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We study Fermi-Hubbard models with kinetically constrained dynamics that conserves both total
particle number and total center of mass, a situation that arises when interacting fermions are placed in
strongly tilted optical lattices. Through a combination of analytics and numerics, we show how the kinetic
constraints stabilize an exotic non-Fermi liquid phase described by fermions coupled to a gapless bosonic
field, which in several respects mimics a dynamical gauge field. This offers a novel route towards the study
of non-Fermi liquid phases in the precision environments afforded by ultracold atom platforms.
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Introduction.—A major ongoing program in quantum
many body physics is the characterization of phases of
matter in which the quasiparticle paradigm breaks down.
The most striking examples where this occurs are non-
Fermi liquids (NFLs), believed to describe the observed
strange metal behavior in a number of quantum materials.
The low energy excitations in NFLs typically admit no
quasiparticlelike description, with their ground states
instead being more aptly thought of as a strongly interact-
ing quantum soup. Our understanding of such states of
matter, as well as the conditions in which they may be
expected to occur, is very much in its infancy. To this end, it
is extremely valuable to have examples of simple micro-
scopic models in which NFLs can be shown to arise,
especially so when these models are amenable to experi-
mental realization.
In this Letter we propose just such a model, by

demonstrating the emergence of a NFL in a kinetically
constrained 2D Fermi-Hubbard model. This model is
interesting in its own right, but our interest derives mainly
from the fact that it finds a natural realization in strongly
tilted optical lattices, a setup which has received recent
experimental attention as a platform for studying ergodicity
breaking and anomalous diffusion [1–3]. The key physics
afforded by the strong tilt is that it provides a way of
obtaining dynamics that conserves both total particle
number and total dipole moment (for us “dipole moment”
is synonymous with “center of mass”), with the latter
conserved over a prethermal timescale which as we will see
can be made extremely long.
In different settings, the kinetic constraints provided by

dipole conservation are well known to arrest thermalization
and produce a variety of interesting dynamical phenomena
[4–8]. More recently, it has been realized that dipole
conservation also has profound consequences for the nature
of quantum ground states [9–15] and the patterns of
symmetry breaking that occur therein [16,17].

Here, we show that when these constraints arise in the
context of Fermi-Hubbard models, they produce an exotic
NFL state in an experimentally accessible region of para-
meter space. The low energy theory of this NFL is closely
analogous to a famous model in condensed matter physics,
namely, that of a Fermi surface coupled to a dynamical U(1)
gauge field [18–22]. We leverage this analogy to derive a
number of striking features of the NFL state, chief among
these being the absence of quasiparticles despite the pres-
ence of a sharp Fermi surface, and a vanishing conductivity
despite the presence of a nonzero compressibility.
Fermions in strongly tilted optical lattices.—We begin

by considering a model of spinless fermions on a tilted 2d
square optical lattice, interacting through repulsive nearest-
neighbor interactions (see Fig. 1). Spinful fermions are
similar, and will be briefly discussed later. Writing the
fermion annihilation operators as fr and letting nr ≡ f†rfr,
we consider the microscopic Hamiltonian H ¼ HFH þHΔ,
with the lattice tilt captured by HΔ ¼ P

r;a Δaranr, and the
Fermi-Hubbard part given by

HFH ¼
X
r;a

½−taðf†rfrþa þ H:c:Þ þ V0;anrnrþa�; ð1Þ

where a ¼ x̂; ŷ label the unit vectors of the square lattice.
The bare nearest-neighbor repulsion V0;a can be engineered
by employing atoms with strong dipolar interactions
[23,24] or by using Rydberg dressing [25–27]. To simplify
the notation we will let both ta=Δa and V0 ≡ V0;a be
independent of a, with Δx=Δy ¼ tx=ty unconstrained.
We will be interested in the large-tilt regime ta=Δa,

V0=Δa ≪ 1, with ta=V0 arbitrary. Here it is helpful to pass
to a rotating frame which eliminates HΔ via the time-
dependent gauge transformation eitHΔ . In this frame, the
Hamiltonian is

HrotðtÞ ¼
X
r;a

½−taðe−iΔatf†rfrþa þ H:c:Þ þ V0nrnrþa�: ð2Þ
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We then perform a standard high-frequency expansion
[2,28–32] to perturbatively remove the quickly oscillating
phases in the first term. The time-independent part of the
resulting expansion conserves the total dipole momentsP

r r
anr because dipoles—being charge neutral objects—

can hop freely without picking up any e−iΔat phases. The
result of this expansion [33] is the static Hamiltonian

HDFH ¼−
X
r;a

td½da†r ðdarþ2aþdarþaþāþdarþa−āþH:c:Þ�

þ
X
r;a

nr½VnrþaþV 0nrþ2aþV 00ðnrþaþāþnrþa−āÞ�;

ð3Þ

where we have defined the dipole operators dar ≡ f†rfrþa
and let ā be the spatial coordinate opposite to a. As
expected, HDFH is invariant under the dipole symmetry
fr ↦ freiα·r, dar ↦ dareiα

a
for any vector α. The coupling

constants in HDFH are given by

td¼V0t2; V¼V0ð1−6t2Þ; V 0 ¼2td; V 00 ¼4td; ð4Þ

with the dimensionless hopping strength t≡ ta=Δa. We
will refer to the model (3) as the dipolar Fermi-Hubbard
model (DFHM).
As a time-independent theory, the DFHM only captures

the system’s dynamics over a (long) prethermal timescale.
For (yet longer) times the fermions can exchange energy

betweenHFH andHΔ, and a system initially prepared in the
ground state ofHDFH will begin to heat up. Wewill see later
that this is actually not an issue, as the relevant timescale
can (in principle) be made arbitrarily long. Before explain-
ing this, however, we first turn our attention to under-
standing the low-energy physics of HDFH.
Theory of the dipolar Fermi-Hubbard model.—In the

DFHM, dipole conservation fixes the center of mass of the
fermions, which cannot change under time evolution. This
precludes a net flow of particles in any many-body ground
state, implying a particle number conductivity which is
strictly zero at all frequencies and guaranteeing that HDFH
always describes an insulating state [9]. In clean systems, a
vanishing conductivity almost always comes hand-in-hand
with a vanishing compressibility dn=dμ ¼ 0. We will,
however, see that for a wide range of t the natural ground
state of the DFHM is in fact compressible. In this regime
the system has a sharp Fermi surface but lacks well-defined
Landau quasiparticles, and is therefore an example of
a NFL.
To understand the claims in the previous paragraph, we

start by considering the limit of small t. Here the repulsive
interactions dominate, and various crystalline states may
form in a manner dependent on the fermion density. As t is
increased, the system can lower its energy by letting dipolar
bound states delocalize across the system, by virtue of the
dipole hoppings on the first line of (3). For large enough t
the dipoles will lower their kinetic energy by condensing,
producing a phase where Da ≡ hdai ≠ 0 and spontane-
ously breaking the dipole symmetry. When applied to the
Hamiltonian (3) at half-filling, a mean-field treatment [33]
predicts a condensation transition t ¼ 1=4, a value small
enough that the perturbative analysis leading to HDFH
should remain qualitatively correct.
As also happens in the bosonic version of this model

[9–11], the dipole condensate liberates the motion of
single fermions: since dar displaces a fermion along a,
the expectation value Da ≠ 0 gives fermions a nonzero
kinetic energy in the a direction (intuitively, single fer-
mions may now move by “absorbing” dipoles from the
condensate). Indeed, assuming a rotation-invariant con-
densate and writing Da ≃Deiϕa with D constant (allowed
as amplitude fluctuations are gapped in the condensate), the
first line of (3) becomes the single-fermion hopping term

Hhop ¼ −tdD
X
r;a

ðf†reiϕaðrÞfrþa þ H:c:Þ: ð5Þ

If we freeze out the dynamics of ϕa, Hhop will lead the
fermions to form a Fermi surface, with an area set by their
density as per Luttinger’s theorem. The important question
is then to ask what happens when one accounts for the
dynamics of the ϕa fields. As soon as we introduce these
dynamics, the system loses its ability to respond to uniform
electric fields, and is rendered insulating. Indeed, turning

FIG. 1. Tilted lattice: We consider an extended Hubbard model
in a tilted optical lattice, with single particle hoppings tx;y, nearest
neighbor repulsions Vx;y, and tilts along both directions with
strengths Δx;y. DFHM: In the large tilt limit the system is
described by a dipole-conserving Fermi-Hubbard model, whose
dynamics is such that only dipolar bound states—rather than
individual fermions—are allowed to move. NFL: As the dipole
hopping strength td increases the dipoles condense, with
f†rfrþa ∼ eiϕaðrÞ developing an expectation value, and ϕa effec-
tively playing the role of the spatial components of a dynamical
U(1) gauge field. The condensate liberates the motion of
individual fermions, which form a Fermi surface. As described
in the main text, in this regime fluctuations in ϕa turn the system
into a non-Fermi liquid.
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on a background vector potential Aa in Hhop simply
amounts to replacing ϕa by ϕa þ Aa. We can then com-
pletely eliminate the coupling of the fermions to Aa through
a shift of ϕa (see also [34]). Since ϕa is the Goldstone mode
for the broken dipole symmetry, all other terms in the
effective Hamiltonian can only involve gradients of ϕa, and
thus after the shift, the Hamiltonian can only depend on
gradients of Aa. This then leads to a particle conductivity
σðω;qÞ that vanishes for all ω as q → 0.
To deepen our understanding of this phase, we pass to a

field theory description by writing fr ≃
R
dθeiKFðθÞ·rψθðrÞ,

where KFðθÞ is the Fermi momentum at an angle θ on the
Fermi surface. Standard arguments then lead to the imagi-
nary-time Lagrangian

LDFH ¼
Z

dθψ†
θ

�
∂τ − ivθ ·∇þ ϰ

2
∇2

k þ
X
a

gaðθÞϕa

�
ψθ

þ
X
a

κDð∂τϕaÞ2 þ
X
a;b

Ka;bð∇aϕbÞ2: ð6Þ

In writing the above we have approximated the dispersion
of ψθ to include only the leading terms in the momentum
deviation from KFðθÞ, written the Fermi velocity as vθ, let
ϰ denote the Fermi surface curvature, and taken ∇k as the
derivative along the Fermi surface.
In the important “Yukawa” term gaðθÞϕaψ

†
θψθ, the

coupling function gaðθÞ is strongly constrained by dipole
symmetry, which sends ψθ → eiα·rψθ, ϕa → ϕa þ αa for
any constant vector αa. The requirement that (6) be
invariant then gives the constraint

gaðθÞ ¼ −vaðθÞ: ð7Þ
This implies that ϕa couples to the fermions in exactly the
same way as the spatial part of a U(1) gauge field. This
draws a connection between the DFHM and a Fermi
surface coupled to a dynamical U(1) gauge field, a system
with a long history in condensed matter physics. In both
models the modes that couple to the fermions are vector
fields that are guaranteed to be gapless—by gauge invari-
ance in the gauge field case, and by their origin as
Goldstone modes in the DFHM. Crucially, the coupling
between ϕa and the fermions is not “soft,” remaining
nonzero even at zero momentum (soft couplings are
irrelevant under RG, and fail to induce NFL behavior).
In line with the general framework of Ref. [35], this is made
possible by the fact that the dipole charge and the total
momentum Pb satisfy h½Pr r

anr; Pb�i ¼ iδa;b
P

rhnri ≠ 0,
the nonvanishing of which is necessary to avoid obtaining a
soft coupling.
An important difference compared to the Fermi

surfaceþ gauge field problem is that in the DFHM, there
is no analog of a time component of the gauge field. For
fermions coupled to a dynamical gauge field aμ, the
coupling to a0 renders the theory incompressible: an
external probe potential A0 (the susceptibility to which
the compressibility corresponds) evokes no response, as A0

can be absorbed into a0. Since there is no analog of a0 in
the DFHM this argument does not apply, and indeed it is
well known that a Fermi surface coupled to a gapless boson
is generically compressible [21,36–39]. Remarkably, we
thus manage to obtain a system with both vanishing
conductivity and nonzero compressibility (as also occurs
in the “Bose-Einstein insulator” phase of the dipole-
conserving Bose-Hubbard model [9]).
To demonstrate the NFL nature ofLDFH, we note that it is

essentially the same as the action that arises at the “Hertz-
Millis” theory [40,41] of the quantum critical point
associated with the onset of loop current order in a metal
[34] [but with the crucial restriction (7) coming from dipole
conservation]. Like in that case, fluctuations of ϕa turn the
system into an NFL. Indeed, standard calculations show
that at the Fermi surface, the fermion self energy has the
form ΣfðK; iωÞ ¼ isgnðωÞjωjδ with the exponent δ < 1 (a
variety of theoretical approximations all converge on δ ¼
2=3 [19,21,36,37,42,43], which is also the exponent of the
low-temperature specific heat, C ∼ Tδ). This shows that
there are no sharply defined quasiparticles in this model,
despite the existence of a sharply defined Fermi surface. We
also note that this model has no weak-coupling pairing
instability, due to the strong repulsive interaction between
fermions on antipodal patches mediated by ϕa [44].
Numerics.—We now provide a first step towards testing

the above theoretical predictions by performing DMRG on
small cylinders with the DFHM Hamiltonian (3). We focus
on the case of half-filling so as to compare with predictions
from mean field, which predicts a dipole condensation
transition at t ¼ 1=4. Figure 2 shows the DMRG results for

(a) (b)

FIG. 2. DMRG results for the dipolar Fermi-Hubbard Hamil-
tonian HDFH at half-filling on a cylinder of size ðLx; LyÞ ¼
ð20; 6Þ and at bond dimension χ ¼ 400. (a) the inverse partici-
pation ratio In of the density and the expectation value hdyri ¼
hf†rfrþyi averaged over lattice sites. As judged by In charge
order occurs at small t but melts at t� ≈ 0.275; the plot
of hdyi shows this is also where dipole condensation
occurs. (b) The energy cost to add or remove a fermion,
μ� ≡�EðN � 1Þ ∓ EðNÞ, with EðNÞ the ground state energy
in the sector with total charge N. The charge gap μþ − μ− closes
at the same location where dipole condensation occurs,
suggesting the onset of the NFL.
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a cylinder of modest size ðLx; LyÞ ¼ ð20; 6Þ. For a range of
t near 1=4 we compute the expectation values of the dipole
operators and the inverse participation ratio In ≡
LxLyh

P
i n

2
i i=ð

P
ihniiÞ2 (Fig. 2 left; hdxi is similar to

hdyi but smaller in magnitude, presumably due to finite-
size effects). We find In ≈ 2, hdyi ¼ 0 for t ≤ t� (as ex-
pected from a charge-ordered state) and In ≈ 1, hdyi > 0
for t > t� (as expected from a dipole condensate), where the
critical value t� ≈ 0.275 is respectably close to the mean-
field estimate.
To investigate the state at t > t� we compute the

chemical potentials μ� ≡�EðN � 1Þ ∓ EðNÞ, where
EðNÞ is the ground state energy in the symmetry sector
with total charge N. The gap to charged excitations is given
by μþ − μ−, which is seen to approximately close at t�
(Fig. 2, right). This suggests that at t� the system undergoes
a (presumably first-order) transition into the NFL described
by (6). While this is all in accordance with our theoretical
analysis, these numerics do not answer questions about the
doping dependence of t�, or reveal the nature of the
correlations present in the NFL phase. A proper treatment
of these questions is left to future work.
Experimental considerations.—The most obvious exper-

imental signature of the NFL state is the simultaneous
presence of both a nonzero compressibility and a vanishing
particle conductivity, both of which can be directly mea-
sured from density snapshots taken in quantum gas micro-
scopes [45,46]. The dipole condensate can be directly
detected through correlation functions of the dipole oper-
ators f†rfrþa, which can be measured using superlattice
potentials as detailed in Refs. [47,48]; these correlation
functions are long-ranged in the NFL but short ranged in
the charge-ordered state. The Fermi surface itself can be
detected in principle by looking for Friedel oscillations in
the density-density correlation function [49], which are
even stronger [37] than in a conventional Fermi liquid.
We now discuss issues relating to the experimental

preparation of the NFL state. In one possible protocol,
the system is prepared in a uniform density product state at
zero single particle hopping ta ¼ 0 and zero tilt Δa ¼ 0.Δa
is then diabatically switched on to a value much larger than
the Hubbard interaction and the dimensionless hopping
strength t≡ ta=Δa is slowly increased, with the goal of
reaching the NFL regime while keeping the dipole-con-
serving system at an effective temperature T ≲ TF, with
TF ∼ td ¼ V0t2 the Fermi temperature.
At this point in the discussion, the prethermal nature of

HDFH becomes important. In going from (2) to (3) we
only kept the time-independent part of the effective
Hamiltonian; a more complete analysis shows that in fact
H ¼ HDFH þ VðtÞ, with the most important part of VðtÞ
being VðtÞ ¼ V0t2

P
r;s¼�1 e

iðΔxþsΔyÞtOs
r þ H:c:, where Os

r

is a rather complicated four-fermion interaction with a net
dipole moment of 1 (s) in the x (y) direction [33]. VðtÞ
causes a system initially prepared in the ground state of

HDFH to heat up. Furthermore, if jΔxj ¼ jΔyj, VðtÞ contains
time-independent terms which break one linear combina-
tion of the two components of the dipole moment sym-
metry (if jΔxj=jΔyj ¼ p=q is rational, such terms will arise
at qth order in perturbation theory). Breaking the symmetry
in this way will generically yield a nonzero conductivity
along one spatial direction and produce a crossover to an
anisotropic phase that preempts the NFL at large scales.
Fortunately, we now argue that these problems are not as
severe as they might appear.
The issue of VðtÞ containing time-independent dipole-

violating terms can be circumvented simply by taking
jΔxj=jΔyj to be irrational [5]. However, even when
jΔxj ¼ jΔyj, the time-independent part of VðtÞ is highly
irrelevant and only produces a violation of (7) through
2-loop diagrams that are suppressed by further powers of t.
In practice, these symmetry-breaking terms may thus only
lead to a crossover out of the NFL at length scales larger
than experimentally relevant system sizes.
To assess the effects of heating, we estimate the heating

rate r of a state initially prepared in the ground state of
HDFH and then time evolved with HDFH þ VðtÞ. r can
be bounded using the theory of Floquet prethermalization
[50–53] as

r < C0V2
0e

−CjΔxj=J; ð8Þ

where C;C0 > 0 are dimensionless constants depending on
jΔxj=jΔyj, and where J is an energy scale determined by the
maximum amount of energy locally absorbable by HDFH
(if jΔxj=jΔyj is irrational, jΔxj=J in the exponent is replaced
by

ffiffiffiffiffiffiffiffiffiffiffiffiffijΔxj=J
p

[53]).
From the couplings given in (4), we see that all of the

terms in HDFH are proportional to V0, meaning that J ¼
C00V0 for another dimensionless constant C00. Crucially
though, the parameter t which tunes between the different
phases of HDFH is independent of V0. This implies that by
decreasing V0 and keeping t fixed we can make jΔxj=J
arbitrarily large—and hence r arbitrarily small—all while
remaining at a fixed point in the phase diagram. This
parametric suppression of r means that the issue of
prethermal heating can in principle be sidestepped simply
by working at weak bare interactions.
Discussion.—We have demonstrated the emergence of a

rather exotic non-Fermi liquid (NFL) from a simple dipole-
conserving Fermi-Hubbard model. This model has a natural
realization in strongly tilted optical lattices, and in the NFL
regime is described by fermions coupled to an emergent
bosonic mode which plays the role of a spatial gauge field.
This provides an ultracold-atoms path towards the study of
strongly interacting fermions and gauge fields in a manner
rather distinct from approaches that build in gauge fields at
a more microscopic level [54–56].
As always with ultracold atoms, the experimental crux is

likely to be whether or not one can access the temperatures
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T ≲ TF required to probe the physics of the NFL ground
state. With this in mind it is natural to wonder if the kinetic
constraints imposed by dipole conservation lead to any
interesting dynamical signatures of the NFL regime, which
could be more readily identified in experiments unable to
perform a sufficiently adiabatic parameter sweep.
While our focus so far has been on systems of spinless

fermions, similar physics is also realizable in spinful
models. A natural place to look is the tilted Fermi-
Hubbard model

H ¼
X
r;a;σ

½−taðf†r;σfrþa;σ þ H:c:Þ þ Δaranr;σ�

þ V0

X
r

nr;↑nr;↓: ð9Þ

In the large Δa limit, this Hamiltonian yields a dipole-
conserving model with nearest-neighbor interactions and a
Heisenberg exchange proportional to V0. At half filling and
with attractive bare interactions, mean-field calculations
predict a transition at ta=Δa ≳ 0.26, where the dipole
operators f†r;σfrþa;σ condense and subsequently produce
an NFL. We leave a more thorough investigation of this
physics to future work.
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