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We show that the simultaneous modulation of the propagation constant and of the gain/loss coefficient
along the graded index multimode fibers results in unidirectional coupling among the modes, which leads
to either the enhancement or the reduction of the excitation of higher order transverse modes, depending on
the modulation parameters. In the latter case, effective mode cleaning is predicted, ideally resulting in
single-mode spatially coherent output. The effect is semi-analytically predicted on a simplified Gaussian
beam approximation and numerically proven by solving the wave propagation equation introducing the
non-Hermitian modulated potential.
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Introduction.—Multimode fibers (MMFs) are currently
boosting renewed attention, yet generally showing a
random (speckle) output due to the different propagation
constants of the fiber modes that introduce phase shifts in
propagation along the fiber. Such randomization occurs
even for graded index (GRIN) MMFs with parabolic index
profile having equidistant propagation constants which
should lead to periodic self-imaging. However, the smallest
imperfections break the mode equidistance, and generally a
random output is observed.
Attempts to overcome such dephasing and randomiza-

tion problems have been reported, for instance, by adap-
tively adjusting of the phases of the modes of the input
beam [1], among other means [2–4]. Recently a decrease of
randomness effect, the beam self-cleaning, was proposed
in Refs. [5–7]. We note, however, that the self-cleaning
generally redistributes the energy among the modes pre-
serving the integral quantities of the beam, as second order
momenta in the direct and wave number space. Therefore, it
does not lead to a direct reduction of the beam quality
parameter, M2.
Generally, the reduction of turbulence in optical fibers

cannot be achieved by conventional means such as the
modulation of refraction index, dispersion, or nonlinearity
along the fiber that may indeed induce mode coupling [8,9],
or to the parametric (Faraday) modulational instabilities
[10–12]. However, all these effects generally broaden the
angular spectra, but do not lead to a reduction of the
turbulence, neither to mode cleaning.
The situation may be substantially different using a

periodic nonHermitian modulation by simultaneously
modulating the refractive index and the gain/loss coeffi-
cient along the fiber. The field of open dissipative non-
Hermitian physics gained its popularity from the recently
proposed parity-time (PT) symmetric systems that

represent a small submanifold of the periodic non-
Hermitian systems, where the phase shift between real
and imaginary parts of the potential is restricted to
particular values, namely, π=2 or 3π=2 (for anti-PT sym-
metry) [13–15]. Also, the application of dynamical non-
Hermitian potentials to control optical turbulence has been
proposed [16–18].
Here we consider a harmonic non-Hermitian modulation

along a parabolic-index MMF by the simultaneous modu-
lation of the refractive index (propagation constant) and
the gain/loss, see Fig. 1(a). Such modulations may be
induced by doping the fiber core, modulating the fiber core
radius and introducing some absorption, scattering, or
transmission losses [19–27] (see Supplemental Material,
Sec. 4 [28]).
A simple modulation of the refractive index, in the form

VðzÞ ∼ cosðqzÞ ¼ ½expðþiqzÞ þ expð−iqzÞ�=2, causes a
symmetric mode coupling, as can be trivially inferred by
the�q exponents, which couple modes kwith modes k� q
in a symmetric way, see the blue arrows in Fig. 1(c). The
addition of gain/loss modulations with a spatial shift
to the refractive index modulation, for instance, as
VðzÞ ∼ cosðqzÞ þ i sinðqzÞ ¼ expðþiqzÞ, unidirectionally
couples mode k only with mode kþ q, as represented by
the green arrows. The unidirectional character of such
coupling, and therefore the corresponding energy flow,
may be either directed toward higher or lower index modes,
depending on the shift between both modulations.
Eventually, for particular phase shifts, the asymmetric
coupling is expected to suppress the higher order modes,
resulting in a lowest-mode coherent output. This mode-
cleaning mechanism is the basic aim of the present
letter.
Here, we substantize this idea: we show that the

longitudinal non-Hermitian modulation of the potential
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indeed results in a tunable distribution of modes at the
output. We first derive and explore a simplified model
based on a Gaussian beam approximation, which predicts
the effect, uncovering analytic insights, and provides
estimations of the parameters. The proposal is then proven
by direct numerical integration of the wave propagation
equation along the fiber. On both models we analyze the
modal energy distributions and, as the main result, we
demonstrate a substantial condensation of radiation into the
lowest order mode; resulting in a non-Hermitian mode
cleaning.
Full model.—Light propagation in parabolic MMFs may

be described by a linear Schrödinger equation as

∂A
∂z

¼ i
1

2
∇2A − i

Δ
r2c
r2Aþ iVðr; zÞA; ð1Þ

where Aðx; y; zÞ is the complex field amplitude envelope
in the paraxial approximation. The space coordinates are
normalized to k−10 ¼ λ=2π; being k0 ¼ ω0nco=c the light
wave number, ∇2 ¼ ∂

2=∂x2 þ ∂
2=∂y2 the Laplacian in

transverse space, rc the core radius, Δ ¼ ðn2co −
n2clÞ=ð2n2coÞ the relative index difference, and nco (ncl)
the refractive index of the fiber core (cladding), respec-
tively. We neglect frequency dispersion effects (as either
continuous wave or sufficiently long pulses are consid-
ered), nonlinear effects and Raman scattering.
In the absence of the potential, Vðr; zÞ ¼ 0, the fields

propagating in MMF exhibit a periodic self-imaging, due to
equidistant mode propagation constant. The mode spacing

(Δkz) and the self-imaging period (ζ) are, respectively,
given by:

Δkz ¼
ffiffiffiffiffiffi
2Δ

p

rc
; ζ ¼ 2π

Δkz
¼ πrcffiffiffiffiffiffi

2Δ
p ð2Þ

as follows, from Eq. (1). In the presence of a periodic
potential with a periodicity close to multiples of the self-
imaging period, the modes become resonantly coupled.
Note that a transversally uniform potential modulation does
not cause any effective coupling between transverse modes,
and can be eliminated from Eq. (1) renormalizing the
amplitude and phase of the propagating beam. We therefore
assume a periodic modulation in z with a complex trans-
verse profile in r: VRe=Imðr; zÞ ¼ VRe=ImðzÞe−r2=r20 . The
fundamental concept behind this Letter is to affect the
mode distribution by breaking the symmetric mode cou-
pling which may be achieved by the introduction of a
longitudinal non-Hermitian modulation in the fiber, to
couple modes in a unidirectional way. We assume a
complex harmonic potential in the general form:

Vðr; zÞ ¼ ½m1 cosðqzÞ þ im2 cosðqzþ ϕÞ�e−r2=r20 ð3Þ

where m1 and m2 are the amplitudes of the refractive index
and gain/loss modulations respectively, q is the modulation
wavenumber, ϕ is the spatial shift between these two
modulations, and r0 is the radius of the spatial profile.
Gaussian Ansatz.—As a simple approximation of the

system dynamics near the lowest transverse mode, i.e. the
lowest order Laguerre-Gauss mode LG00, we assume an
oscillatory Gaussian ansatz of the form

Aðr; zÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðzÞ

p
e−βðzÞr2 ; ð4Þ

with real-valued beam amplitude ρðzÞ, and complex-valued
beam waist βðzÞ ¼ βrðzÞ þ iβiðzÞ. The evolution of these
variables as derived from Eq. (1) within the parabolic
approximation reads

dβr
dz

¼ 4βiβr −m2

r20
cosðqzþ ϕÞ; ð5aÞ

dβi
dz

¼ 2ðβ2i − β2rÞ þ bþm1

r20
cosðqzÞ; ð5bÞ

dρ
dz

¼ 4βiρ − 2m2 cosðqzþ ϕÞρ; ð5cÞ

where b ¼ Δ=r2c.
The stationary solution of Eqs. (5), in absence of

modulation, m1 ¼ m2 ¼ 0, corresponds to the excitation
of the single lowest mode of the fiber (βr0 ¼

ffiffiffiffiffiffiffiffi
b=2

p
, βi0 ¼ 0

and ρ0). This regime can be achieved by a particular spatial
shape of the injection into the fiber (Gaussian beam

FIG. 1. (a) Periodic modulation of the core radius (Hermitian
part) and gain profile (non-Hermitian part). The spatial displace-
ment between the two modulations is indicated by a phase shift ϕ.
(b) GRIN fiber cross section with a parabolic-index profile.
(c) Spatial profile and cross section of the first equidistant
eigenmodes. (d) 3D mode profiles.
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matching the width of the lowest mode). On the contrary, a
mismatched injection (βr0 ≠

ffiffiffiffiffiffiffiffi
b=2

p
, βi0 ≠ 0) results in

periodic solutions, with the resonance wavenumber
q ¼ qres ¼ 2π=ζ ¼ ð2 ffiffiffiffiffiffi

2Δ
p Þ=rc, as it follows from

Eq. (2), corresponding to a multimode excitation of the
autonomous system. Periodic solutions with low amplitude
harmonic oscillations can be found by linearizing the
Eqs. (5) around its stationary solution. Such oscillations
correspond to the excitation of the fundamental Gaussian
mode together with higher order modes of low amplitude.
The larger the modulation amplitude of the periodic solution,
the stronger the excitation of higher modes. Nonharmonic
periodic solutions of Eq. (5) correspond to a set of higher
order modes.
The non-autonomous case, m1; m2 ≠ 0, is more involved

as it introduces the driving frequency,q, and additional
stability conditions for the periodic solutions. In this case,
we may rewrite Eqs. (5) in the more compact vectorial form:

df⃗
dz

¼ cNL f⃗þp⃗eiqz; ð6Þ

where cNL is the nonlinear evolution operator of the autono-
mous part of (5) acting on the state vector f⃗ ¼ ðβr; βi; ρÞ, and
p⃗ ¼ ðp1; p2; p3Þ is the vector of the driving amplitudes:

p1 ¼ −m2

r20
eiϕ; p2 ¼

m1

r20
and p3 ¼ −2m2eiϕ: ð7Þ

The solution of the driven system can be expressed as the
stationary solution of the autonomous systemwith additional
perturbations from the driving:

f⃗ðzÞ ¼ f0
!þ Δf

�!
eiqz þ c:c:; ð8Þ

where f0
!¼ ð ffiffiffiffiffiffiffiffiffi

b=2;
p

0; ρ0Þ is the stationary state vector, and

Δf
�!

is the vector of driven oscillation amplitudes.
Linearization of Eq. (6) with respect to small amplitude

driven oscillations leads to:

L̂ � Δf
�! ¼ p⃗; ð9Þ

where L̂ is the Jacobian of autonomous system of Eqs. (5).
The solution of Eq. (9) is obtained by inverting the

Jacobian: Δf
�! ¼ dL−1 � p⃗, and reads explicitly:

Δf
�! ¼

�
iqp1 þ qresp2

q2res − q2
;
iqp2 − qresp1

q2res − q2
;

iq2resp1ρ0
qβr0ðq2res − q2Þ

þ qresρ0p2

βr0ðq2res − q2Þ −
ip3ρ0
q

�
; ð10Þ

Where qres ¼ 8dβr0.

The final expression of the driven oscillations of the
beam waist parameter reads:

Δβr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2m2

2 þ qresm1½qresm1 þ 2m2q sinðϕÞ�
p

r20ðq2res − q2Þ ; ð11Þ

which evidences the resonant character of the solution.
Results.—We numerically integrate the system of

Eqs. (5) to analyze the transient dynamics, and to check
the stability of the solutions obtained by the multiscale
analysis, as above described.
After normalization, Eq. (1) contains only one free

parameter, Δ=r2c, for the unmodulated fiber, however the
modulation involves five relevant parameters: m1, m2, ϕ, q
and r0. For convenience, we introduce m and θ as
m1 ¼ m cosðθÞ, m2 ¼ m sinðθÞ and numerically explore
the parameter space ðϕ; θÞ for a small constant value of m.
We first analyze the modulation frequency below the

resonance frequency (q < qres), mapped in Fig. 2(a). The
oscillations amplitude is maximum or minimum for
ϕ ¼ π=2 or ϕ ¼ 3π=2. For a particular ratio between the
quadratures m1=m2 (i.e. for particular θ), the oscillations
can vanish to zero. This occurs at the shift ϕ ¼ 3π=2.
Actually, Eq. (11) interprets the situation, which tells us

II)

IV)

I)

VI)

III)

V)

I II III VIIVV

snoitallics
Ots aF

(b)

(a)

(c)

FIG. 2. (a) Map of the normalized amplitude of the beam width
oscillations Δβr=βr0, in ðϕ; θÞ parameter space. (b) Cross section
along the white dashed line; the solid line corresponds to the
simplified model, Eqs. (5), superimposed to Eq. (11). The six
plots on the right-hand side show the evolution of the beam in the
phase space ðβr=βr0; βi=βr0; ρ=ρ0Þ, for the different phase shifts
between the two modulations, ϕ, labeled on map (a) with roman
numerals, for q ¼ 0.95qres, m ¼ 8 × 10−5. (c) Dependency of
the fast oscillation on modulation frequency q for ϕ ¼ 0, π=2, π,
3π=2; the solid lines correspond to the simplified model, Eqs. (5);
lines ϕ ¼ 0 and ϕ ¼ π are superposed. The dots in (a),(b), and
(c) correspond to the full model, Eq. (1).
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that Δβr is minimum for sinðϕÞ ¼ −1 and is maximum for
sinðϕÞ ¼ 1. So we can write in general,���� qm2 − qresm1

r20ðq2res − q2Þ
���� < Δβr <

���� qm2 þ qresm1

r20ðq2res − q2Þ
����: ð12Þ

Figure 2(b) depicts the variation of the oscillation
amplitude with ϕ for θ ¼ π=4, corresponding to the white
dashed line on Fig. 2(a). The blue circular dots correspond
to the numerical values, calculated from the full model
described by Eq. (1), showing a good agreement between
both models.
The six plots on the right-hand side of Fig. 2 depict the

evolution of the system, Eqs. (5), in its phase-space, and
correspond to six different non-Hermitian potentials, lead-
ing to different regimes.
We also explore the dependency of the driven oscillation

amplitude, as a function of the modulation frequency of the
potential. We observe that the oscillation amplitude
increases as the modulation frequency approaches the
resonance frequency (qres) for the cases: ϕ ¼ 0, π=2,
and π, see Fig. 2(c). The effect is maximal at ϕ ¼ π=2,
is zero for ϕ ¼ 3π=2 and is same for ϕ ¼ 0 and π. Note the
effect is symmetric as the modulation frequency passes the
resonance frequency.
Interestingly, on top of the driven oscillations with the

amplitude depending on the position in the phase-space of
non-Hermitian driving force, the trajectory slowly drifts in
the phase-space. The arrows in the six plots on the right-
hand side in Fig. 2 show this behaviour. This means that the
average photon number increases or decreases in propa-
gation along the fiber. Figure 3(a) shows the dependency of
the slow drift on ðθ;ϕÞ space. The sign of the intensity drift
is controlled by the both parameters, ϕ and θ. Form1 ¼ m2

(θ ¼ π=4), the drift has a maximal dependence on ϕ

showing a minimum for ϕ ¼ 0 and a maximum for
ϕ ¼ π, see Fig. 3(a). Figure 3(b) shows the variation of
the slow drift with ϕ for θ ¼ π=4, corresponding to the
white dashed line on the Fig. 3(a). The blue circular dots
correspond to the full model described by Eq. (1), showing
a good agreement between the simplified and full models.
Cases with a negative drift (Fig. 2. I and VI) lead to a stable
cycle in the ðβr; βiÞ plane, while a positive drift (Fig. 2. III
and IV) corresponds to unstable cycles, meaning that the
beam tends to leave the Gaussian profile. Keeping the same
modulation amplitude, this attainment of the limit cycle in
the ðβr; βiÞ plane is faster for ϕ ¼ 0, and requires longer
propagation distances as ϕ goes from 0 to π=2. The
dependency of the slow drift, as a function of the modu-
lation frequency is provided in Fig. 3(c). Near the reso-
nance frequency (qres), we observe an asymptotic behavior
for phases ϕ ¼ 0 and ϕ ¼ π. The intensity drift inverts its
sign as the modulation frequency passes the resonance
frequency and being the effect reversed for ϕ ¼ π from
ϕ ¼ 0. We observe no such effect for the no drift cases for
ϕ ¼ π=2 and ϕ ¼ 3π=2, see Fig. 3(c).
Full numerical integration.—The previous results unveil

the control of the oscillation amplitudes, demonstrating
they can be reduced, leading to a monomode profile, within
the demonstrated range of optimal parameters. Therefore,
predicting the possibility of spatial mode-cleaning of the
nosy beam. Next, we further demonstrate the effect by
numerical integration of the full model of Eq. (1). A small
homogeneous gain term, namely þγ0A, is added on the
right-hand side of Eq. (1) to compensate for intensity
losses, conserving the total number of photons. Speaking in
experimental terms—this may be achieved by applying a
slightly disbalanced gain modulation. An example of the
integration, showing the evolution of a noisy beam along
the MMF is displayed in Fig. 4. The highly multimodal
input distribution of the beam is gradually “attracted”
towards a bell-shaped transverse profile, as propagating
along the fiber, see Fig. 4(a). The insets of Fig. 4(b) provide
the two-dimensional transverse distribution of the beam at
different propagation lengths. Figure 4(b) depicts the relative
participation ðOIplÞ of some Laguerre-Gauss modes, LGpl,
with lowmode orderN (N ¼ 2pþ jlj þ 1), in the total field
along the fiber. The participation of the lowest order mode
(LG00) increases tending to 1 as the beam propagates along
the fiber, while the participation of higher order modes
decreases. Further to characterize the beam cleaning, we
calculate the evolution of the beam width in real space,
angular width in Fourier space (divergence), and the beam
quality factor M2. Figures 4(c)–4(e) show a significant
reduction of the beam width in both direct and wavenumber
space, as the beam quality factor M2 gradually approaches
unity, acquiring an almost Gaussian profile. The mode
generation either towards lower or higher order modes is
confirmed by considering single mode inputs. (see
Supplemental Material, Sec. 2 [28]). Finally, the robustness

D

D
 

(a)

(b)

(c)

FIG. 3. (a) Map of the normalized slow drift of the intensity,
D ¼ ðζdρ=dzÞ=ρ0, in ðϕ; θÞ parameter space. (b) Cross section of
the map (a) along the white dashed line. (c) Dependency of the
slow drift on the modulation frequency q for ϕ ¼ 0, π=2, π, 3π=2;
lines ϕ ¼ π=2 and ϕ ¼ 3π=2 are superposed. In (b) and (c) the
solid lines and dots correspond to the simplified model and
full model.
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of this mechanism is assessed by considering deformed
parabolic potentials, where themodes are not equidistant and
we see that the mode-cleaning mechanism still remains
effective (see Supplemental Material, Sec. 3 [28]).
Conclusions.—In conclusion, we propose and demon-

strate a robust mechanism for an effective spatial mode-
cleaning in GRIN MMFs. The proposal is based on the
asymmetric mode coupling induced by the introduction of a
non-Hermitian modulation of propagation constant and of
the gain/loss coefficient along. The fiber may be modeled
by a (2þ 1) D Schrödinger equation with a non-Hermitian
potential, where the control over the coupling among
transverse modes is mainly governed by the spatial shift
between the real and imaginary parts of the complex
potential. The effect is first semi-analytically predicted
on a simplified Gaussian beam approximation. This model
provides a physical insight on the proposal, since it allows
estimating the different regimes of unidirectional mode
coupling either leading to spatial mode-cleaning or to

higher mode excitation. The results of the integration on
the full model, provides a clear numerical proof of the
proposal showing a significant mode-cleaning, irrespec-
tively of the initial intensity. The demonstrated scheme
could be experimentally realized within the current nano-
fabrication technologies, by modulating the core radius of
an amplifying fiber of length on the order of meters with
distributed losses (assuming realistic parameters such as:
core radius rc ¼ 26 μm, core refractive index nco ¼ 1.47,
cladding refractive index ncl ¼ 1.457, the effective propa-
gation length to observe the mode-cleaning is 1.2 m).
Finally, we note that the case of coupling towards high
order modes may enhance pulsing and eventually help in
super-continuum generation.
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