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We analyze theories with color-kinematics duality from an algebraic perspective and find that any such
theory has an underlying BV▪-algebra, extending the ideas of Reiterer [A homotopy BValgebra for Yang–
Mills and color–kinematics, arXiv:1912.03110.]. Conversely, we show that any theory with a BV▪-algebra
features a kinematic Lie algebra that controls interaction vertices, both on shell and off shell. We explain
that the archetypal example of a theory with a BV▪-algebra is Chern-Simons theory, for which the resulting
kinematic Lie algebra is isomorphic to the Schouten-Nijenhuis algebra on multivector fields. The
BV▪-algebra implies the known color-kinematics duality of Chern-Simons theory. Similarly, we show that
holomorphic and Cauchy-Riemann Chern-Simons theories come with BV▪-algebras and that, on the
appropriate twistor spaces, these theories organize and identify kinematic Lie algebras for self-dual and full
Yang-Mills theories, as well as the currents of any field theory with a twistorial description. We show that
this result extends to the loop level under certain assumptions.
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Introduction and summary.—Color-kinematics (CK)
duality [1,2] (see reviews in Refs. [3–7]) is a surprising
property of certain field theories, that allows for their
scattering amplitudes to be split into a kinematic compo-
nent or numerators and gauge Lie algebra or color
numerators, such that the kinematic numerators mirror
the algebraic properties of the color numerators. This
was first observed for the tree-level amplitudes of Yang-
Mills theory, but many other theories also exhibit CK
duality. CK duality is the cornerstone of the double copy
prescription [1,2], which constructs gravity scattering
amplitudes from a simple combination of pairs of corre-
sponding kinematical numerators for Yang-Mills theory,
suggesting deep, illuminating connections between the
known fundamental theories of nature and providing
cutting-edge predictions in gravitational-wave astronomy;
see, e.g., Refs. [8–10].
Concretely, a theory is CK-dual if its n-point amplitudes

An can be written as

An ∼
X
γ∈Γn

cγnγ
dγ

; ð1Þ

where Γn denotes the set of cubic Feynman graphs with n
external lines, dγ are the product of ð1=p2

lÞ over all
propagator lines l, with pl their momenta, cγ are the
color numerators, i.e., products of gauge Lie algebra
structure constants, as prescribed by the diagram γ, and
nγ are the kinematic numerators, built from momenta and
polarization tensors. Furthermore, cγ and nγ obey the same
antisymmetry under the interchange of edges in γ, and
cγ1 þ cγ2 þ cγ3 ¼ 0 implies nγ1 þ nγ2 þ nγ3 ¼ 0. CK dual-
ity thus suggests the existence of a kinematic Lie algebra
(KLA) from which the nγ are constructed.
The geometric and algebraic underpinnings of this KLA

remain a central question [11–26]. In the case of self-dual
Yang-Mills (SDYM) theory, the KLA consists of area-
preserving diffeomorphisms on C2 [27]; see Refs. [28–32].
A cubic Lagrangian for the nonlinear sigma model with
Feynman rules obeying (≤ 1)-loop CK duality [33] has been
employed to identify the KLA of the maximally-helicity-
violating (MHV) sector. Beyond the MHV sector, tensor
currents and fusion rules elucidate the KLA of Yang-Mills
(YM) theory [34–36]. A closed form expression for tree-level
CK-dual numerators was obtained from a covariant CK
duality [37] that identified an underlying kinematic Lorentz
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algebra. Moreover, it has been shown that the tree-level
currents of super Yang-Mills theory come with a KLA [38].
Instead of working at the level of amplitudes, we

consider CK duality and the KLA directly at the level of
actions [39–42]: given tree-level CK duality, one can
always render the action CK-dual using infinitely many
auxiliary fields, but at the cost of unitarity, which is broken
by Jacobians arising from field redefinitions [40–42]. It
therefore remains to identify an organizational principle for
the resulting tower of auxiliaries and avoid nonlocal field
redefinitions altogether. Following Ref. [11], we find this
organizational principle in the form of BV▪-algebras, which
ensure the existence of a kinematic Lie algebra. (A more
detailed algebraic characterization of BV▪-algebras, which
also closes the gap to CK duality, is in preparation [26]).
The prime example of a theory with BV▪-algebra is

Chern-Simons (CS) theory, and many field theories can be
equivalently formulated as CS-type theories on twistor
spaces. Using this picture, we are able to reproduce and
generalize, e.g., the results of Refs. [26,27,43]. We show
that the currents of such field theories come with a KLA
which we can readily identify. In many cases, this KLA
extends to the amplitudes, and for a special class, it implies
conventional CK duality. For theories for which the
anomalies discussed in Ref. [44] are absent, our arguments
extend to the loop level.
Our results significantly improve the understanding of

KLAs and comprise concrete and new examples. They
highlight the power of the action perspective on CK duality
as an organizational principle, and our improved algebraic
understanding has the power to streamline the computation
of the kinematic numerators important in the double copy
construction of gravity scattering amplitudes, cf. Ref. [26].
Chern-Simons theory.—We start with the illustrative

example of ordinary non-Abelian CS theory, which dem-
onstrates all essential features. For our purposes, it is
convenient to work with Batalin-Vilkovisky (BV) quanti-
zation [45,46], which introduces unphysical fields called
antifields in addition to the physical fields and ghosts,
and use differential form notation to hide Lorentz indices.
The BV action of CS theory reads as

SCS ¼
Z

tr

�
1

2
A ∧ dAþ 1

3!
A ∧ ½A; A�

þ Aþ ∧ ðdcþ ½A; c�Þ þ 1

2
cþ ∧ ½c; c�

�
; ð2Þ

where A is a gauge potential one-form; c is the ghost field, a
Grassmann-odd scalar function; Aþ and cþ are the corre-
sponding antifields (an odd two-form and an even three-
form); and all fields take values in a color Lie algebra g.
This action is the Maurer-Cartan action for the differential
graded (dg) Lie algebra of differential forms with values in
g, ðΩ• ⊗ g; dÞ, whose Lie bracket is the wedge product
composed with the Lie bracket of g, whose differential is

the exterior derivative d, and whose grading is such that Ωp

carries ghost number 1 − p; see, e.g., Ref. [47]. After color
stripping, we are left with the dg commutative algebra
ðΩp; dÞ of ordinary differential forms under wedge product
and exterior derivative.
It is well known that CS scattering amplitudes are trivial.

Instead, Ref. [43] considers correlators of harmonic differ-
ential forms. To compute these, note that

dd† þ d†d ¼ −□; ð3Þ
where the codifferential d† is defined as d†α ¼
−ð−1Þp⋆d⋆α for a p-form α using the Hodge operator with
respect to the Minkowski metric, and □ the d’Alembertian.
The propagator is nowgivenby ½ð−d†Þ=□�.UsingEq. (3),we
may decompose the identity operator on differential forms as

1 ¼ d
−d†

□
þ −d†

□
dþ ΠHarm; ð4Þ

whereΠHarm projects onto the harmonic forms. The operator
−d† allows us to introduce a “derived bracket” on Ω•,

ð−1Þp½α; β� ¼ −d†ðα ∧ βÞ þ d†α ∧ β þ ð−1Þpα ∧ d†β

ð5Þ
for all α ∈ Ωp and β ∈ Ω•. Since −d† is a second-order
differential operator, ½−;−� defines a so-called Gerstenhaber
bracket on Ω•, which is a degree-shifted Lie algebra.
Furthermore, the bracket ½−;−�maps pairs of physical fields
to physical fields and encodes their interactions. Thus, this
defines the KLA (½1� indicates the degree shift to form an
ordinary Lie algebra.),

K ¼ ðΩ•½1�; ½−;−�Þ; ð6Þ
for correlators of harmonic forms, which therefore can be
brought into the form Eq. (1). One can show [48,49] that this
KLA is isomorphic to the Schouten-Nijenhuis algebra of
totally antisymmetric tensor fields, the natural Gerstenhaber
algebra on three-dimensional Minkowski space. Truncating
K to degree 0 yields theKLAK0 commonly discussed in the
literature, which here is the spacetime diffeomorphism
algebra.
The above straightforwardly extends to holomorphic CS

theory on C3, with the real p-forms and the KLA replaced
by the complex ð0; pÞ-forms and the evident holomorphic
version of the Schouten-Nijenhuis algebra, respectively.
More generally, the structure ðΩ•; d;∧;−d†Þ is an

instance of what is known as a BV▪-algebra [11,26] with
▪ ¼ □, which we explore below.
Color-kinematics duality algebraically.—Consider a

field theory whose tree amplitudes [Eq. (1) ] arise from
the Feynman diagram expansion of a BV action. The
corresponding vector space of fields L is graded by the
ghost number, and so we may write L ¼ ⨁p∈ZLp, where
the elements of Lp carry ghost number 1 − p. The free part
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of the action is captured by a kinematic operator, which is a
linear map d on L with d2 ¼ 0 that decreases ghost number
by 1 (mapping antifields to fields and fields to zero). All
interaction terms are cubic which are captured by a product
on L that conserves ghost number. Gauge invariance
implies that this L forms a dg Lie algebra [41,47,50],
which generalizes our previous Ωp ⊗ g.
The Feynman expansion [Eq. (1) ] implies that a propa-

gator h exists that inverts d on propagating (off shell) fields.
Thus, the identity operator on fields decomposes as

1 ¼ dhþ hdþ Πon shell; ð7Þ
where Πon shell is the projector on shell fields, generalizing
Eq. (4). It is always possible to choose h such that h2 ¼ 0
[51]. Splitting h ¼ ðb=▪Þ into the denominator ▪ and
numerator b leads to dbþ bd ¼ ▪.
Color stripping now amounts to factorizing L ¼ g ⊗ B

into the color Lie algebra g and a dg commutative algebra
ðB; d;mÞ with differential d and product m [41]. Denoting
the color-stripped propagator also by ðb=▪Þ, we have

dbþ bd ¼ ▪ ð8Þ
which generalizes Eq. (3), and ▪ is a second-order differ-
ential operator with respect to m. It is algebraically natural
to assume that b is also a second-order differential operator
that squares to zero [52] (and this is also true in physically
relevant situations [25]). In this case, the derived bracket
defined by

ð−1Þjxj½x;y� ¼ bmðx;yÞ−mðbx;yÞ− ð−1Þjxjmðx;byÞ ð9Þ
for all x; y ∈ B is a Gerstenhaber bracket on B of which
Eq. (5) is a special instance. As in the CS case, the KLA
(with all BV fields) is then simply

K ¼ ðB½1�; ½−;−�Þ: ð10Þ
Truncating K to degree 0 yields the usual KLA K0.
Mathematically, ðB; d;m; bÞ is a BV algebra [52] with

Gerstenhaber bracket given by Eq. (9), and ▪ promotes this
BV algebra to a BV▪-algebra [11,26].
Conversely, in a theory with a BV▪-algebra, the cubic

vertices in Feynman diagrams are governed by a KLA and a
“color” Lie algebra. When ▪ ¼ □ coincides with the
d’Alembertian, this implies CK duality (up to potential
anomalies). Otherwise, complications may arise such that it
is not possible to write the amplitudes in the form of Eq. (1).
Then, we merely speak of a theory with a KLA.
Apart from the CS theories already discussed, these ideas

extend to field theories whose linearized equations of
motions are encoded in a differential with a natural codiffer-
ential. This is the case for all theories whose solutions can be
described in terms of flat connections on twistor spaces. In
the following, we discuss two examples in detail. We stress
that even in the absence of an action principle, we still have a

BV▪-algebra and, thus, a KLA for the numerators of the
corresponding tree-level currents.
Self-dual Yang-Mills theory.—The twistor space Z of

maximally supersymmetric (MS) SDYM theory is the
superspace R4j8 × CP1 with CP1 the Riemann sphere;
see, e.g., Refs. [53,54] for reviews. Holomorphic CS theory
on Z is semiclassically equivalent (see Refs. [55,56] and
[54] for details) to MSSDYM theory given by the Siegel
action [57] on R4,

SSiegel¼
Z

tr

�
G− ∧F−

1

2
ϕ□ϕþχ∇χþ1

2
ϕ½χ;χ�

�
; ð11Þ

where F is the gluon field strength two-form, the Lagrange
multiplier G− is an anti-self-dual two-form, ϕ denotes the
six scalar fields, and χ denotes the four gluinos; all fields
transform under the adjoint representation of the gauge
group. Adopting coordinates ðxα _α; η _αi Þ on R4j8, with xα _α a
commuting four-vector and η _αi anticommuting spinors,
and homogeneous coordinates λ _α on CP1 (α; _α ¼ 1, 2;
i ¼ 1;…; 4), the antiholomorphic vector fields on Z are
spanned by

ðÊα; Ê
i; Ê0Þ ¼

�
λ _α

∂

∂xα _α
; λ _α

∂

∂η _αi
; jλj2λ _β

∂

∂λ̂_β

�
; ð12Þ

where jλj2 ¼ λ _αλ̂
_α (with λ̂ _α ¼ λ̄ _α). The holomorphic vector

fields ðEα; Ei; E0Þ are the corresponding conjugates. We
denote the antiholomorphic differential one-forms dual to
Eq. (12) by ðêα; êi; ê0Þ. We then have the BV action

ShCS ¼
Z

Ω ∧ tr

�
1

2
A ∧ ∂redAþ 1

3!
A ∧ ½A; A�

þ Aþ ∧ ð∂redcþ ½A; c�Þ þ 1

2
cþ ∧ ½c; c�

�
; ð13Þ

where Ω is the holomorphic volume form on twistor space
[58] and ∂red ¼ êαÊα þ ê0Ê0 is the Dolbeault differential
restricted to legs along commuting coordinates. The fields
are g-valued antiholomorphic differential forms on Z that
are holomorphic with respect to the anticommuting coor-
dinates ηi ¼ η _αi λ _α and have no legs along antiholomorphic
anticommuting coordinates.
The space of color-stripped fields forms a dg commu-

tative algebra, with the product given by the wedge product
and differential ∂red. It further forms a BV▪-algebra BSDYM
together with the differential operator

b ¼ −
4

jλj2 ε
αβιEα

ιÊβ
∂red þ 2εαβιÊα

ιÊβ
ê0 ∧; ð14Þ

where ιX denotes the contraction of a differential form
with a vector field X. A quick calculation shows that
∂redbþ b∂red ¼ □R4 .
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Recall that the actions in Eqs. (13) and (11) are
equivalent, i.e., they share the same tree-level amplitudes.
We can compute these by embedding external states on R4,

given by harmonic gauge potentials, into A ∈ Ω0j0;1j0
red ,

respecting the gauge condition bA ¼ 0. We then use the
trivial Feynman rules derived from Eq. (13) together with
the propagator h ¼ ðb=□R4Þ. This Feynman diagram
expansion manifests the KLA contained in BSDYM with
▪ ¼ □R4 . Hence, MSSDYM theory possesses CK duality,
and the twistor action produces a CK-duality-manifesting
spacetime action for MSSDYM theory after Kaluza-Klein
(KK)-expanding along CP1. Integrating out the KK tower
of auxiliary fields reproduces the Siegel action.
The full KLA K is isomorphic to the Schouten-

Nijenhuis-type Lie algebra K̃ of bosonic holomorphic
totally antisymmetric tensor fields on Z with Lie
bracket ½U;V�red ¼ ðUαEαVβ − VαEαUβÞEβ.
This construction generalizes to dimensionally reduced

SDYM theory and theories with any amount of supersym-
metry, following Refs. [59,60] or, e.g., Ref. [61].
To match the literature, note that the lowest order in ηi of

the gauge potentialA describes the gluon. Since to this order,
ιÊ0

A can be gauged away [ [54], §5.2], only holomorphic
multivector fields spanned by the Eα in the Schouten-
Nijenhuis-type Lie algebra K̃ contribute to K̃0. On space-
time, these parametrize translations along self-dual planes
spanned by ½ð∂=∂uÞ; ð∂=∂wÞ� ¼ ½ð∂=∂x1_1Þ; ð∂=∂x2_1Þ�, repro-
ducing the KLA identified in Ref. [27].
Beyond trees, (MS)SDYM theory possesses finite one-

loop amplitudes. Unlike SDYM theory, the twistorial action
for MSSDYM theory captures the correct one-loop ampli-
tudes [44]. Our arguments therefore also demonstrate CK
duality forMSSDYM theory one-loop amplitude integrands.
Maximally-supersymmetric Yang-Mills theory.—Similar

arguments also hold for full maximally supersymmetric
Yang-Mills (MSYM) theory. (Recall that N ¼ 3 super-
symmetric Yang-Mills (SYM) theory is perturbatively
equivalent to N ¼ 4 SYM theory.) However, the KLA
will be such that CK duality is not immediate.
In this case, the twistor space is a CR manifold

(a generalization of the notion of a complex manifold,
cf. Ref. [62]), namely the CR ambitwistor space L ¼
R4j24 × CP1 × CP1. Holomorphic CS theory on L is
semiclassically equivalent to four-dimensional MSYM
theory [63,64]. We use Cartesian coordinates in spinor
notation ðxα _α; η _αi ; θiαÞ on R4j24 and homogeneous coordi-
nates ðλ _α; μαÞ on CP1 × CP1. The antiholomorphic vector
fields

ðÊF; ÊL; ÊRÞ ¼
�
μαλ _α

∂

∂xα _α
; jλj2λ _β

∂

∂λ̂ _β
; jμj2μβ

∂

∂μ̂β

�
ð15Þ

form a basis of the space of antiholomorphic vector fields
along commuting directions; we also define the conjugate

holomorphic vector fields ðEF; EL; ERÞ and dual antiholo-
morphic one-forms ðêF; êL; êRÞ.
The relevant action here is again of the form of Eq. (13),

with Z replaced by L, Ω3j4;0j0 replaced by the holomorphic
measure identified in Refs. [63,64], and the dg commuta-

tive algebra ðΩ0j0;•j0
red ; ∂redÞ replaced by the restricted bosonic

CR differential forms Ω0j0;•j0
CR that depend holomorphically

on ðηi; θiÞ ¼ ðη _αi λ _α; θiαμαÞ for i ¼ 1, 2, 3 and with no
antiholomorphic fermionic directions, which are endowed
with the differential ∂CR ¼ êFÊF þ êLÊL þ êRÊR. The
second-order differential operator

b ¼ −
8

jλj2jμj2 ιEF
ιÊF

∂CR ð16Þ

leads to

▪ ¼ ∂CRbþ b∂CR ¼ □R4 þ 8
μðαμ̂βÞλð _αλ̂_βÞ

jλj2jμj2
∂

∂xα _α
∂

∂xβ _β
: ð17Þ

Thus, we obtain the BV▪-algebra BSYM ¼ ðΩ0j0;•j0
CR ;∂CR;∧; bÞ containing a KLA of evident Cauchy-Riemann

automorphisms of L.
While L is not compatible with Wick rotation,BSYM and

the contained KLA are: KK expand the theory along
CP1 × CP1, obtaining a cubic field theory with an infinite
tower of KK fields on R4, on which ð∂CR; b; ▪Þ act as
“ð∞ ×∞Þ-dimensional matrices of differential operators”.
The complexified KK fields all carry complex Spin(4)

representations. (Unlike ordinary KK expansions, compact
directions here carry nontrivial Lorentz representations:
Wick rotation destroys the geometric interpretation.), and
imposing reality conditions suitable for Minkowski space
Wick rotates both the fields and the operators ð∂CR; b; ▪Þ.
(We note that both KK expansion and Wick rotation
preserve semiclassical equivalence between Cauchy-
Riemann CS theory andMSYM theory. Perturbation theory
with propagator ðb=▪Þ and gauge bA ¼ 0 for the field A
reproduces MSYM amplitudes on four-dimensional
Minkowski space: semiclassical equivalence fixes the
interaction vertices; the propagator ðb=▪Þ is the inverse
of the kinematic operator almost everywhere (i.e., modulo
measure-zero sets) in momentum space).
In view of CK duality, our above propagator involving

the inverse of ▪,

1

▪
¼ ηMN − KMN

μν
kμkν

k2 þ KMP
μν KP

N
ρσ

kμkνkρkσ

k4 −…

k2
; ð18Þ

whereM;N;… label KKmodes, has a striking similarity to
the YM propagator hμνξ ¼ ð1=k2Þημν þ ð1 − ξÞðkμkν=k4Þ in
Rξ gauge in that both lead to unphysical singularities
(e.g., ðkμkν=k4Þ for hμνξ ) in individual Feynman diagrams.
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These singularities signal the propagation of unphysical
longitudinal modes. With all external states physical, their
contributions have to cancel, and for Rξ gauge this follows
from Ward identities. It is natural to expect that the same
occurs for (potentially Wick-rotated) Cauchy-Riemann CS
theory, and there is a KK tower of generalized Ward
identities that allows one to replace the propagator ðb=▪Þ
with ðb=□Þ. If true, then the BV▪-algebra guarantees
CK-dual numerators: the numerators computed with the
propagator ðb=□Þ are automatically CK-dual. We study
this in upcoming work.
The extension to the loop level depends on the

assumption that the relevant (ambi)twistor theories cor-
rectly describe the loop amplitudes. The semiclassical
equivalences between spacetime field theories and twisto-
rial CS-type theories only extends to the loop level if certain
twistor space anomalies vanish [44]. Provided that Cauchy-
Riemann CS theory on L is anomaly free with no further
problems reducing the path-integral measure from twistor
space fields to spacetime fields, then Cauchy-Riemann CS
theory on L also captures loop amplitudes, and we obtain a
loop-level KLA.
Let us sketch an argument that this is true for the

Cauchy-Riemann CS anomaly. A codimension k Levi-flat
Cauchy-Riemann manifold M foliates into holomorphic
leaves Mt. If the space of leaves T is a k-dimensional
manifold, one easily checks that L satisfies these con-
ditions, then the Cauchy-Riemann CS partition function is
logZðMÞ ¼ R

t∈T ω logZðMtÞ, where ω is a volume form
(defining the path-integral measure) on T, and where
ZðMtÞ is the partition function of holomorphic CS theory
(with the same field content) onMt: the full theory onM is
anomaly free if the corresponding holomorphic theory on
Mt is anomaly free.
Thus, it suffices to study holomorphic CS theory on Mt,

or even (as anomalies are integrals of local objects) on a
small patch in Mt, where global issues (e.g., nonzero-
degree bundles) disappear. In the weak-coupling limit,
anomaly contributions from bosons and fermions are equal
and opposite [44], since their linearized actions in the
presence of an external gauge field coincide up to statistics:
supersymmetry ensures anomaly cancellation in holomor-
phic CS theory and Cauchy-Riemann CS theory. Without
supersymmetry, this argument fails.
Indeed, for nonsupersymmetric twistorial holomorphic

CS theory (semiclassically equivalent toSDYMtheory) there
is an anomaly [44] that, via the preceding argument, implies
an anomaly for nonsupersymmetric twistorial Cauchy-
Riemann CS theory (semiclassically equivalent to YM
theory). Even if the KLA algebra does imply tree-level
CK duality, it will be anomalous. This is consistent with,
and elucidates, the conclusion that CKduality can be realized
as an anomalous symmetry of a semiclassically equivalent
YM-BVaction [42], as well as the proof (by exhaustion) that
there are no CK-dual four-point two-loop numerators for

bosonic YM theory assuming that they can be derived from
local Feynman rules [65].
Data management.—No additional research data beyond

the data presented and cited in this work are needed to
validate the research findings in this work.
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