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Polarized quarks and antiquarks in high-energy heavy-ion collisions can lead to the spin alignment of
vector mesons formed by quark coalescence. Using the relativistic spin Boltzmann equation for vector
mesons derived from Kadanoff-Baym equations with an effective quark-meson model for strong interaction
and quark coalescence model for hadronizaton, we calculate the spin density matrix element ρ00 for ϕ
mesons and show that anisotropies of local field correlations with respect to the spin quantization direction
lead to ϕ meson’s spin alignment. We propose that the local correlation or fluctuation of ϕ fields is the
dominant mechanism for the observed ϕ meson’s spin alignment and its strength can be extracted from
experimental data as functions of collision energies. The calculated transverse momentum dependence of
ρ00 agrees with STAR’s data. We further predict the azimuthal angle dependence of ρ00 which can be tested
in future experiments.
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Introduction.—In noncentral heavy-ion collisions, the
system carries a large initial orbital angular momentum
(OAM) perpendicular to the reaction plane. Part of the
OAM can be converted to the vorticity fields of the quark-
gluon plasma which in turn lead to the global spin
polarization of partons and final hadrons [1–6] (see, e.g.,
[7–11], for recent reviews), similar to the Barnett effect [12]
and the Einstein–de Haas effect [13] in materials. The
global spin polarization of Λ and Λ̄ hyperons has been
observed in Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV
by the STAR Collaboration [14,15]. According to the quark
coalescence model [1,16], the spin polarization of Λ and Λ̄
is carried by the constituent strange s and antistrange s̄
quark, respectively. Therefore, STAR’s measurement indi-
cates that s and s̄ quarks are also globally polarized along
the OAM direction before hadronization.
Shortly after the prediction of global quark spin polari-

zation [1] in heavy-ion collisions, it was also suggested [2]
that the polarized s and s̄ quarks can recombine and form
polarized vector mesons such as ϕð1020Þwhose spins align
in the OAM direction. For vector mesons, the spin density
matrix ρλ1λ2 is used to describe its spin states with
λ1; λ2 ¼ 0;�1, labeling the spin state along a specific spin
quantization direction. The spin density matrix has unit
trace and its diagonal elements are probabilities for spin
states with λ ¼ 0;�1. However, the spin polarization of
vector mesons, proportional to ρ11 − ρ−1;−1, cannot be

directly measured through strong interaction decays.
Instead, ρ00 can bemeasured through the angular distribution
of its strong decay daughters [2,16–19]. On average, the
polarization vector ϵμðλÞ of vector mesons is in the plane
perpendicular to the spin quantization direction if ρ00 < 1=3,
while it is aligned in the quantization direction if ρ00 > 1=3.
Such spin alignment of the ϕ meson in the OAM

direction was indeed observed recently by STAR experi-
ment [20]. However, the measured positive deviation from
1=3 of ρϕ00 is orders of magnitude larger than what one
would expect from the same vorticity that causes the
measured Λ and Λ̄ polarization in the same collisions.
Contributions from electromagnetic fields and other pos-
sible conventional mechanisms are also orders of magni-
tude smaller [16,21–24].
In this Letter we propose that the local fluctuations or

correlations of the ϕ meson fields during hadronization can
be responsible for the observed spin alignment of the final-
state ϕ meson in the framework of relativistic quantum
transport theory. The effect of ϕ’s mean field on the
hyperon polarization was proposed before [25]. But its
magnitude should be very small implied by the negligible
difference between the observed global polarization of Λ
and Λ̄ [14,15]. Using the relativistic spin Boltzmann
equation for vector mesons derived in this study, we will
show that the deviation from 1=3 of the spin density matrix
ρ00 is proportional to the spatially anisotropic short distance
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correlations or fluctuations of the vector meson fields. One
can therefore extract the strength of the field fluctuations or
correlations from the experimental data and predict the
transverse momentum and azimuthal angle dependence of
the spin alignment.
Spin Boltzmann equation and spin density matrices.—

Nonrelativistic quark coalescence or recombination models
have been employed to describe ρ00 from the spin polari-
zation of the quark and antiquark [2,16,21]. Recently the
spin Boltzmann equation (SBE) for vector mesons has been
derived by us in the framework of relativistic quantum
transport theory [26]. At the leading order in ℏ, the collision
terms can be expressed in terms of matrix-valued spin
dependent distributions (MVSDs) of the quark, antiquark
[27,28], and vector meson [26] in the effective quark-
meson model [29–34] for strong interaction during hadro-
nization. This provides a more rigorous framework to
calculate spin observables for vector mesons such as ρ00
for the ϕ meson.
The Wigner functions for massless vector particles such

as gluons and photons [24,35–39] have been studies for
many years, but to our knowledge there are few works
about Wigner functions for massive vector mesons in the
context of spin polarization (see Ref. [40] for a recent
study). From the Kadanoff-Baym equation [36,41–43] for
Wigner functions, the spin Boltzmann equation for the
vector meson’s MVSD fVλ1λ2 with coalescence and disso-
ciation collision terms reads [26],

k · ∂xfVλ1λ2ðx;kÞ ¼
1

16

X
λ0
1
;λ0

2

½ϵ�μðλ1;kÞϵνðλ01;kÞδλ2λ02

þδλ1λ01ϵ
�
μðλ02;kÞϵνðλ2;kÞ�Cμνλ0

1
λ0
2
ðx;kÞ; ð1Þ

where λ1, λ2, λ01, and λ02 denote the spin states of vector
mesons along the spin quantization direction. We consider
coalescence as the main process for primary particle
production in heavy-ion collisions [44–49]. The collision
kernel Cμνλ0

1
λ0
2
ðx;kÞ is an integral over the quark’s and

antiquark’s momenta which contains in the integrand a
delta function for energy-momentum conservation, a gain
and a loss term involving MVSDs for the quark, antiquark,
and vector meson, fqrs, f

q̄
rs, and fVλ0

1
λ0
2
, respectively, and a

matrix element squared involving Dirac spinors of the
quark and antiquark with spin indices. One can find the
explicit form of Cμνλ0

1
λ0
2
ðx;kÞ in Ref. [26]. In the matrix

element squared there are also qq̄V vertices in the form
Γα ≈ gVBðk − p0;p0Þγα, where gV is the coupling constant
of the vector meson and quark-antiquark, and Bðk − p0;p0Þ
denotes the covariant Bethe-Salpeter wave function of the
vector meson [50,51]. Note that fqrs and fq̄rs (r and s de-
note spin indices) are related to the spin polarization

four-vectors of quark and antiquark [27,28,52,53], Pμ
q

and Pμ
q̄, respectively,

fqðq̄Þrs ðx;pÞ ¼ 1

2
fqðq̄Þðx;pÞ½δrs − Pqðq̄Þ

μ ðx;pÞnμj ðpÞτjrs�; ð2Þ

where fqðq̄Þðx;pÞ is the unpolarized distribution for the
quark (antiquark), nμj ðpÞ (j ¼ 1; 2; 3) are four-vectors of
three basis directions for spin states in the (anti-)quark’s
rest frame with the j ¼ 3 component denoting the spin
quantization direction [28], and τj (j ¼ 1; 2; 3) denote three
Pauli matrices in the space of spin states denoted by r and s.
The gain and loss terms in Cμνλ0

1
λ0
2
ðx;kÞ correspond to the

coalescence and dissociation processes, respectively.
During the hadronization stage of heavy-ion collisions,
the distribution functions for vector mesons and constituent
(anti-)quarks are normally much less than 1, which allows
us to take the dilute gas limit fVλ1λ2 ∼ fqrs ∼ fq̄rs ≪ 1. Then
Eq. (1) can be expressed as

k · ∂xfVλ1λ2ðx;kÞ ¼
1

8
½ϵ�μðλ1;kÞϵνðλ2;kÞCμνcoalðx;kÞ

−CdissðkÞfVλ1λ2ðx;kÞ�; ð3Þ
where the dissociation kernel Cdiss is independent of the
MVSDs. The coalescence kernel Cμνcoal can be obtained by
substituting the MVSDs for quarks and antiquarks into the
gain term of Cμνλ0

1
λ0
2
ðx;kÞ and carrying out a summation over

spin indices of the quark and antiquark,

Cμνcoalðx;kÞ¼
Z

d3p0

ð2πℏÞ2
1

Eq̄
p0E

q
k−p0

δðEV
k −Eq̄

p0 −Eq
k−p0 Þ

×TrfΓνðp0 · γ−mq̄Þ½1þ γ5γ ·Pq̄ðx;p0Þ�
× Γμ½ðk−p0Þ · γþmq�½1þ γ5γ ·Pqðx;k−p0Þ�g
×fq̄ðx;p0Þfqðx;k−p0Þ; ð4Þ

where kμ ¼ ðEV
k ;kÞ and p0μ ¼ ðEq̄

p0 ;p0Þ denote the on-shell
four-momenta of the vector meson and the antiquark,
respectively, and mq ¼ mq̄ are masses for the quark and
antiquark.
Schematically, the formal solution to Eq. (3) reads

fVλ1λ2ðx;kÞ ∼
1

CdissðkÞ
½1 − e−CdissðkÞΔt�

× ϵ�μðλ1;kÞϵνðλ2;kÞCμνcoalðx;kÞ; ð5Þ
where Δt is the formation time of the vector meson and we
assume fVλ1λ2ðx;kÞ is zero at the initial time. We note that
fVλ1λ2ðx;kÞ is actually the unnormalized spin density matrix,
from which the normalized one, ρλ1λ2 , is given as

ρλ1λ2ðx;kÞ ¼
ϵ�μðλ1;kÞϵνðλ2;kÞCμνcoalðx;kÞP
λ¼0;�1 ϵ

�
μðλ;kÞϵνðλ;kÞCμνcoalðx;kÞ

: ð6Þ
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We see that ρλ1λ2 is fully determined by the coalescence
kernel Cμνcoalðx;kÞ. The vector meson’s spin density matrix
depends on the spin states of its constituent quark
and antiquark, similarly as in nonrelativistic coalescence
models [16,21].
Spin alignment for ϕ mesons.—In order to apply Eq. (6)

to calculate ρ00 for the ϕmeson from coalescence of s and s̄
quarks, we assume that the chemical freeze-out occurs
shortly after the ϕ meson’s formation through coalescence,
so one can neglect the effect from hadronic interaction on
its spin states. We also neglect polarization mechanisms
such as by electromagnetic fields or fluid gradients [54–59]
which are not essential in our study here. We will only
consider spin polarization of quarks and antiquarks by the
vorticity field ωμν and the ϕ field Fϕ

ρσ. Quarks and
antiquarks are assumed to be surrounded by SU(3)
pseudo-Goldstone bosons in hadronization. According to
the chiral quark model [29], the ϕ field is just the 33
element (coupled to s and s̄) of the vector field Vμ (3 × 3

matrix) induced by currents of pseudo-Goldstone bosons.
Effects from vorticity fields are also negligible [21] but still
included just as a contrast in the formalism to ϕ fields. The
spin polarization four-vectors as phase space distributions
for s and s̄ are given by [16,27,60–62],

Pμ
sðx;pÞ ≈ 1

4ms
ϵμνρσ

�
ωρσ þ

gϕ
ðu · pÞTh

Fϕ
ρσ

�
pν;

Pμ
s̄ðx;pÞ ≈

1

4ms
ϵμνρσ

�
ωρσ −

gϕ
ðu · pÞTh

Fϕ
ρσ

�
pν; ð7Þ

where pμ ¼ ðEp;pÞ denotes the on-shell four-momentum
of s or s̄, gϕ is the effective coupling constant of the ss̄ϕ
vertex, Th is the local temperature when ϕ mesons are
formed through coalescence, and fs and fs̄ are neglected as
compared to 1 at Th. In Eq. (7) we have introduced a
reference frame vector uμ, which ensures Pμ

s=s̄ to be Lorentz
pseudovectors. Usually uμ is taken as the local fluid
velocity. In the calculation, we will take uμ ¼ ð1; 0; 0; 0Þ
in the rest frame of the ϕ meson for simplicity.
Substituting Eq. (7) into Eqs. (4) and (6) and by a lengthy

but straightforward calculation [26], we obtain ρ00 in ϕ
meson’s rest frame,

ρ00ðx;kÞ ≈
1

3
þ C1

�
1

3
ω0 · ω0 − ðϵ0 · ω0Þ2

�

þ C2

�
1

3
ε0 · ε0 − ðϵ0 · ε0Þ2

�

−
4g2ϕ
m2

ϕT
2
h

C1

�
1

3
B0

ϕ ·B
0
ϕ − ðϵ0 · B0

ϕÞ2
�

−
4g2ϕ
m2

ϕT
2
h

C2

�
1

3
E0

ϕ ·E
0
ϕ − ðϵ0 · E0

ϕÞ2
�
; ð8Þ

where ϵ0 denotes the spin quantization direction for the ϕ
meson, ε0 and ω0 denote the electric and magnetic part of
ω0
μν, E0

ϕ and B0
ϕ the electric and magnetic part of F0μν

ϕ in the
meson’s rest frame. C1 and C2 are two coefficients depend-
ing only on quark and meson masses,

C1 ¼
8m4

s þ 16m2
sm2

ϕ þ 3m4
ϕ

120m2
sðm2

ϕ þ 2m2
sÞ

;

C2 ¼
8m4

s − 14m2
sm2

ϕ þ 3m4
ϕ

120m2
sðm2

ϕ þ 2m2
sÞ

: ð9Þ

The above simple and highly nontrivial result is remarkable
in that all mixed terms of different fields and different
components of the same field disappear due to parity and
reflection symmetry of ρ00 for quarkonium vector mesons.
What remain are short-distance correlations between same
components of vorticity and meson fields. If we neglect
variations of these fields within the hadron size, these field
correlations become local field fluctuations during the
hadronization. Any spatial anisotropy of these field fluc-
tuations in the meson’s rest frame with respect to the spin
quantization direction ϵ0 will lead to the spin alignment,
i.e., ρ00 ≠ 1=3.
In order to calculate the momentum dependence of ρ00,

one can express it in terms of fields in the lab frame through
the Lorentz transformation of ωμν and Fμν

ϕ with the boost

factor γ ¼ Eϕ
k=mϕ and the ϕ meson’s velocity v ¼ k=Eϕ

k.
As a result, ρ00 can be expressed by a factorization form
[26], ρ00ðx;kÞ ¼ 1=3þP

i;α I
α
i ðkÞOα

i ðxÞ, where Iαi ðkÞ
(i ¼ x; y; z) denote momentum-dependent functions and
Oα

i ðxÞ field fluctuations, Oα¼1–4
i ðxÞ ¼ ε2i , ω

2
i , ðgϕEϕ

i =ThÞ2
and ðgϕBϕ

i =ThÞ2, respectively. To obtain the observed ρ00
in experiments, we have to take the space-time average of
Oα

i ðxÞ on the hadronization hypersurface and the momen-
tum average of Iαi ðkÞ weighted by ϕ meson’s momentum
spectra including the azimuthal anisotropy through the
elliptic flow v2ðkÞ given by experimental data [26]. The
effect of v2 is reflected in the difference between out-of-
plane ρ00 and in-plane ρ00 in Fig. 1.
Extracting field fluctuations and predictions.—Since one

can safely neglect contributions from local vorticities to theϕ
meson’s spin alignment as compared to the experimental data
[21], the dominant contributions can come from theϕ field’s
fluctuations in terms of six parameters hðgϕBϕ

i =ThÞ2i and
hðgϕEϕ

i =ThÞ2i (i ¼ x; y; z). Considering the geometry of the
fireball in heavy-ion collisions, we assume that the fluctua-
tions of transverse and longitudinal fields are different, as
represented by hðgϕBϕ

x;y=ThÞ2i ¼ hðgϕEϕ
x;y=ThÞ2i≡ F2

T and

hðgϕBϕ
z =ThÞ2i ¼ hðgϕEϕ

z =ThÞ2i≡ F2
z . Such an assumption

is consistent with the numerical estimates of the usual
electromagnetic fields [63–66].
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We can determine the two parameters on field fluctua-
tions by fitting the STAR data on momentum averaged ρy00
(out of plane) and ρx00 (in plane), corresponding to the spin
quantization direction ϵ0 ¼ ð0; 1; 0Þ and (1,0,0), respec-
tively. In our calculation of the momentum averaged ρy00
and ρx00, we have used the ϕmeson’s transverse momentum
spectra and v2ðkTÞ from STAR’s experiments at

ffiffiffiffiffiffiffiffi
sNN

p ¼
11.5–200 GeV [67–70] as the weight function in ranges of
kT ¼ 1.2–5.4 GeV and rapidity jyj < 1. The difference
between ρy00 and ρ

x
00 is driven by the momentum anisotropy

via v2ðkTÞ.Wewill consider 0%–80%Auþ Au collisions in
all our calculations and comparisons with the experimental
data in this study. Since there are no data available for ϕ
meson’s kT spectra in 0%–80% Auþ Au collisions, we will
use the data in 30%–40% centrality instead. Since the
weighted momentum average is only sensitive to the shape
of the spectra, the errors from such substitute should be small.
The constituent quark mass is set to ms ¼ 419 MeV [71]
with mϕ ¼ 1020 MeV. The fits to the STAR’s data on the
momentum averaged ρy00 and ρ

x
00 and the extracted values of

F2
T and F2

z as functions of colliding energies are shown in
Fig. 1. The energy dependence of F2

T and F2
z can be fitted

with a function lnðF2
T;z=m

2
πÞ ¼ aT;z − bT;z lnð ffiffiffiffiffiffiffiffi

sNN
p

=GeVÞ,
with aT ¼ 3.90� 1.11, bT ¼ 0.924� 0.234, az ¼ 3.33�
0.917, and bz ¼ 0.760� 0.189. The shaded areas in
Fig. 1(b) reflect errors of the momentum averaged ρy00 and
ρx00 in STAR’s measurement. Errors of the STAR data forϕ’s
spectra and v2 are negligible in extracting F2

T and F2
z as

compared to those of ρ00 andwill be omitted in the following

calculations. A variation of ms from 419 to 486 MeV [72]
gives an increase in the extracted values of F2

T and F2
z by

about 37% through C1 and C2 in Eq. (9).
With the extracted values of F2

T and F2
z at each colliding

energy, we can look at the transverse momentum
and azimuthal angle dependence of ρ00ðkÞ. In Fig. 2, we
show the contour plot of ρy00 − 1=3 in kx and ky atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, averaged over the central rapidity region
jyj < 1. We can see a strong modulation of ρy00 in the
azimuthal angle. If we average ρ00ðkÞ over kT weighted
by its spectra in the range kT ¼ 1.2–5.4 GeV, we can obtain
the modulation of ρy00 and ρ

x
00 with the azimuthal angle φ in

Fig. 3. This is an interesting model prediction for future
experimental verification.
Averaging over the azimuthal angle at fixed kT and using

the v2ðkTÞ data to describe the azimuthal anisotropy, we
obtain the kT dependence of ρy00 in Fig. 4 as compared to
STAR’s data for six colliding energies (11.5, 19.6, 27, 39,
62.4, 200 GeV). For large kT beyond the range of the
v2ðkTÞ data, we use a linear extrapolation between the data

FIG. 2. Contour plot of ρy00 − 1=3 for ϕmesons as a function of
kx and ky in 0%–80% Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.

FIG. 3. Calculated ρy00 (out of plane) and ρx00 (in plane) of ϕ
mesons as functions of the azimuthal angle φ in 0%–80% Auþ
Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Shaded error bands are from
the extracted parameters F2

T and F2
z .

FIG. 1. (a) STAR’s data [20] on ϕ meson’s ρy00 (out-of-plane,
red stars) and ρx00 (in-plane, blue diamonds) in 0%–80% Auþ Au
collisions as functions of collision energies. The red-solid line
(out of plane) and blue-dashed line (in plane) are calculated with
values of F2

T and F2
z from fitted curves in (b). (b) Values of F2

T
(magenta triangles) and F2

z (cyan squares) with shaded error
bands extracted from STAR’s data on the ϕ meson’s ρy00 and ρx00
in (a). The magenta-dashed line (cyan-solid line) is a fit to the
extracted F2

T (F2
z ) as a function of

ffiffiffiffiffiffiffiffi
sNN

p
(see the text).
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value of v2 at the highest kT and v2 ¼ 0 at a larger kT
outside the experimental range which we set to 10 GeV=c.
The error bands in the calculation are mainly due to those of
the two parameters F2

T and F2
z extracted from experimental

data at each colliding energy. We find that our predicted ρy00
is nearly a constant at kT < 2 GeV and increases slightly at
higher kT.
Summary.—Based on a relativistic quantum transport

theory for spin dynamics, we have formulated the spin
density matrix element ρ00 for ϕ mesons employing the
spin Boltzmann equation with the effective quark-meson
model for interaction and quark coalescence model for
hadronization. Neglecting effects of hadronic interaction
after the hadronization, the final ρ00 − 1=3 is found to be
proportional to local correlations or fluctuations of the ϕ
field. The effective ϕ field’s fluctuation parameters can be
extracted through comparison with the STAR data on
momentum averaged ρ00. Their values and colliding energy
dependence may shed light on nonperturbative properties of
strong interaction. We further predicted the transverse
momentum and azimuthal angle dependence of ρ00 that
canbeverified by future experiments.Our theoreticalmethod
can also be applied to the spin alignment of heavy quarkonia
[73] and spin correlation of hyperons [74].
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