain walls. In a better theory, the
modes would acquire a linewidth, as seen in experiment.
This is an interesting matter for future exploration, but we
expect that the qualitative features of our theory should
survive.
We conclude that a strong enough flexoelectric coupling

and purely thermal fluctuations of polarization can mimic
quantum paraelectricity by saturating the low-temperature
dielectric constant. In an isotropic system, the divergent
orientational fluctuations suppress ordering even at low
temperatures, so that one should expect a series of cross-
overs upon cooling: from a high-temperature CW law to a
classical fluctuating lamellar phase to a quantum lamellar
phase, and finally to a striped phase when crystal
anisotropy becomes important. Such a sequence of cross-
overs is consistent with those identified from dielectric
measurements in STO [23,24], and labeled as classic CW
paraelectric, “quantum critical,” “quantum paraelectric,”
and “quantum polar-acoustic.” The standard theory of
quantum ferroelectric criticality [22] does not predict the

(a) (b)

(c) (d)

FIG. 3. (a),(b) Calculated temperature dependence of the zone center hybrid TO mode compared to neutron [46–48] and hyper-Raman
[49] scattering experiments. (c),(d) Calculated dispersion of the hybrid TA and TO phonons (solid lines) compared to neutron scattering
experiments (circles and diamonds) [27,48]. Dashed line in (c) is the bare linear TA dispersion for fs ¼ 0 with a sound velocity of
4800 m=s (as shown in Ref. [27] for comparison). Model parameters are given in Table S1 of the Supplemental Material, Sec. 4 [37].
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existence of the lowest crossover. Our model is consistent
with the experiments of Fauqué et al. [27] showing a 40%
softening of the TA mode at the longest wavelength
measured, down to 20 K, with no resolvable signal below
that temperature. Coak et al. [23] ventured that a loss peak
seen in their data might be ascribed to quantum fluctuations
of domain walls. The quantum regime of our theory does
not require tunneling of heavy atoms through potential
barriers, but is simply zero-point physics in a quasihar-
monic well. As a further test, measurements of the
dynamical structure factor Sðq;ωÞ would detect fluctua-
tions associated with the melting of the modulated phase.
Sðq;ωÞ has been measured by neutrons and x rays in STO
[29,31,47] and KTO [7,48], but more data are needed to
clearly resolve any dips along their acoustic branches.
Finally, we note our model could be adapted to study oxide
membranes [65] and could be relevant to superconductivity
in doped STO [66].
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